1,130
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Foodborne pathogens in the omics era

, , , &

References

  • Abaev, I., Y. Skryabin, A. Kislichkina, A. Bogun, O. Korobova, and I. Dyatlov. 2018. Draft genome sequences of eight Staphylococcus aureus strains isolated during foodborne outbreaks. Genome Announcements 6 (5):1–2. doi: 10.1128/genomeA.01557-17.
  • Abdelmegid, S., J. Murugaiyan, M. Abo-Ismail, J. L. Caswell, D. Kelton, and G. M. Kirby. 2017. Identification of host defense-related proteins using label-free quantitative proteomic analysis of milk whey from cows with Staphylococcus aureus subclinical mastitis. International Journal of Molecular Sciences 19 (1):78. doi: 10.3390/ijms19010078.
  • Abhyankar, W. R., L. Zheng, S. Brul, C. G. Koster, and L. J. Koning. 2019. Vegetative cell and spore proteomes of Clostridioides difficile show finite differences and reveal potential protein markers. Journal of Proteome Research 18 (11):3967–76. doi: 10.1021/acs.jproteome.9b00413.
  • Agrawal, G. K., N. S. Jwa, M. H. Lebrun, D. Job, and R. Rakwal. 2010. Plant secretome: Unlocking secrets of the secreted proteins. Proteomics 10 (4):799–827. doi: 10.1002/pmic.200900514.
  • Aijuka, M., and E. M. Buys. 2019. Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production environment: Implications for food safety and public health. Food Microbiology 82:363–70. doi: 10.1016/j.fm.2019.03.018.
  • Alex, P., M. Gucek, and C. Li. 2009. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies. Inflammatory Bowel Diseases 15 (4):616–29. doi: 10.1002/ibd.20652.
  • Alkema, W., J. Boekhorst, M. Wels, and S. A. F. T. Van Hijum. 2016. Microbial bioinformatics for food safety and production. Briefings in Bioinformatics 17 (2):283–92. doi: 10.1093/bib/bbv034.
  • Alreshidi, M. M., R. H. Dunstan, M. M. Macdonald, N. D. Smith, J. Gottfries, and T. K. Roberts. 2019. Amino acids and proteomic acclimation of Staphylococcus aureus when incubates in a defined minimal médium supplemented with 5% sodium chloride. MicrobiologyOpen 8 (6):1–10. doi: 10.1002/mbo3.772.
  • Andjelkovic, U., M. S. Gajdosik, D. Gaso-Sokac, T. Martinovic, and D. Josic. 2017. Foodomics and food safety: Where we are. Food Technology and Biotechnology 55:290–307.
  • André, S., T. Vallaeys, and S. Planchon. 2017. Spore-forming bacteria responsible for food spoilage. Research in Microbiology 168 (4):379–87. doi: 10.1016/j.resmic.2016.10.003.
  • Assisi, C., E. Forauer, H. F. Oliver, and A. J. Etter. 2021. Genomic and transcriptomic analysis of biofilm formation in persistent and transient Listeria monocytogenes isolates from the retail deli environment does not yield insight into persistence mechanisms. Foodborne Pathogens and Disease 18 (3):179–88. doi: 10.1089/fpd.2020.2817.
  • Bardanzellu, F., V. Fanos, and A. Reali. 2017. Omics in human colostrum and mature milk: Looking to old data with new eyes. Nutrients 9 (8):1–24.
  • Barnes, H. A., M. C. Bagnall, D. D. Browning, S. A. Thompson, G. Manning, and D. G. Newell. 2007. γ-Glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni. Microbial Pathogenesis 43 (5-6):198–207. doi: 10.1016/j.micpath.2007.05.007.
  • Beer, L., M. Mildner, and H. J. Ankersmit. 2017. Cell secretome based drug substances in regenerative medicine: When regulatory affairs meet basic science. Annals of Translational Medicine 5 (7):170. doi: 10.21037/atm.2017.03.50.
  • Begley, M., and C. Hill. 2010. Food safety: What can we learn from genomics? Annual Review of Food Science and Technology 1:341–361. doi: 10.1146/annurev.food.080708.100739.
  • Bergholz, T. M., A. I. Moreno Switt, and M. Wiedmann. 2014. Omics approaches in food safety: Fulfilling the promise? Trends in Microbiology 22 (5):275–281. doi: 10.1016/j.tim.2014.01.006.
  • Bhardwaj, T., S. Haque, and P. Somvanshi. 2018. In silico identification of molecular mimics involved in the pathogenesis of Clostridium botulinum ATCC 3502 strain. Microbial Pathogenesis 121:238–44. doi:10.1016/j.micpath.2018.05.017.
  • Bintsis, T. 2017. Foodborne pathogens. AIMS Microbiology 3 (3):529–563. doi: 10.3934/microbiol.2017.3.529.
  • Blum, B. C., F. Mousavi, and A. Emili. 2018. Single-platform “multi-omic” profiling: Unified mass spectrometry and computational workflows for integrative proteomics-metabolomics analysis. Molecular Omics 14 (5):307–319.
  • Boetzkes, A., K. W. Felkel, J. Zeiser, N. Jochim, I. Just, and A. Pich. 2012. Secretome analysis of Clostridium difficile strains. Archives of Microbiology 194 (8):675–87. doi: 10.1007/s00203-012-0802-5.
  • Bratburd, J. R., C. Keller, E. Vivas, E. Gemperline, L. Li, F. E. Rey, and C. R. Currie. 2018. Gut microbial and metabolic responses to Salmonella enterica Serovar Typhimurium and Candida albicans. mBio 9 (6):2032–2050. doi: 10.1128/mBio.02032-18.
  • Bucur, F. I., L. Grigore-Gurgu, P. Crauwels, C. U. Riedel, and A. I. Nicolau. 2018. Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Frontiers in Microbiology 9:2700. doi: 10.3389/fmicb.2018.02700.
  • Burgos-Portugal, J. A., N. O. Kaakoush, M. J. Raftery, and M. M. Mitchell. 2012. Pathogenic potential of Campylobacter ureolyticus. Infection and Immunity 80 (2):883–890. doi: 10.1128/IAI.06031-11.
  • Busche, T., M. Hillion, V. Van Loi, D. Berg, B. Walther, T. Semmler, B. Strommenger, W. Witte, C. Cuny, A. Mellmann, et al. 2018. Comparative secretome analyses of human and zoonotic Staphylococcus aureus isolates CC8, CC22, and CC398. Molecular & Cellular Proteomics 17 (12):2412–2433. doi: 10.1074/mcp.RA118.001036.
  • Caccia, D., M. Dugo, M. Callari, and I. Bongarzone. 2013. Bioinformatics tools for secretome analysis. Biochimica et Biophysica Acta 1834 (11):2442–2453. doi: 10.1016/j.bbapap.2013.01.039.
  • Cain, J. A., A. L. Dale, P. Niewold, W. P. Klare, L. Man, M. Y. White, N. E. Scott, and S. J. Cordwell. 2019. Proteomics reveals multiple phenotypes associated with n-linked glycosylation in Campylobacter jejuni. Molecular & Cellular Proteomics 18 (4):715–734. doi: 10.1074/mcp.RA118.001199.
  • Callejón, R. M., M. I. Rodríguez-Naranjo, C. Ubeda, R. Hornedo-Ortega, M. C. Garcia-Parrilla, and A. M. Troncoso. 2015. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathogens and Disease 12 (1):32–38. doi: 10.1089/fpd.2014.1821.
  • Calvano, C. D., M. Bianco, I. Losito, and T. R. I. Cataldi. 2021. Proteomic analysis of food allergens by MALDI TOF/TOF mass spectrometry. Methods in Molecular Biology 2178:357–376. doi: 10.1007/978-1-0716-0775-6_24.
  • Capece, D., D. Verzella, A. Tessitore, E. Alesse, C. Capalbo, and F. Zazzeroni. 2018. Cancer secretome and inflammation: The bright and the dark sides of NF-κB. Seminars in Cell & Developmental Biology 78:51–61. doi: 10.1016/j.semcdb.2017.08.004.
  • Capozzi, F., and A. Bordoni. 2013. Foodomics: A new comprehensive approach to food and nutrition. Genes & Nutrition 8 (1):1–4. doi: 10.1007/s12263-012-0310-x.
  • Capra, E., P. Cremonesi, A. Pietrelli, S. Puccio, M. Luini, A. Stella, and B. Castiglioni. 2017. Genomic and transcriptomic comparison between Staphylococcus aureus strains associated with high and low within herd prevalence of intra-mammary infection. BMC Microbiology 17 (1):1–16. doi: 10.1186/s12866-017-0931-8.
  • Centers for Disease Control. 2012. What is a foodborne disease outbreak and why do they occur. Accessed September 11, 2020. http://www.cdc.gov/foodsafety/facts.html#whatisanoutbreak.
  • Chandramouli, K., and P. Y. Qian. 2009. Proteomics: Challenges, techniques and possibilities to overcome biological sample complexity. Human Genomics and Proteomics 239204:1–22.
  • Charlebois, A., M. Jacques, and M. Archambault. 2016. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathology 45 (5):593–601. doi: 10.1080/03079457.2016.1189512.
  • Chavira, A., P. Belda-Ferre, T. Kosciolek, F. Ali, P. C. Dorrestein, and R. Knight. 2019. The microbiome and its potential for pharmacology. Handbook of Experimental Pharmacology 260:301–326. doi: 10.1007/164_2019_317.
  • Cheng, S., L. Wang, Q. Liu, L. Qi, K. Yu, Z. Wang, M. Wu, Y. Liu, J. Fu, M. Hu, et al. 2017. Identification of a novel Salmonella type III effector by quantitative secretome profiling. Molecular & Cellular Proteomics 16 (12):2219–2228. doi: 10.1074/mcp.RA117.000230.
  • Cherkaoui, A., J. Hibbs, S. Emonet, M. Tangomo, M. Girard, P. Francois, and J. Schrenzel. 2010. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. Journal of Clinical Microbiology 48 (4):1169–1175. doi: 10.1128/JCM.01881-09.
  • Chilton, C. H., S. E. Gharbia, M. Fang, R. Misra, I. R. Poxton, S. P. Borriello, and H. N. Shah. 2014. Comparative proteomic analysis of Clostridium difficile isolates of varying virulence. Journal of Medical Microbiology 63 (4):489–503. doi: 10.1099/jmm.0.070409-0.
  • Chin, K. C. J., T. D. Taylor, M. Hebrard, K. Anbalagan, M. G. Dashti, and K. K. Phua. 2017. Transcriptomic study of Salmonella enterica subspecies enterica serovar Typhi biofilm. BMC Genomics 18 (1):1–9. doi: 10.1186/s12864-017-4212-6.
  • Chlebicz, A., and K. Śliżewska. 2018. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. International Journal of Environmental Research and Public Health 15 (5):863. doi: 10.3390/ijerph15050863.
  • Choi, J., K. Yong, J. Choi, and A. Cowie. 2019. Emerging point-of-care technologies for food safety analysis. Sensors 19 (4):817– 31. doi: 10.3390/s19040817.
  • Chong, P. M., T. Lynch, S. McCorrister, P. Kibsey, M. Miller, D. Gravel, G. R. Westmacott, M. R. Mulvey, and Canadian Nosocomial Infection Surveillance Program (CNISP). 2014. Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole. PLoS One 9 (1):e82622. doi: 10.1371/journal.pone.0082622.
  • Chularojanamontri, L., N. Charoenpipatsin, N. Silpa-Archa, C. Wongpraparut, and V. Thongboonkerd. 2019. Proteomics in psoriasis. International Journal of Molecular Sciences 20:1–11.
  • Chung, H. Y., Y. T. Kim, J. G. Kwon, H. H. Im, D. Ko, J. H. Lee, and S. H. Choi. 2021. Molecular interaction between methicillin-resistant Staphylococcus aureus (MRSA) and chicken breast reveals enhancement of pathogenesis and toxicity for food-borne outbreak. Food Microbiology 93:103602. doi: 10.1016/j.fm.2020.103602.
  • Cifuentes, A. 2012. Food analysis: Present, future, and foodomics. International Scholarly Research Notices 2012: e801607.
  • Cordero, N., F. Maza, H. Navea-Perez, A. Aravena, B. Marquez-Fontt, P. Navarrete, G. Figueroa, M. González, M. Latorre, and A. Reyes-Jara. 2016. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Frontiers in Microbiology 7:229. doi: 10.3389/fmicb.2016.00229.
  • Creydt, M., and M. Fischer. 2018. Omics approaches for food authentication. Electrophoresis 39 (13):1569–1581. doi: 10.1002/elps.201800004.
  • DeLaney, K., C. S. Sauer, N. Q. Vu, and L. Li. 2019. Recent advances and new perspectives in capillary electrophoresis-mass spectrometry for single cell “omics”. Molecules 24 (1):1–21.
  • Dhroso, A., S. Eidson, and D. Korkin. 2018. Genome-wide prediction of bacterial effector candidates across six secretion system types using a feature-based statistical framework. Scientific Reports 8 (1):1–12. doi: 10.1038/s41598-018-33874-1.
  • Dolata, K. M., I. G. Montero, W. Miller, S. Sievers, T. Sura, C. Wolff, R. Schlüter, K. Riedel, and C. Robinson. 2019. Far-reaching cellular consequences of tat deletion in Escherichia coli revealed by comprehensive proteome analyses. Microbiological Research 218:97–107. doi: 10.1016/j.micres.2018.10.008.
  • Domon, B., and R. Aebersold. 2006. Mass spectrometry and protein analysis. Science 312 (5771):212–217. doi: 10.1126/science.1124619.
  • Duracova, M., J. Klimentova, A. Fucikova, and J. Dresler. 2018. Proteomic methods of detection and quantification of protein toxins. Toxins 10 (3):99. doi: 10.3390/toxins10030099.
  • Esbelin, J., T. Santos, C. Ribière, M. Desvaux, D. Viala, C. Chambon, and M. Hébraud. 2018. Comparison of three methods for cell surface proteome extraction of Listeria monocytogenes biofilms. Omics 22 (12):779–787. doi: 10.1089/omi.2018.0144.
  • Fletcher, J. R., S. Erwin, C. Lanzas, and C. M. Theriot. 2018. Shifts in the gut metabolome and Clostridium difficile transcriptome throughout colonization and infection in a mouse model. mSphere 3 (2):e00089-18. doi: 10.1128/mSphere.00089-18.
  • Food and Drug Administration (FDA). 2018. What you need to know about foodborne illnesses. U.S Food and Drug Administration. https://www.fda.gov/food/consumers/what-you-need-know-about-foodborne-illnesses
  • Forsythe, S. J. 2010. The microbiology of safe food. 2nd ed. London: Wiley-Blackwell.
  • French, N. P., J. Zhang, G. P. Carter, A. C. Midwinter, P. J. Biggs, K. Dyet, B. J. Gilpin, D. J. Ingle, K. Mulqueen, L. E. Rogers, et al. 2019. Genomic analysis of fluoroquinolone- and tetracycline-resistant Campylobacter jejuni sequence type 6964 in humans and poultry, New Zealand, 2014-2016. Emerging Infectious Diseases 25 (12):2226–2234. doi: 10.3201/eid2512.190267.
  • Fuhrer, T., M. Zampieri, D. C. Sévin, U. Sauer, and N. Zamboni. 2017. Genomewide landscape of gene-metabolome associations in Escherichia coli. Molecular Systems Biology 13 (1):907. doi: 10.15252/msb.20167150.
  • Fung, F., H.-S. Wang, and S. Menon. 2018. Food safety in the 21st century. Biomedical Journal 41 (2):88–95. doi: 10.1016/j.bj.2018.03.003.
  • Garcia-Cañas, V., C. Sim, M. Herrero, E. Ibáñez, and A. Cifuentes. 2012. Present and future challenges in food analysis: Foodomics. Journal of Anaytical Chemistry 84 (23):10150–10159.doi: 10.1021/ac301680q.
  • Gavriil, A., S. Paramithiotis, A. Skordaki, E. Tsiripov, A. Papaioannou, and P. N. Skandamis. 2021. Prior exposure to different combinations of pH and undissociated acetic acid can affect the induced resistance of Salmonella spp. strains in mayonnaise stored under refrigeration and the regulation of acid-resistance related genes. Food Microbiology 95:103680. doi: 10.1016/j.fm.2020.103680.
  • Germond, A., T. Ichimura, T. Horinouchi, H. Fujita, C. Furusawa, and T. M. Watanabe. 2018. Raman spectral signature reflects transcriptomic features of antibiotic resistance in Escherichia coli. Communications Biology 1 (1):1–10. doi: 10.1038/s42003-018-0093-8.
  • Graf, A. C., A. Leonard, M. Schäuble, L. M. Rieckmann, J. Hoyer, S. Maass, M. Lalk, D. Becher, J. Pané-Farré, and K. Riedel. 2019. Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Molecular & Cellular Proteomics 18 (6):1036–1053. doi: 10.1074/mcp.RA118.001120.
  • Guang, M. H. Z., A. McCann, G. Bianchi, L. Zhang, P. Dowling, D. Bazou, P. O’Gorman, and K. C. Anderson. 2018. Overcoming multiple myeloma drug resistance in the era of cancer ‘omics’. Leukemia & Lymphoma 59 (3):542–561. doi: 10.1080/10428194.2017.1337115.
  • Guariglia-Oropeza, V., R. H. Orsi, C. Guldimann, M. Wiedmann, and K. J. Boor. 2018. The Listeria monocytogenes bile stimulon under acidic conditions is characterized by strain-specific patterns and the upregulation of motility, cell wall modification functions, and the PrfA regulon. Frontiers in Microbiology 9:120. doi: 10.3389/fmicb.2018.00120.
  • Halbedel, S., S. Reiss, B. Hahn, D. Albrecht, G. K. Mannala, T. Chakraborty, T. Hain, S. Engelmann, and A. Flieger. 2014. A systematic proteomic analysis of Listeria monocytogenes house-keeping protein secretion systems. Molecular & Cellular Proteomics 13 (11):3063–3081. doi: 10.1074/mcp.M114.041327.
  • Han, S., and S. A. Micallef. 2016. Environmental metabolomics of the tomato plant surface provides insights on Salmonella enterica colonization. Applied and Environmental Microbiology 82 (10):3131–3142. doi: 10.1128/AEM.00435-16.
  • Heinz, E., R. Brindle, A. Morgan-McCalla, K. Peters, and N. R. Thomson. 2019. Caribbean multi-centre study of Klebsiella pneumoniae: Whole-genome sequencing, antimicrobial resistance and virulence factors. Microbiology Society 5:1–12.
  • Hellberg, R. S., and E. Chu. 2016. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Critical Reviews in Microbiology 42 (4):548–572. doi: 10.3109/1040841X.2014.972335.
  • Herrero, M., C. Simó, V. García-Cañas, E. Ibáñez, and A. Cifuentes. 2012. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrometry Reviews 31 (1):49–69. doi: 10.1002/mas.20335.
  • Hilliard, A., D. Leong, A. O’Callaghan, E. Culligan, C. Morgan, N. DeLappe, C. Hill, K. Jordan, M. Cormican, and C. Gahan. 2018. Genomic characterization of Listeria monocytogenes isolates associated with clinical listeriosis and the food production environment in Ireland. Genes 9 (3):171. doi: 10.3390/genes9030171.
  • Hoeksema, M., M. J. Jonker, S. Brul, and B. H. ter Kuile. 2019. Effects of a previously selected antibiotic resistance on mutations acquired during development of a second resistance in Escherichia coli. BMC Genomics 20 (1):1–14. doi: 10.1186/s12864-019-5648-7.
  • Hofreuter, D., V. Novik, and J. E. Galán. 2008. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host & Microbe 4 (5):425–433. doi: 10.1016/j.chom.2008.10.002.
  • Holland, D., L. Thomson, N. Mahmoudzadeh, and A. Khaled. 2020. Estimating deaths from foodborne disease in the UK for 11 key pathogens. BMJ Open Gastroenterology 7 (1):e000377. doi: 10.1136/bmjgast-2020-000377.
  • Isaacson, T., and J. K. Rose. 2006. Surveying the plant cell wall proteome or secretome. In Plant proteomics. Annual plant reviews series, ed. C. Finnie, Vol. 28, 185–209. Oxford: Blackwell Publishing.
  • Jadhav, S. R., R. M. Shah, A. V. Karpe, P. D. Morrison, K. Kouremenos, D. J. Beale, and E. A. Palombo. 2018. Detection of foodborne pathogens using proteomics and metabolomics-based approaches. Frontiers in Microbiology 9:3132. doi: 10.3389/fmicb.2018.03132.
  • Jay, J. M., M. J. Loessner, and D. A. Golden. 2005. Modern food microbiology. 7th ed. New York: Springer.
  • Jones, G., M. P. Gandara, L. Herrera-Leão, S. Herrera-Leon, L. V. Martínez, E. …. Hureaux-Roy, N. J. Silva. 2019. Outbreak of Salmonella enterica serotype Poona in infants linked to persistent Salmonella contamination in an infant formula manufacturing facility. Eurosurveillance: Bulletin europeen sur les maladies transmissibles = European Communicable Disease Bulletin 24:1–7.
  • Jordan, K., and O. McAuliffe. 2018. Chapter seven—Listeria monocytogenes in foods. Advances in Food and Nutrition Research 86:181–213.
  • Josic, D., Z. Persuric, D. Resetar, T. Martinovic, L. Safié, and S. K. Pavelic. 2017. Chapter six—Use of foodomics for control of food processing and assessing of food safety. Advances in Food and Nutrition Research 81:187–229.
  • Jung, R. H., M. Kim, B. Bhoomi, J. M. Choi, and J. H. Roh. 2019. Identification of pathogenic bactéria from public libraries via proteomics analysis. International Journal of Environmental Research Public Health 16:1–10.
  • Kaakoush, N. O., S. M. Man, S. Lamb, M. J. Raftery, M. R. Wilkins, Z. Kovach, and H. Mitchell. 2010. The secretome of Campylobacter concisus. The FEBS Journal 277 (7):1606–1617. doi: 10.1111/j.1742-4658.2010.07587.x.
  • Keerthisinghe, T. P., M. Wang, Y. Zhang, W. Dong, and M. Fang. 2019. Low-dose tetracycline exposure alters gut bacterial metabolism and host-immune response: "Personalized" effect? Environment International 131:104989. doi: 10.1016/j.envint.2019.104989.
  • Khan, J. A., R. S. Rathore, S. Khan, and I. Ahmad. 2013. In vitro detection of pathogenic Listeria monocytogenes from food sources by conventional, molecular and cell culture method. Brazilian Journal of Microbiology 44 (3):751–758. doi: 10.1590/s1517-83822013000300013.
  • Kim, J., Y. Cheong, I. Jung, and K. Kim. 2019. Metabolomic and transcriptomic analyses of Escherichia coli for efficient fermentation of L-fucose. Marine Drugs 17 (2):82. doi: 10.3390/md17020082.
  • Kirlikaya, B., B. Langridge, A. H. Davies, and S. Onida. 2019. Metabolomics as a tool to improve decision making for the vascular surgeon—Wishful thinking or a dream come true? Vascular Pharmacology 116:1–3. doi: 10.1016/j.vph.2019.03.005.
  • Klein, J. B., and V. Thongboonkerd. 2004. Proteomics in nephorology. Contributions to Nephrology Basel 141:1–10.
  • Knight, D. R., M. M. Squire, D. A. Collins, and T. V. Riley. 2017. Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Frontiers in Microbiology 7:2138. doi: 10.3389/fmicb.2016.02138.
  • Knudsen, G. M., A. Fromberg, Y. Ng, and L. Gram. 2016. Sublethal concentrations of antibiotics cause shift to anaerobic metabolism in Listeria monocytogenes and induce phenotypes linked to antibiotic tolerance. Frontiers in Microbiology 7:1091. doi: 10.3389/fmicb.2016.01091.
  • Kumar, A., K. A. Mosa, L. Ji, U. Kage, D. Dhokane, S. Karre, D. Madalageri, and N. Pathania. 2018. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Critical Reviews in Food Science and Nutrition 58 (11):1791–1807. doi: 10.1080/10408398.2017.1285752.
  • Kusch, H., and S. Engelmann. 2014. Secrets of the secretome in Staphylococcus aureus. International Journal of Medical Microbiology 304 (2):133–141. doi: 10.1016/j.ijmm.2013.11.005.
  • Lacher, D. W., J. Gangiredla, I. Patel, C. A. Elkins, and P. C. H. Feng. 2016. Use of the Escherichia coli identification microarray for characterizing the health risks of shiga toxin–producing Escherichia coli isolated from foods. Journal of Food Protection 79 (10):1656–1662. doi: 10.4315/0362-028X.JFP-16-176.
  • Lanciotti, R., G. Braschi, F. Patrignani, M. Gobbetti, and C. E. De Angelis. 2019. How Listeria monocytogenes shapes its proteome in response to natural antimicrobial compounds. Frontiers in Microbiology 10:1–10. doi: 10.3389/fmicb.2019.00437.
  • Law, J. W.-F., N.-S. Ab Mutalib, K.-G. Chan, and L.-H. Lee. 2015. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Frontiers in Microbiology 6:1227. doi: 10.3389/fmicb.2015.01227.
  • Lebreton, A., and P. Cossart. 2017. Controle de RNA e proteína da expressão gênica da virulência de Listeria monocytogenes. RNA Biology 14 (5):460–470. doi: 10.1080/15476286.2016.1189069.
  • Lee, H., S. I. Kim, S. Park, E. Nam, and H. Yoon. 2018. Understanding comprehensive transcriptional response of Salmonella enterica spp. in contact with cabbage and napa cabbage. Journal of Microbiology and Biotechnology 28 (11):1896–1907. doi: 10.4014/jmb.1806.06018.
  • Li, H., Y. Wang, Q. Fu, Y. Wang, X. Li, C. Wu, Z. Shen, Q. Zhang, P. Qin, J. Shen, et al. 2017. Integrated genomic and proteomic analyses of high-level chloramphenicol resistance in Campylobacter jejuni. Scientific Reports 7 (1):16973. doi: 10.1038/s41598-017-17321-1.
  • Li, H., Y. Wang, Q. Meng, Y. Wang, G. Xia, X. Xia, and J. Shen. 2019. Comprehensive proteomic and metabolomic profiling of MCR-1 mediated colistin resistance in Escherichia coli. International Journal of Antimicrobial Agents 53 (6):795–924. doi: 10.1016/j.ijantimicag.2019.02.014.
  • Li, S., Y. Tian, P. Jiang, Y. Lin, X. Liu, and H. Yang. 2020. Recent advances in the application of metabolomics for food safety control and food quality analyses. Critical Reviews in Food Science and Nutrition, 1–22. doi:10.1080/10408398.2020.1761287. PMC: 32441547
  • Li, W., G. Wang, S. Zhang, Y. Fu, Y. Jiang, X. Yang, and X. Lin. 2019. An integrated quantitative proteomic and metabolomics approach to reveal the negative regulation mechanism of LamB in antibiotics resistance. Journal of Proteomics 194:148–159. doi: 10.1016/j.jprot.2018.11.022.
  • Liu, H., X. Chen, X. Hu, H. Niu, R. Tian, H. Wang, H. Pang, L. Jiang, B. Qiu, X. Chen, et al. 2019. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7 (1):68. doi: 10.1186/s40168-019-0683-9.
  • Liu, X., and J. W. Locasale. 2017. Metabolomics: A primer. Trends in Biochemical Sciences 42 (4):274–284. doi: 10.1016/j.tibs.2017.01.004.
  • Lo, A. W., D. G. Moriel, M. D. Phan, B. L. Schulz, T. J. Kidd, S. A. Beatson, and M. A. Schembri. 2017. ‘Omic’ approaches to study uropathogenic Escherichia coli virulence. Trends in Microbiology 25 (9):729–740. doi: 10.1016/j.tim.2017.04.006.
  • Lowe, R., N. Shirley, M. Bleackley, S. Dolan, and T. Shafee. 2017. Transcriptomics technologies. PLoS Computational Biology 13 (5):e1005457. doi: 10.1371/journal.pcbi.1005457.
  • Luo, L., B. Li, C. Yang, Y. Wang, X. Bian, W. Li, F. Liu, and L. Huo. 2019. Major traditional probiotics: Comparative genomic analyses and roles in gut microbiome of eight cohorts. Frontier Microbiology 10:1–12.
  • Lynn, H. D., X. Sun, N. Casanova, M. Gonzalez-Garay, C. Bime, and J. G. N. Garcia. 2019. Genomic and genetic approaches to deciphering acute respiratory distress syndrome risk and mortality. Antioxidants and Redox Signaling 31 (14):1027–1052. doi: 10.1089/ars.2018.7701
  • Mad’arová, L., B. G. Dorner, L. Schaade, V. Donáth, M. Avdičová, M. Fatkulinová, … M. B. Dorner. 2017. Reoccurrence of botulinum neurotoxin subtype A3 inducing food-borne botulism, Slovakia, 2015. Euro Surveillance: Bulletin Europeen sur les Maladies Transmissibles = European Communicable Disease Bulletin 22 (32):30591.
  • Maes, S., S. N. Huu, M. Heyndrickx, S. v Weyenberg, H. Steenackers, A. Verplaetse, T. Vackier, I. Sampers, K. Raes, and K. D. Reu. 2017. Evaluation of two surface sampling methods for microbiological and chemical analyses to assess the presence of biofilms in food companies. Journal of Food Protection 80 (12):2022–2028. doi: 10.4315/0362-028X.JFP-17-210.
  • Maes, S., T. Vackier, S. Nguyen Huu, M. Heyndrickx, H. Steenackers, I. Sampers, K. Raes, A. Verplaetse, and K. De Reu. 2019. Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiology 19 (1):1–15. doi: 10.1186/s12866-019-1451-5.
  • Man, K. Y., C. O. Chan, H. H. Tang, N. P. Dong, F. Capozzi, K. H. Wong, K. W. H. Kwok, H. M. Chan, and D. K. Mok. 2021. Mass spectrometry-based untargeted metabolomics approach for differentiation of beef of different geographic origins. Food Chemistry 338:127847. doi: 10.1016/j.foodchem.2020.127847.
  • Mangal, M., B. Sangita, S. K. Satish, and G. K. Ram. 2016. Molecular detection of foodborne pathogens: A rapid and accurate answer to food safety. Critical Reviews in Food Science and Nutrition 56 (9):1568–1584. doi: 10.1080/10408398.2013.782483.
  • Martínez-Chávez, L., I. G. Cuellar-Villalobos, E. Cabrera-Díaz, P. Gutiérrez-González, A. Castillo, M. Hernández-Iturriaga, J. A. Pérez-Montaño, M. O. Rodríguez-García, and N. E. Martínez-Gonzáles. 2019. Effect of single and combined chemical and physical treatments on the survival of Salmonella and Escherichia coli O157:H7 attached to Valencia oranges. International Journal of Food Microbiology 300:22–30. doi: 10.1016/j.ijfoodmicro.2019.04.001.
  • Martinovic, T., U. Andjelkovic, M. S. Gajdosik, D. Resetar, and D. Josic. 2016. Foodborne pathogens and their toxins. Journal of Proteomics 147:226–235.
  • McFarland, A. P., T. P. Burke, A. A. Carletti, R. C. Glover, H. Tabakh, M. D. Welch, and J. J. Woodward. 2018. RECON-dependent inflammation in hepatocytes enhances Listeria monocytogenes cell-to-cell spread. MBio 9 (3):1–15. doi: 10.1128/mBio.00526-18.
  • Mcsorley, S. J. 2014. Immunity to intestinal pathogens: Lessons learned from Salmonella. Immunological Reviews 260 (1):168–82. doi: 10.1111/imr.12184.
  • Misal, S. A., S. Li, H. Tang, P. Radivojac, and J. P. Reilly. 2019. Identification of N-terminal protein processing sites by chemical labeling mass spectrometry. Rapid Communications in Mass Spectrometry 33:1015–1023.
  • Montero, L., and M. Herrero. 2019. Two-dimensional liquid chromatography approaches in foodomics—A review. Analytica Chimica Acta 1083:1–18. doi: 10.1016/j.aca.2019.07.036.
  • Mooyottu, S., G. Flock, A. Kollanoor-Johny, I. Upadhyaya, B. Jayarao, and K. Venkitanarayanan. 2015. Characterization of a multidrug resistant C. difficile meat isolate. International Journal of Food Microbiology 192:111–116. doi: 10.1016/j.ijfoodmicro.2014.10.002.
  • Mukherjee, P., and S. Mani. 2013. Methodologies to decipher the cell secretome. Biochimica et Biophysica Acta 1834 (11):2226–2232. doi: 10.1016/j.bbapap.2013.01.022.
  • Munns, K. D., R. Zaheer, Y. Xu, K. Stanford, C. R. Laing, V. P. J. Gannon, L. B. Selinger, and T. A. McAllister. 2016. Comparative genomic analysis of Escherichia coli O157:H7 isolated from super-shedder and low-shedder cattle. PLoS One 11 (3):e0151673. doi: 10.1371/journal.pone.0151673.
  • Nealon, N. J., C. R. Worcester, and E. P. Ryan. 2017. Lactobacillus paracasei metabolism of rice bran reveals metabolome associated with Salmonella typhimurium growth reduction. Journal of Applied Microbiology 122 (6):1639–1656. doi: 10.1111/jam.13459.
  • Negretti, N. M., G. Clair, P. K. Talukdar, C. R. Gourley, S. Huynh, J. N. Adkins, C. T. Parker, C. M. Corneau, and M. E. Konkel. 2019. Campylobacter jejuni demonstrates conserved proteomic and transcriptomic responses when co-cultured with human int 407 and Caco-2 epithelial cells. Frontiers in Microbiology 10:755. doi: 10.3389/fmicb.2019.00755.
  • Nguyen, S. V., M. Dayna, L. James, P. L. Timothy, P. I. Fields, B. A. Dinsmore, M. Santovenia, R. Wang, J. M. Bosilevac, and G. P. Harhay. 2018. Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association. Microbial Genomics 4 (8):e000202. doi: 10.1099/mgen.0.000202.
  • Nirujogi, R. S., B. Muthusamy, M.-S. Kim, G. J. Sathe, P. T. V. Lakshmi, O. N. Kovbasnjuk, T. S K. Prasad, M. Wade, and R. E. Jabbour. 2017. Secretome analysis of diarrhea-inducing strains of Escherichia coli. Proteomics 17 (6):e1600299. doi: 10.1002/pmic.201600299.
  • Nong, Q., H. Dong, Y. Liu, L. Liu, B. He, Y. Huang, J. Jiang, T. Luan, B. Chen, and L. Hu. 2021. Characterization of the mercury-binding proteins in tuna and salmon sashimi: Implications for health risk of mercury in food. Chemosphere 263:128110. doi: 10.1016/j.chemosphere.2020.128110.
  • O’Gorman, A., and L. Brennan. 2017. The role of metabolomics in determination of new dietary biomarkers. The Proceedings of the Nutrition Society 76 (3):295–302. doi: 10.1017/S0029665116002974.
  • Oniciuc, E., E. Likotrafiti, A. Alvarez-Molina, M. Prieto, J. Santos, and A. Alvarez-Ordóñez. 2018. The present and future of whole genome sequencing (WGS) and whole metagenome sequencing (WMS) for surveillance of antimicrobial resistant microorganisms and antimicrobial resistance genes across the food chain. Genes 9 (5):268. doi: 10.3390/genes9050268.
  • Ooi, S. T., and B. Lorber. 2005. Gastroenteritis due to Listeria monocytogenes. Clinical Infectious Diseases 40 (9):1327–1332. doi: 10.1086/429324.
  • Osiro, K. O., B. R. de Camargo, R. Satomi, P. R. Hamann, J. P. Silva, M. V. de Sousa, B. F. Quirino, E. N. Aquino, C. R. Felix, A. M. Murad, et al. 2017. Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation. Enzyme and Microbial Technology 97:43–54. doi: 10.1016/j.enzmictec.2016.11.002.
  • Osman, K., A. Alvarez-Ordóñez, L. Ruiz, J. Badr, F. ElHofy, K. S. Al-Maary, I. M. I. Moussa, A. M. Hessain, A. Orabi, A. Saad, et al. 2017. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Annals of Clinical Microbiology and Antimicrobials 16 (1):1–10. doi: 10.1186/s12941-017-0210-4.
  • Palevich, N., F. P. Palevich, P. H. Maclean, E. Altermann, A. Gardner, S. Burgess, J. Mills, and G. Brightwell. 2021. Comparative genomics of Clostridium species associated with vacuum-packed meat spoilage. Food Microbiology 95:103687. doi: 10.1016/j.fm.2020.103687.
  • Peng, B., H. Li, and X. X. Peng. 2015. Functional metabolomics: From biomarker discovery to metabolome reprogramming. Protein & Cell 6 (9):628–637. doi: 10.1007/s13238-015-0185-x.
  • Pérez-Ibarreche, M., L. M. Mendoza, G. Vignolo, and S. Fadda. 2017. Proteomic and genetics insights on the response of the bacteriocinogenic Lactobacillus sakei CRL 1862 during biofilm formation on stainless steel surface at 10 °C. International Journal of Food Microbiology 258:18–27. doi: 10.1016/j.ijfoodmicro.2017.07.003.
  • Pinheiro, J., J. Lisboa, R. Pombinho, F. Carvalho, A. Carreaux, C. Brito, A. Pöntinen, H. Korkeala, N. M. S. Dos Santos, J. H. Morais-Cabral, et al. 2018. MouR controls the expression of the Listeria monocytogenes Agr system and mediates virulence. Nucleic Acids Research 46 (18):9338–9352. doi: 10.1093/nar/gky624.
  • Pirone-Davies, C., Y. Chen, A. Pightling, G. Ryan, Y. Wang, K. Yao, M. Hoffmann, and M. W. Allard. 2018. Genes significantly associated with lineage II food isolates of Listeria monocytogenes. BMC Genomics 19 (1):1–11. doi: 10.1186/s12864-018-5074-2.
  • Pissuwan, D., C. Gazzana, S. Mongkolsuk, and M. B. Cortie. 2019. Single and multiple detections of foodborne pathogens by gold nanoparticle assays. Wires Nanomedicine and Nanobiotchenology 12:e1584.
  • Pornsukarom, S., A. H. M. van Vliet, and S. Thakur. 2018. Whole genome sequencing analysis of multiple Salmonella serovars provides insights into phylogenetic relatedness, antimicrobial resistance, and virulence markers across humans, food animals and agriculture environmental sources. BMC Genomics 19 (1):1–14. doi: 10.1186/s12864-018-5137-4.
  • Precht, C., G. Diserens, M. Vermathen, A. Oevermann, J. Lauper, and P. Vermathen. 2018. Metabolic profiling of Listeria rhombencephalitis in small ruminants by 1H high-resolution magic angle spinning NMR spectroscopy. NMR in Biomedicine 31 (12):e4023. doi: 10.1002/nbm.4023.
  • Qin, X., S. He, X. Zhou, X. Cheng, X. Huang, Y. Wang, S. Wang, Y. Cui, C. Shi, and X. Shi. 2019. Quantitative proteomics reveals the crucial role of YbgC for Salmonella entérica serovar Enteritidis survival in egg white. International Journal of Food Microbiology 289:115–126. doi: 10.1016/j.ijfoodmicro.2018.08.010.
  • Rangel-Huerta, O. D., C. M. Aguilera, A. Perez-de-la-Cruz, F. Vallejo, F. Tomas-Barberan, A. Gil, and M. D. Mesa. 2017. A sérum metabolomics-driven approach predicts Orange juice consumption and its impacto n oxidative stress and inflammation in subjects from the BIONAOS study. Molecular Nutrition & Food Research 61 (2):e1600120. doi: 10.1002/mnfr.201600120.
  • Ranjbar, R., and M. Halaji. 2018. Epidemiology of Listeria monocytogenes prevalence in foods, animals and human origin from Iran: A systematic review and meta-analysis. BMC Public Health 18 (1):1–12. doi: 10.1186/s12889-018-5966-8.
  • Ren, Z., W. You, S. Wu, A. Poetsch, and C. Xu. 2019. Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnology for Biofuels 12:183. doi: 10.1186/s13068-019-1522-8.
  • Resetar, D., S. K. Pavelic, and D. Josic. 2015. Foodomics for investigations of food toxins. Current Opinion in Food Science 4:86–91.
  • Ricke, S. C., K. M. Feye, W. E. Chaney, S. Zhaohao, H. Pavlidis, and Y. Yang. 2019. Developments in rapid detection methods for the detection of foodborne Campylobacter in the United States. Frontiers Microbiology 9:3280.
  • Riedel, C., K. U. Förstner, C. Püning, T. Alter, C. M. Sharma, and G. Gölz. 2020. Differences in the transcriptomic response of Campylobacter coli and Campylobacter lari to heat stress. Frontiers in Microbiology 11:523. doi: 10.3389/fmicb.2020.00523.
  • Ritter, A. C., L. Santi, L. Vannini, W. O. Beys-da-Silva, G. Gozzi, J. Yates, L. Ragni, and A. Brandelli. 2018. Comparative proteomic analysis of foodborne Salmonella enteritidis SE86 subjected to cold plasma treatment. Food Microbiology 76:310–318. doi: 10.1016/j.fm.2018.06.012.
  • Rivera, D., V. Toledo, A. Reyes-Jara, P. Navarrete, M. Tamplin, B. Kimura, M. Wiedmann, P. Silva, and A. I. M. Switt. 2018. Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiology 75:126–132. doi: 10.1016/j.fm.2017.07.009.
  • Rizo, J., D. Guillén, A. Farrés, G. Díaz-Ruiz, S. Sánchez, C. Wacher, and R. Rodríguez-Sanoja. 2020. Omics in traditional vegetable fermented foods and beverages. Critical Reviews in Food Science and Nutrition 60 (5):791–809. doi: 10.1080/10408398.2018.1551189.
  • Rojo, D., M. J. Gosalbes, R. Ferrari, A. E. Pérez-Cobas, E. Hernández, R. Oltra, J. Buesa, A. Latorre, C. Barbas, M. Ferrer, et al. 2015. Clostridium difficile heterogeneously impacts intestinal community architecture but drives stable metabolome responses. The ISME Journal 9 (10):2206–2220. doi: 10.1038/ismej.2015.32.
  • Rokney, A., L. Valinsky, J. Moran-Gilad, K. Vranckx, V. Agmon, and M. Weinberger. 2018. Genomic epidemiology of Campylobacter jejuni transmission in Israel. Frontiers in Microbiology 9:2432. doi: 10.3389/fmicb.2018.02432.
  • Ronnqvist, M., V. Valttila, J. Ranta, and P. Tuominen. 2018. Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed. Food Microbiology 71:93–97. doi: 10.1016/j.fm.2017.03.017.
  • Rosting, C., J. Yu, and H. J. Cooper. 2018. High field asymmetric waveform ion mobility spectrometry in nontargeted bottom-up proteomics of dried blood spots. Journal of Proteome Research 17 (6):1997–2004. doi: 10.1021/acs.jproteome.7b00746.
  • Rumore, J., L. Tschetter, A. Kearney, R. Kandar, R. McCormick, M. Walker, C.-L. Peterson, A. Reimer, and C. Nadon. 2018. Evaluation of whole-genome sequencing for outbreak detection of Verotoxigenic Escherichia coli O157:H7 from the Canadian perspective. BMC Genomics 19 (1):1–13. doi: 10.1186/s12864-018-5243-3.
  • Sacher, J. C., A. Flint, J. Butcher, B. Blasdel, H. M. Reynolds, R. Lavigne, A. Stintzi, and C. M. Szymanski. 2018. Transcriptomic analysis of the Campylobacter jejuni response to T4-like phage NCTC 12673 infection. Viruses 10 (6):332. doi: 10.3390/v10060332.
  • Santos, T., L. Théron, C. Chambon, C. Viala, D. Centeno, J. Esbelin, and M. Hébraud. 2018. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. Journal of Proteomics 187:152–160. doi: 10.1016/j.jprot.2018.07.012.
  • Sarkar, P., S. M. Randall, D. C. Muddiman, and B. M. Rao. 2012. Targeted proteomics of the secretory pathway reveals the secretome of mouse embryonic fibroblasts and human embryonic stem cells. Molecular & Cellular Proteomics 11 (12):1829–1839. doi: 10.1074/mcp.M112.020503.
  • Schelli, K., J. Rutowski, J. Roubidoux, and J. Zhu. 2017. Staphylococcus aureus methicilin resistance detected by HPLC-MS/MS targeted metabolic profiling. Journal of Chromatography B 1047:124–130. doi: 10.1016/j.jchromb.2016.05.052.
  • Schelli, K., F. Zhong, and J. Zhu. 2017. Comparative metabolomics revealing Staphylococcus aureus metabolic response to different antibiotics. Microbial Biotechnology 10 (6):1764–1774. doi: 10.1111/1751-7915.12839.
  • Schürch, A. C., S. Arredondo-Alonso, R. J. L. Willems, and R. V. Goering. 2018. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches . Clinical Microbiology and Infection 24 (4):350–354. doi: 10.1016/j.cmi.2017.12.016.
  • Segura, A., M. Bertoni, P. Auffret, C. Klopp, O. Bouchez, C. Genthon, A. Durand, Y. Bertin, and E. Forano. 2018. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genomics 19 (1):1–19. doi: 10.1186/s12864-018-5167-y.
  • Sell, J., and B. Dolan. 2018. Common gastrointestinal infections. Primary Care 45 (3):519–532. doi: 10.1016/j.pop.2018.05.008.
  • Sévin, D. C., T. Fuhrer, N. Zamboni, and U. Sauer. 2017. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nature Methods 14 (2):187–194. doi: 10.1038/nmeth.4103.
  • Sharma, V. K., S. Akavaram, R. G. Schaut, and D. O. Bayles. 2019. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7. BMC Genomics 20 (1):1–18. doi: 10.1186/s12864-019-5568-6.
  • Shridhar, P. B., I. R. Patel, J. Gangiredla, L. W. Noll, X. Shi, J. Bai, C. A. Elkins, N. Strockbine, and T. G. Nagaraja. 2018. DNA microarray-based assessment of virulence potential of Shiga toxin gene-carrying Escherichia coli O104:H7 isolated from feedlot cattle feces. PLoS One 13 (4):e0196490. doi: 10.1371/journal.pone.0196490.
  • Slany, M., J. Oppelt, and L. Cincarova. 2017. Formation of Staphylococcus aureus biofilm in the presence of sublethal concentrations of disinfectants studied via a transcriptomic analysis using transcriptome sequencing (RNA-seq). Applied and Environmental Microbiology 83 (24):1–13. doi: 10.1128/AEM.01643-17.
  • Sodagari, H. R., P. Wang, I. Robertson, S. Abraham, S. Sahibzada, and I. Habib. 2021. Antimicrobial resistance and genomic characterisation of Escherichia coli isolated from caged and non-caged retail table eggs in Western Australia. International Journal of Food Microbiology 340:109054. doi: 10.1016/j.ijfoodmicro.2021.109054.
  • Soltani, A., S. M. Weraduwage, T. D. Sharkey, and D. B. Lowry. 2019. Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 20 (1):1–18. doi: 10.1186/s12864-019-5669-2.
  • Spanka, D. T., A. Konzer, D. Edelmann, and B. A. Berghoff. 2019. High-Throughput proteomics identifies proteins with importance to postantibiotic recovery in depolarized persister cells. Frontiers in Microbiology 10:378. doi: 10.3389/fmicb.2019.00378.
  • Steiner, D., A. Malachová, M. Sulyok, and R. Krska. 2021. Challenges and future directions in LC-MS-based multiclass method development for the quantification of food contaminants. Analytical and Bioanalytical Chemistry 413 (1):25–34. doi: 10.1007/s00216-020-03015-7.
  • Subba, P., C. N. Kotimoole, and T. S. K. Prasad. 2019. Plant proteome databases and bioinformatic tools: An expert review and comparative insights. Omics 23 (4):190–206. doi: 10.1089/omi.2019.0024.
  • Sun, J., J. Jin, R. D. Beger, C. E. Cerniglia, and H. Chen. 2017. Evaluation of metabolism of azo dyes and their effects on Staphylococcus aureus metabolome. Journal of Industrial Microbiology & Biotechnology 44 (10):1471–1481. doi: 10.1007/s10295-017-1970-8.
  • Tack, B., M.-F. Phoba, S. Van Puyvelde, L. M. Kalonji, L. Hardy, B. Barbé, M. A. B. Van der Sande, E. Monsieurs, S. Deborggraeve, O. Lunguya, et al. 2019. Salmonella Typhi from blood cultures in the Democratic Republic of the Congo: A 10-year surveillance. Clinical Infectious Diseases 68 (Supplement_2):S130–S137. doi: 10.1093/cid/ciy1116.
  • Tan, X., M. Coureuil, E. Euphrasie, M. Dupuis, F. Tros, J. Meyer, I. Nemazanyy, C. Chhuon, I. C. Guerrera, and A. Ferroni. 2019. Chronic Staphylococcus aureus lung infection correlates with proteogenomic and metabolic adaptations leading to na increased intracelular persistence. Clinical Infectious Diseases, 69:ciz106.
  • Tang, S., R. H. Orsi, H. C. den Bakker, M. Wiedmann, K. J. Boor, and T. M. Bergholz. 2015. Transcriptomic analysis of the adaptation of Listeria monocytogenes to growth on vacuum-packed cold smoked salmon. Applied and Environmental Microbiology 81 (19):6812–6824. doi: 10.1128/AEM.01752-15.
  • Tang, Z. L., Y. Huang, and X. B. Yu. 2016. Current status and perspectives of Clonorchis sinensis and clonorchiasis: Epidemiology, pathogenesis, omics, prevention and control. Infectious Diseases of Poverty 5 (1):1–12. doi: 10.1186/s40249-016-0166-1.
  • Taniguchi, T., M. Ohki, A. Urata, S. Ohshiro, E. Tarigan, S. Kiatsomphob, T. Vetchapitak, H. Sato, and N. Misawa. 2021. Detection and identification of adhesins involved in adhesion of Campylobacter jejuni to chicken skin. International Journal of Food Microbiology 337:108929. doi: 10.1016/j.ijfoodmicro.2020.108929.
  • Tanveer, T., K. Shaheen, S. Parveen, A. G. Kazi, and P. Ahmad. 2014. Plant secretomics: Identification, isolation, and biological significance under environmental stress. Plant Signaling and Behavior 9:1–13.
  • Tjalsma, H., A. Bolhuis, J. D. Jongbloed, S. Bron, and J. M. van Dijl. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome . Microbiology and Molecular Biology Reviews 64 (3):515–547. doi: 10.1128/mmbr.64.3.515-547.2000.
  • Treacy, J., C. Jenkins, K. Paranthaman, F. Jorgensen, D. Mueller-Doblies, M. Anjum, L. Kaindama, H. Hartman, M. Kirchner, T. Carson, et al. 2019. Outbreak of Shiga toxin-producing Escherichia coli O157:H7 linked to raw drinking milk resolved by rapid application of advanced pathogen characterisation methods, England, August to October 2017. Eurosurveillance 24 (16):1800191.
  • Tresse, O., A. Alvarez-Ordoñez, and I. F. Connerton. 2017. Editorial: About the foodborne pathogen Campylobacter. Frontiers Microbiology 8:1908.
  • Trigui, H., K. Lee, A. Thibodeau, S. Lévesque, N. Mendis, P. Fravalo, A. Letellier, and S. P. Faucher. 2017. Phenotypic and transcriptomic responses of Campylobacter jejuni suspended in an artificial freshwater medium. Frontiers in Microbiology 8:1781. doi: 10.3389/fmicb.2017.01781.
  • Tseng, T. T., B. M. Tyler, and J. C. Setubal. 2009. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiology 9 (Suppl 1):S2–S9. doi: 10.1186/1471-2180-9-S1-S2.
  • Ulaszewska, M. M., C. H. Weinert, A. Trimigno, R. Portmann, C. Andres Lacueva, R. Badertscher, L. Brennan, C. Brunius, A. Bub, F. Capozzi, et al. 2019. Nutrimetabolomics: Na integrative action for metabolomic analyses in human nutritional studies. Molecular Nutrition & Food Research 63 (1):e1800384. doi: 10.1002/mnfr.201800384.
  • Van, T. T. H., J. A. Lacey, B. Vezina, C. Phung, A. Anwar, P. C. Scott, and R. J. Moore. 2019. Survival mechanisms of Campylobacter hepaticus identified by genomic analysis and comparative transcriptomic analysis of in vivo and in vitro derived bacteria. Frontiers in Microbiology 10:107. doi: 10.3389/fmicb.2019.00107.
  • van der Hooft, J., W. Alghefari, E. Watson, P. Everest, F. R. Morton, K. Burgess, and D. Smith. 2018. Unexpected differential metabolic responses of Campylobacter jejuni to the abundant presence of glutamate and fucose. Metabolomics 14 (11):144. doi: 10.1007/s11306-018-1438-5.
  • Van der Hooft, J., R. J. Goldstone, S. Harris, K. Burgess, and D. Smith. 2019. Substantial extracellular metabolic differences found between phylogenetically closely related probiotic and pathogenic strains of Escherichia coli. Frontiers in Microbiology 10:1–12. doi: 10.3389/fmicb.2019.00252.
  • Viçosa, G. N., C. Botta, I. Ferrocino, M. Bertolino, M. Ventura, L. A. Nero, and L. Cocolin. 2018. Staphylococcus aureus undergoes major transcriptional reorganization during growth with Enterococcus faecalis in milk. Food Microbiology 73:17–28. doi:10.1016/j.fm.2018.01.007.
  • Vitanza, L., A. Maccelli, M. Marazzato, F. Scazzocchio, A. Comanducci, S. Fornarini, M. E. Crestoni, A. Filippi, C. Fraschetti, F. Rinaldi, et al. 2019. Satureja montana L. essential oil and its antimicrobial activity alone or in combination with gentamicin. Microbial Pathogenesis 126:323–331. doi: 10.1016/j.micpath.2018.11.025.
  • Vivant, A.-L., J. Desneux, A.-M. Pourcher, and P. Piveteau. 2017. Transcriptomic analysis of the adaptation of Listeria monocytogenes to lagoon and soil matrices associated with a piggery environment: Comparison of expression profiles. Frontiers in Microbiology 8:1811. doi: 10.3389/fmicb.2017.01811.
  • Vizoso, F. J., N. Eiro, S. Cid, J. Schneider, and R. Perez-Fernandez. 2017. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences 18 (9):1852. doi: 10.3390/ijms18091852.
  • Vuotto, C., G. Donelli, A. Buckley, and C. Chilton. 2018. Clostridium difficile biofilm. In Updates on Clostridium difficile in Europe. Advances in Experimental Medicine and Biology, ed. P. Mastrantonio and M. Rupnik, vol. 1050. Cham: Springer.
  • Walsh, A. M., F. Crispie, M. J. Claesson, and P. D. Cotter. 2017. Translating Omics to food microbiology. Annual Review of Food Science and Technology 8 (1):113–134. doi: 10.1146/annurev-food-030216-025729.
  • Wang, D., Y. Wei, L. Shi, M. Z. Khan, L. Fan, Y. Wang, and Y. Yu. 2019. Genome-wide DNA methylation pattern in a mouse model reveals two novel genes associated with Staphylococcus aureus mastitis. Asian-Australas Journal of Animal Science 33 (2):203–211.
  • Wang, Z., J. Sun, M. Tian, Z. Xu, Y. Liu, J. Fu, A. Yan, and X. Liu. 2019. Proteomic analysis of FNR-regulated anaerobiosis in Salmonella typhimurium. Journal of the American Society for Mass Spectrometry 30 (6):1001–1012. doi: 10.1007/s13361-019-02145-2.
  • Whitehouse, C. A., S. Young, C. Li, C. H. Hsu, G. Martin, and S. Zhao. 2018. Use of whole-genome sequencing for Campylobacter surveillance from NARMS retail poultry in the United States in 2015. Food Microbiology 73:122–128. doi: 10.1016/j.fm.2018.01.018.
  • Whitham, J. M., J. W. Moon, M. Rodriguez, Jr., N. L. Engle, D. M. Klingeman, T. Rydzak, M. M. Abel, T. J. Tschaplinski, A. M. Guss, and S. D. Brown. 2018. Clostridium thermocellum LL1210 pH homeostasis mechanisms informed by transcriptomics and metabolomics. Biotechnology for Biofuels 11:98. doi: 10.1186/s13068-018-1095-y.
  • Xayarath, B., F. Alonzo, and N. E. Freitag. 2015. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLOS Pathogens 11 (3):e1004707. doi: 10.1371/journal.ppat.1004707.
  • Xu, Y.-J. 2017. Foodomics: A novel approach for food microbiology. TrAC Trends in Analytical Chemistry 96:14–21. doi: 10.1016/j.trac.2017.05.012.
  • Yang, M., H. Qin, W. Wang, H. Zhang, Y. Long, and J. Ye. 2018. Global proteomic responses of Escherichia coli and evolution of biomarkers under tetracycline stress at acid and alkaline conditions. The Science of the Total Environment 627:1315–1326. doi: 10.1016/j.scitotenv.2018.01.342.
  • Yang, R., B. Xu, B. Yang, J. Fu, L. Liu, N. Amjad, A. Cai, C. Tan, H. Chen, and X. Wang. 2018. Circular RNA transcriptomics analysis of primary human brain microvascular endothelial cells infected with meningitic Escherichia coli. Molecular Therapy - Nucleic Acids 13:651–664. doi: 10.1016/j.omtn.2018.10.013.
  • Yang, S.-C., C.-H. Lin, I. A. Aljuffali, and J.-Y. Fang. 2017. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of Microbiology 199 (6):811–825. doi: 10.1007/s00203-017-1393-y.
  • Yasugi, M., D. Okuzaki, R. Kuwana, H. Takamatsu, M. Fujita, M. R. Sarker, and M. Miyake. 2016. Transcriptional profile during deoxycholate-induced sporulation in a Clostridium perfringens isolate causing foodborne illness. Applied and Environmental Microbiology 82 (10):2929–2942. doi: 10.1128/AEM.00252-16.
  • Yeh, H. Y., K. Kojima, and J. A. Mobley. 2018. Epitope mapping of Salmonella flagelar hook-associated protein, FlgK, with mass spectrometry-based immuno-capture proteomics using chicken (Gallus gallus domesticus) sera. Veterinary Immunology and Immunopathology 201:20–25. doi: 10.1016/j.vetimm.2018.05.006.
  • Yeni, F., S. Yavaş, H. Alpas, and Y. Soyer. 2016. Most common foodborne pathogens and mycotoxins on fresh produce: A review of recent outbreaks. Critical Reviews in Food Science and Nutrition 56 (9):1532–1544. doi: 10.1080/10408398.2013.777021.
  • Zautner, A. E., W. O. Masanta, A. M. Tareen, M. Weig, R. Lugert, U. Groß, and O. Bader. 2013. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry. BMC Microbiology 13:247. doi: 10.1186/1471-2180-13-247.
  • Zeng, W., J. Hazebroek, M. Beatty, K. Hayes, C. Ponte, C. Maxwell, and C. X. Zhong. 2014. Analytical method evaluation and discovery of variation within maize varieties in the context of food safety: Transcript profiling and metabolomics. Journal of Agricultural and Food Chemistry 62 (13):2997–3009. doi: 10.1021/jf405652j.
  • Zhang, X., and D. Figeys. 2019. Perspective and guidelines for metaproteomics in microbiome studies. Journal of Proteome Research 18 (6):2370–2380. doi: 10.1021/acs.jproteome.9b00054.
  • Zhang, Z., W. Liu, Y. Qu, X. Quan, P. Zeng, M. He, Y. Zhou, and R. Liu. 2018. Transcriptomic profiles in zebrafish liver permit the discrimination of surface water with pollution gradient and different discharges. International Journal of Environmental Research and Public Health 15 (8):1648. doi: 10.3390/ijerph15081648.
  • Zhou, P., N. Zhou, L. Shao, J. Li, S. Liu, X. Meng, J. Duan, X. Xiong, X. Huang, Y. Chen, et al. 2018. Diagnosis of Clostridium difficile infection using an UPLC-MS based metabolomics method. Metabolomics 14 (8):102. doi: 10.1007/s11306-018-1397-x.
  • Zhu, X., J. Cui, Y. Feng, Y. Fa, J. Zhang, and Q. Cui. 2013. Metabolic adaption of ethanol-tolerant Clostridium thermocellum. PLoS One 8 (7):e70631. doi: 10.1371/journal.pone.0070631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.