622
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Flavonoids from edible fruits as therapeutic agents in neuroinflammation – a comprehensive review and update

ORCID Icon & ORCID Icon

References

  • Abraham, J., and R. W. Johnson. 2009. Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Research 12 (6):445–53. doi: 10.1089/rej.2009.0888.
  • Akbar, M., M. Essa, G. Daradkeh, M. Abdelmegeed, Y. Choi, L. Mahmood, and B.-J. Song. 2016. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Research 1637:34–55. doi: 10.1016/j.brainres.2016.02.016.
  • Al Omairi, N. E., A. Y. Al-Brakati, R. B. Kassab, M. S. Lokman, E. K. Elmahallawy, H. K. Amin, and A. E. Abdel Moneim. 2019. Soursop fruit extract mitigates scopolamine-induced amnesia and oxidative stress via activating cholinergic and Nrf2/HO-1 pathways. Metabolic Brain Disease 34 (3):853–64. doi: 10.1007/s11011-019-00407-2.
  • Ali, M. M., R. G. Ghouri, A. H. Ans, A. Akbar, and A. Toheed. 2019. Recommendations for anti-inflammatory treatments in Alzheimer’s disease: a comprehensive review of the literature. Cereus 11 (5):e4620.
  • Andres-Lacueva, C., B. Shukitt-Hale, R. L. Galli, O. Jauregui, R. M. Lamuela-Raventos, and J. A. Joseph. 2005. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutritional Neuroscience 8 (2):111–20. doi: 10.1080/10284150500078117.
  • Anusha, C., T. Sumathi, and L. D. Joseph. 2017. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: suppression of neuroinflammation and oxidative stress mediated apoptosis. Chemico-Biological Interactions 269:67–79. doi: 10.1016/j.cbi.2017.03.016.
  • Bakunina, N., M. Carmine, and P. A. Zunszain. 2015. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 144(3):365–73.
  • Bialonska, D., S. G. Kasimsetty, S. I. Khan, and D. Ferreira. 2009. Urolithins, intestinal microbial metabolites of pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. Journal of Agricultural and Food Chemistry 57 (21):10181–6. doi: 10.1021/jf9025794.
  • Carregosa, D., R. Carecho, I. Figueira, and C. N. Santos. 2020. Low-molecular weight metabolites from polyphenols as effectors for attenuating neuroinflammation. Journal of Agricultural and Food Chemistry 68 (7):1790–807. doi: 10.1021/acs.jafc.9b02155.
  • Carvalho, F. B., J. M. Gutierres, A. Bueno, P. Agostinho, A. M. Zago, J. Vieira, P. Frühauf, J. L. Cechella, C. W. Nogueira, S. M. Oliveira, et al. 2017. Anthocyanins control neuroinflammation and consequent memory dysfunction in mice exposed to lipopolysaccharide. Molecular Neurobiology 54 (5):3350–67. doi: 10.1007/s12035-016-9900-8.
  • Cásedas, G., A. C. Bennett, E. González-Burgos, M. P. Gómez-Serranillos, V. López, and C. Smith. 2019. Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible compounding? Inflammopharmacology 27 (1):189–97. doi: 10.1007/s10787-018-0549-y.
  • de Ceballos, M. L. 2015. Cannabinoids for the treatment of neuroinflammation. In Cannabinoids in neurologic and mental disease, ed. L. Fattore, 3–14. Amsterdam: Elsevier Inc.
  • Chen, C., Y. Wei, X. He, D. Li, G. Wang, and J. Li. 2019. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Frontiers in Immunology 10:1–13.
  • Chen, L., H. Teng, Z. Xie, H. Cao, W. S. Cheang, K. Skalicka-Woniak, M. I. Georgiev, and J. Xiao. 2018. Modifications of dietary flavonoids towards improved bioactivity: an update on structure-activity relationshipStructure–Activity Relationship. Critical Reviews in Food Science and Nutrition 58 (4):513–27. doi: 10.1080/10408398.2016.1196334.
  • Chen, S., H. Zhou, G. Zhang, J. Meng, K. Deng, W. Zhou, H. Wang, Z. Wang, N. Hu, and Y. Suo. 2019. Anthocyanins from Lycium ruthenicum murr. ameliorated d-galactose-induced memory impairment, oxidative stress, and neuroinflammation in adult rats. Journal of Agricultural and Food Chemistry 67 (11):3140–9. doi: 10.1021/acs.jafc.8b06402.
  • Chuang, J.-Y., P.-C. Chang, Y.-C. Shen, C. Lin, C.-F. Tsai, J.-H. Chen, W.-L. Yeh, L.-H. Wu, H.-Y. Lin, Y.-S. Liu, et al. 2014. Regulatory effects of fisetin on microglial activation. Molecules 19 (7):8820–39. doi: 10.3390/molecules19078820.
  • Cianciulli, A., C. Porro, R. Calvello, T. Trotta, D. D. Lofrumento, and M. A. Panaro. 2020. Microglia mediated neuroinflammation: focus on PI3K modulation. Biomolecules 10(1):137.
  • Cittadini, M. C., A. M. Canalis, C. Albrecht, and E. A. Soria. 2015. Effects of oral phytoextract intake on phenolic concentration and redox homeostasis in murine encephalic regions. Nutritional Neuroscience 18 (7):316–22. doi: 10.1179/1476830514Y.0000000130.
  • Cittadini, M. C., G. Repossi, C. Albrecht, R. Di Paola Naranjo, A. R. Miranda, S. de Pascual-Teresa, and E. A. Soria. 2019. Effects of bioavailable phenolic compounds from Ilex paraguariensis on the brain of mice with lung adenocarcinoma. Phytotherapy Research: PTR 33(4):1142–9. doi: 10.1002/ptr.6308.
  • Consilvio, C., A. M. Vincent, and E. L. Feldman. 2004. Neuroinflammation. COX-2, and ALS — a dual role ? Experimental Neurology 187:1–10.
  • Cui, Y., J. Wu, S.-C. Jung, D.-B. Park, Y.-H. Maeng, J. Y. Hong, S.-J. Kim, S.-R. Lee, S.-J. Kim, S. J. Kim, et al. 2010. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biological & Pharmaceutical Bulletin 33 (11):1814–21. doi: 10.1248/bpb.33.1814.
  • Czank, C., A. Cassidy, Q. Zhang, D. J. Morrison, T. Preston, P. A. Kroon, N. P. Botting, and C. D. Kay. 2013. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. The American Journal of Clinical Nutrition 97 (5):995–1003. doi: 10.3945/ajcn.112.049247.
  • Deardorff, W. J., and G. T. Grossberg. 2017. Targeting neuroinflammation in Alzheimer’s disease: evidence for NSAIDs and novel therapeutics. Expert Review of Neurotherapeutics 17 (1):17–32. Voldoi: 10.1080/14737175.2016.1200972.
  • Devore, E. E., J. H. Kang, M. M. B. Breteler, and F. Grodstein. 2012. Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology 72 (1):135–43. doi: 10.1002/ana.23594.
  • Disabato, D., N. Quan, and J. P. Godbout. 2017. Neuroinflammation: the devil is in the details. Journal of Neurochemistry 139 (Suppl 2):136–53.
  • Dourado, N. S., C. d S. Souza, M. M. A. de Almeida, A. Bispo da Silva, B. L. dos Santos, V. D. A. Silva, A. M. De Assis, J. S. da Silva, D. O. Souza, M. d F. D. Costa, et al. 2020. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. Frontiers in Aging Neuroscience 12:119. doi: 10.3389/fnagi.2020.00119.
  • Duque, E. D. A., and C. D. Munhoz. 2016. The pro-inflammatory effects of glucocorticoids in the brain. Frontiers in Endocrinology 7:1–7.
  • Essa, M. M., R. K. Vijayan, G. Castellano-Gonzalez, M. A. Memon, N. Braidy, and G. J. Guillemin. 2012. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochemical Research 37 (9):1829–42. doi: 10.1007/s11064-012-0799-9.
  • Essa, M. M., S. Subash, M. Akbar, S. Al-Adawi, and G. J. Guillemin. 2015. Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS ONE 10 (3):e0120964–17. doi: 10.1371/journal.pone.0120964.
  • Farooqui, A. A., and T. Farooqui. 2018. Antiaging and neuroprotective properties of mediterranean diet components in humans. In Molecular basis and emerging strategies for anti-aging interventions, ed. S.I. Rizvi and Ç. Ufuk, 237–52. Singapore: Springer.
  • Farooqui, T., and A. A. Farooqui. 2012. Beneficial effects of propolis on human health and neurological diseases. Frontiers in Bioscience E4 (2):779–93. doi: 10.2741/e418.
  • Fraga, C. G., M. Galleano, S. V. Verstraeten, and P. I. Oteiza. 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine 31 (6):435–45. doi: 10.1016/j.mam.2010.09.006.
  • Gambino, C. M., G. Accardi, A. Aiello, G. Candore, G. Dara-Guccione, M. Mirisola, A. Procopio, G. Taormina, and C. Caruso. 2018. Effect of extra virgin olive oil and table olives on the immuneinflammatory responses: potential clinical applications. Endocrine, Metabolic & Immune Disorders Drug Targets 18 (1):14–22. doi: 10.2174/1871530317666171114113822.
  • Gao, W., W. Wang, Y. Peng, and Z. Deng. 2019. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metabolic Brain Disease 34 (2):485–94. doi: 10.1007/s11011-019-0389-5.
  • García-Baos, A., L. Alegre-Zurano, L. Cantacorps, A. Martín-Sánchez, and O. Valverde. 2021. Role of cannabinoids in alcohol-induced neuroinflammation. Progress in Neuro-Psychopharmacology & Biological Psychiatry 104:110054. doi: 10.1016/j.pnpbp.2020.110054.
  • Giacalone, M., F. D. Sacco, I. Traupe, N. Pagnucci, F. Forfori, and F. Giunta. 2015. Blueberry polyphenols and neuroprotection. In Bioactive nutraceuticals and dietary supplements in neurological and brain disease: prevention and therapy, ed. R. R. Watson and V. R. Preedy, 17–28. Cambridge, MA, USA: Academic Press. doi: 10.1016/B978-0-12-411462-3.00002-3.
  • Giacoppo, S., M. Galuppo, G. E. Lombardo, M. M. Ulaszewska, F. Mattivi, P. Bramanti, E. Mazzon, and M. Navarra. 2015. Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia 103:171–86. doi: 10.1016/j.fitote.2015.04.003.
  • Ginwala, R., R. Bhavsar, D. G. I. Chigbu, P. Jain, and Z. K. Khan. 2019. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 8 (2):35–28. doi: 10.3390/antiox8020035.
  • Giovanelli, G., and S. Buratti. 2009. Comparison of polyphenolic composition and antioxidant activity of wild italian blueberries and some cultivated varieties. Food Chemistry 112 (4):903–8. doi: 10.1016/j.foodchem.2008.06.066.
  • González-Sarrías, A., R. García-Villalba, M. Romo-Vaquero, C. Alasalvar, A. Örem, P. Zafrilla, F. A. Tomás-Barberán, M. V. Selma, and J. C. Espín. 2017. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: a randomized clinical trial. Molecular Nutrition and Food Research 61(5):1–43.
  • Ha, S. K., P. Lee, J. A. Park, H. R. Oh, S. Y. Lee, J. H. Park, E. H. Lee, J. H. Ryu, K. R. Lee, and S. Y. Kim. 2008. Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochemistry International 52 (4–5):878–86. nodoi: 10.1016/j.neuint.2007.10.005.
  • Ha, S. K., E. Moon, and S. Y. Kim. 2010. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-ΚB and JNK activations in microglia cells. Neuroscience Letters 485 (3):143–7. doi: 10.1016/j.neulet.2010.08.064.
  • Haghmorad, D., M. B. Mahmoudi, Z. Salehipour, Z. Jalayer, A. A. Momtazi Brojeni, M. Rastin, P. Kokhaei, and M. Mahmoudi. 2017. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. Journal of Neuroimmunology 302:23–33. doi: 10.1016/j.jneuroim.2016.11.009.
  • He, P., S. Yan, X. Wen, S. Zhang, Z. Liu, X. Liu, and C. Xiao. 2019. Eriodictyol alleviates lipopolysaccharide-triggered oxidative stress and synaptic dysfunctions in BV-2 microglial cells and mouse brain. Journal of Cellular Biochemistry 120 (9):14756–70. doi: 10.1002/jcb.28736.
  • Hodek, P., P. Trefil, and M. Stiborová. 2002. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chemico-Biological Interactions 139 (1):1–21. doi: 10.1016/s0009-2797(01)00285-x.
  • Hopper, A. T., B. M. Campbell, H. Kao, S. A. Pintchovski, and R. G. W. Staal. 2012. Recent developments in targeting neuroinflammation in disease. In Annual reports in medicinal chemistry, ed. M. C. Desai, vol. 47, 1st ed., 37–53. Amsterdam: Elsevier Inc.
  • Hornedo-Ortega, R., A. B. Cerezo, R. M. de Pablos, S. Krisa, T. Richard, M. C. García-Parrilla, and A. M. Troncoso. 2018. Phenolic compounds characteristic of the mediterranean diet in mitigating microglia-mediated neuroinflammation. Frontiers in Cellular Neuroscience 12:1–20. doi: 10.3389/fncel.2018.00373.
  • Huang, H., C. Hu, L. Xu, X. Zhu, L. Zhao, and J. Min. 2020. The effects of hesperidin on neuronal apoptosis and cognitive impairment in the sevoflurane anesthetized rat are mediated through the PI3/Akt/PTEN and nuclear Factor-ΚB (NF-ΚB) signaling pathways. Medical Science Monitor 26:1–15. doi: 10.12659/MSM.920522.
  • Hwang, S., P. Shih, and G. Yen. 2012. Neuroprotective effects of citrus flavonoids. Journal of Agricultural and Food Chemistry 60 (4):877–85. doi: 10.1021/jf204452y.
  • Javed, H., K. Vaibhav, M. E. Ahmed, A. Khan, R. Tabassum, F. Islam, M. M. Safhi, and F. Islam. 2015. Effect of hesperidin on neurobehavioral, neuroinflammation, oxidative stress and lipid alteration in intracerebroventricular streptozotocin induced cognitive impairment in mice. Journal of the Neurological Sciences 348 (1–2):51–9. doi: 10.1016/j.jns.2014.10.044.
  • Jeong, K. H., U. J. Jung, and S. R. Kim. 2015. Naringin attenuates autophagic stress and neuroinflammation in kainic acid-treated hippocampus in vivo. Evidence-Based Complementary and Alternative Medicine: eCAM 2015:354326. Article ID 354326, 9 pages. doi: 10.1155/2015/354326.
  • Jo, S. H., M. E. Kim, J. H. Cho, Y. Lee, J. Lee, Y. D. Park, and J. S. Lee. 2019. Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Archives of Pharmacal Research 42 (8):695–703. doi: 10.1007/s12272-019-01174-5.
  • Johnson, R. W. 2015. Feeding the beast: can microglia in the senescent brain be regulated by diet? Brain, Behavior, and Immunity 43:1–8. doi: 10.1016/j.bbi.2014.09.022.
  • Jung, J. S., M. J. Choi, Y. Y. Lee, B. I. Moon, J. S. Park, and H. S. Kim. 2017. Suppression of lipopolysaccharide-induced neuroinflammation by morin via MAPK, PI3K/Akt, and PKA/HO-1 signaling pathway modulation. Journal of Agricultural and Food Chemistry 65 (2):373–82. doi: 10.1021/acs.jafc.6b05147.
  • Jung, Y. J., D. Tweedie, M. T. Scerba, and N. H. Greig. 2019. Neuroinflammation as a factor of neurodegenerative disease: thalidomide analogs as treatments. 7: 1–24.
  • Justin-Thenmozhi, A., M. Dhivya Bharathi, R. Kiruthika, T. Manivasagam, A. Borah, and M. M. Essa. 2018. Attenuation of aluminum chloride-induced neuroinflammation and caspase activation through the AKT/GSK-3β pathway by hesperidin in Wistar rats. Neurotoxicity Research 34 (3):463–76. doi: 10.1007/s12640-018-9904-4.
  • Kaewmool, C., S. Udomruk, T. Phitak, P. Pothacharoen, and P. Kongtawelert. 2020. Cyanidin-3-O-glucoside protects PC12 cells against neuronal apoptosis mediated by LPS-stimulated BV2 microglial activation. Neurotoxicity Research 37 (1):111–25. doi: 10.1007/s12640-019-00102-1.
  • Kalt, W., J. B. Blumberg, J. E. McDonald, M. R. Vinqvist-Tymchuk, S. A. E. Fillmore, B. A. Graf, J. M. O'Leary, and P. E. Milbury. 2008. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. Journal of Agricultural and Food Chemistry 56 (3):705–12. doi: 10.1021/jf071998l.
  • Khan, A., T. Ali, S. U. Rehman, M. S. Khan, S. I. Alam, M. Ikram, T. Muhammad, K. Saeed, H. Badshah, and M. O. Kim. 2018. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Frontiers in Pharmacology 9:1–16. doi: 10.3389/fphar.2018.01383.
  • Khan, M. S., T. Ali, M. W. Kim, M. H. Jo, J. Il Chung, and M. O. Kim. 2019. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Molecular Neurobiology 56 (1):671–87. doi: 10.1007/s12035-018-1101-1.
  • Kim, J., M. B. Wie, M. Ahn, A. Tanaka, H. Matsuda, and T. Shin. 2019. Benefits of hesperidin in central nervous system disorders: a review. Anatomy & Cell Biology 52 (4):369–77. doi: 10.5115/acb.19.119.
  • Kim, M., S. Y. Choi, P. Lee, and J. Hur. 2015. Neochlorogenic Acid Inhibits Lipopolysaccharide-Induced Activation and Pro-Inflammatory Responses in BV2 Microglial Cells. Neurochemical rResearch 40 (9):1792–8. doi: 10.1007/s11064-015-1659-1.
  • Kim, M. S., S. Koppula, S. H. Jung, J. Y. Kim, H. R. Lee, S. R. Lee, Y. D. Park, K. A. Lee, T. K. Park, and H. Kang. 2013. Olea europaea Linn (Oleaceae) fruit pulp extract exhibits potent antioxidant activity and attenuates neuroinflammatory responses in lipopolysaccharide-stimulated microglial cells. Tropical Journal of Pharmaceutical Research 12 (3):357–62.
  • Kim, S. Y., C. Y. Jin, C. H. Kim, Y. H. Yoo, S. H. Choi, G. Y. Kim, H. M. Yoon, H. T. Park, and Y. H. Choi. 2019. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-ΚB, blocking the TLR4 pathway and reducing ROS generation. International Journal of Molecular Medicine 43 (2):682–92. doi: 10.3892/ijmm.2018.3993.
  • Kim, T. Y., E. Leem, J. M. Lee, and S. R. Kim. 2020. Control of reactive oxygen species for the prevention of Parkinson’s disease: The possible application of flavonoids. Antioxidants 9 (7):1–28.
  • Kom, H. H., M. Nageshwar, K. Srilatha, and K. P. Reddy. 2019. Protective effect of quercetin on weight drop injury model-induced neuroinflammation alterations in brain of mice. Journal of Applied Pharmaceutical Science 9 (4):96–103.
  • Krikorian, R., M. D. Shidler, T. A. Nash, W. Kalt, M. R. Vinqvist-Tymchuk, B. Shukitt-Hale, and J. A. Joseph. 2010. Blueberry supplementation improves memory in older adults. Journal of Agricultural and Food Chemistry 58 (7):3996–4000. doi: 10.1021/jf9029332.
  • Kwon, J. Y., U. J. Jung, D. W. Kim, S. Kim, G. J. Moon, J. Hong, M. T. Jeon, M. Shin, J. H. Chang, and S. R. Kim. 2018. Beneficial effects of hesperetin in a mouse model of temporal lobe epilepsy. Journal of Medicinal Food 21 (12):1306–9. doi: 10.1089/jmf.2018.4183.
  • Kyung, E., K. Eui, and J. Choi. 2015. Compromised MAPK signaling in human diseases: an update. Archives of Toxicology 89 (6):867–82. doi: 10.1007/s00204-015-1472-2.
  • Lee, B. K., W. J. Lee, and Y. S. Jung. 2017. Chrysin attenuates VCAM-1 expression and monocyte adhesion in lipopolysaccharide-stimulated brain endothelial cells by preventing NF-ΚB signaling. International Journal of Molecular Sciences 18 (7):1–12.
  • Lesjak, M., I. Beara, N. Simin, D. Pintać, T. Majkić, K. Bekvalac, D. Orčić, and N. Mimica-Dukić. 2018. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. Journal of Functional Foods 40:68–75. doi: 10.1016/j.jff.2017.10.047.
  • Letenneur, L., C. Proust-Lima, A. Le Gouge, J. F. Dartigues, and P. Barberger-Gateau. 2007. Flavonoid intake and cognitive decline over a 10-year period. American Journal of Epidemiology 165 (12):1364–71. doi: 10.1093/aje/kwm036.
  • Leyva-Jiménez, F. J., J. Lozano-Sánchez, M. de la Luz Cádiz-Gurrea, D. Arráez-Román, and A. Segura-Carretero. 2019. Functional ingredients based on nutritional phenolics. A case study against inflammation: Lippia genus. Nutrients 11 (7):1646. doi: 10.3390/nu11071646.
  • Li, J., R. Zhao, Y. Jiang, Y. Xu, H. Zhao, X. Lyu, and T. Wu. 2020. Bilberry anthocyanins improve neuroinflammation and cognitive dysfunction in APP/PSEN1 mice via the CD33/TREM2/TYROBP signaling pathway in microglia. Food & Function 11 (2):1572–84. doi: 10.1039/c9fo02103e.
  • Li, M., H. Shao, X. Zhang, and B. Qin. 2016. Hesperidin alleviates lipopolysaccharide-induced neuroinflammation in mice by promoting the MiRNA-132 pathway. Inflammation 39 (5):1681–9. doi: 10.1007/s10753-016-0402-7.
  • Li, Z., S. Chu, W. He, Z. Zhang, J. Liu, L. Cui, X. Yan, D. Li, and N. Chen. 2019. A20 as a novel target for the anti-neuroinflammatory effect of chrysin via inhibition of NF-ΚB signaling pathway. Brain, Behavior, and Immunity 79:228–35. doi: 10.1016/j.bbi.2019.02.005.
  • Liu, D., and D. Du. 2020. Mulberry fruit extract alleviates cognitive impairment by promoting the clearance of amyloid-β and inhibiting neuroinflammation in Alzheimer’s disease mice. Neurochemical Research 45 (9):2009–19. doi: 10.1007/s11064-020-03062-7.
  • Mai, N., S. A. Knowlden, K. Miller-Rhodes, V. Prifti, M. Sims, M. Grier, M. Nelson, and M. W. Halterman. 2021. Effects of 9-t-butyl doxycycline on the innate immune response to CNS ischemia-reperfusion injury. Experimental and Molecular Pathology 118:104601. doi: 10.1016/j.yexmp.2020.104601.
  • Mani, S., S. Sekar, R. Barathidasan, T. Manivasagam, A. J. Thenmozhi, M. Sevanan, S. B. Chidambaram, M. M. Essa, G. J. Guillemin, and M. K. Sakharkar. 2018. Naringenin decreases α-synuclein expression and neuroinflammation in MPTP-induced Parkinson’s disease model in mice. Neurotoxicity Research 33 (3):656–70. doi: 10.1007/s12640-018-9869-3.
  • Masheta, D. Q., and S. K. Al-Azzawi. 2018. Antioxidant and anti-inflammatory effects of delphinidin on glial cells and lack of effect on secretase enzyme. IOP Conference Series: Materials Science and Engineering 454 (1):012061. doi: 10.1088/1757-899X/454/1/012061.
  • Mayr, H. L., C. J. Thomas, A. C. Tierney, T. Kucianski, E. S. George, M. Ruiz-Canela, J. R. Hebert, N. Shivappa, and C. Itsiopoulos. 2018. Randomization to 6-month mediterranean diet compared with a low-fat diet leads to improvement in dietary inflammatory index scores in patients with coronary heart disease: The AUSMED heart trial. Nutrition Research (New York, N.Y.) 55:94–107. doi: 10.1016/j.nutres.2018.04.006.
  • Mazza, G., C. D. Kay, T. Cottrell, and B. J. Holub. 2002. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. Journal of Agricultural and Food Chemistry 50 (26):7731–48. doi: 10.1021/jf020690l.
  • Meeusen, R. 2014. Exercise, nutrition and the brain. Sports Medicine 44 (S1):47–56. doi: 10.1007/s40279-014-0150-5.
  • Meireles, M., C. Marques, S. Norberto, P. Santos, I. Fernandes, N. Mateus, A. Faria, and C. Calhau. 2016. Anthocyanin effects on microglia M1/M2 phenotype: consequence on neuronal fractalkine expression. Behavioural Brain Research 305:223–8. doi: 10.1016/j.bbr.2016.03.010.
  • Meng, H. Y., D. C. Shao, H. Li, X. D. Huang, G. Yang, B. Xu, and H. Y. Niu. 2018. Resveratrol improves neurological outcome and neuroinflammation following spinal cord injury through enhancing autophagy involving the AMPK/MTOR pathway. Molecular Medicine Reports 18 (2):2237–44. doi: 10.3892/mmr.2018.9194.
  • Miller, A. 2020. Beyond depression: the expanding role of inflammation in psychiatric disorders. World Psychiatry 19 (1):108–9. doi: 10.1002/wps.20723.
  • Morris, G., A. J. Walker, M. Berk, M. Maes, and B. K. Puri. 2018. Cell death pathways: a novel therapeutic approach for neuroscientists. Molecular Neurobiology 55 (7):5767–86. doi: 10.1007/s12035-017-0793-y.
  • Muscatello, M. R. A., R. A. Zoccali, and A. Bruno. 2018. Citrus fruit polyphenols and flavonoids: applications to psychiatric disorders. In Polyphenols: mechanisms of action in human health and disease, ed. R. R. Watson, V. R. Preedy and S. Zibadi, vol. 1, 2nd ed., 119–31. Amsterdam: Elsevier Inc. doi: 10.1016/B978-0-12-813006-3.00011-8.
  • Nabavi, S. F., N. Braidy, S. Habtemariam, I. E. Orhan, M. Daglia, A. Manayi, O. Gortzi, and S. M. Nabavi. 2015. Neurochemistry international neuroprotective effects of chrysin: from chemistry to medicine. Neurochemistry International 90:224–31. doi: 10.1016/j.neuint.2015.09.006.
  • Nooyens, A. C. J., H. B. Bueno-de-Mesquita, M. P. J. Van Boxtel, B. M. Van Gelder, H. Verhagen, and W. M. M. Verschuren. 2011. Fruit and vegetable intake and cognitive decline in middle-aged men and women: the doetinchem cohort study. British Journal of Nutrition 106 (5):752–61. doi: 10.1017/S0007114511001024.
  • Nurk, E., H. Refsum, C. A. Drevon, G. S. Tell, H. A. Nygaard, K. Engedal, and A. D. Smith. 2009. Intake of flavonoid-rich wine, tea, and chocolate by elderly men and women is associated with better cognitive test performance 1-3. The Journal of Nutrition 139 (1):120–7. doi: 10.3945/jn.108.095182.
  • Pan, Z., M. Cui, G. Dai, T. Yuan, Y. Li, T. Ji, and Y. Pan. 2018. Protective effect of anthocyanin on neurovascular unit in cerebral ischemia/reperfusion injury in rats. Frontiers in Neuroscience 12:1–12. doi: 10.3389/fnins.2018.00947.
  • Pandareesh, M. D., R. B. Mythri, and M. M. S. Bharath. 2015. Bioavailability of dietary polyphenols: factors contributing to their clinical application in CNS diseases. Neurochemistry International 89:198–208. doi: 10.1016/j.neuint.2015.07.003.
  • Paulo Andrade, J., and M. Assuncao. 2012. Protective effects of chronic green tea consumption on age-related neurodegeneration. Current Pharmaceutical Design 18 (1):4–14. doi: 10.2174/138161212798918986.
  • Poulose, S. M., D. F. Bielinski, A. Carey, A. G. Schauss, and B. Shukitt-Hale. 2017. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutritional Neuroscience 20 (5):305–15. doi: 10.1080/1028415X.2015.1125654.
  • Prior, R. L., G. Cao, A. Martin, E. Sofic, J. McEwen, C. O'Brien, N. Lischner, M. Ehlenfeldt, W. Kalt, G. Krewer, et al. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of vaccinium species. Journal of Agricultural and Food Chemistry 46 (7):2686–93. doi: 10.1021/jf980145d.
  • Psaltopoulou, T., D. B. Sergentanis, T. N. Panagiotakos, I. N. Sergentanis, R. Kosti, and N. Scarmeas. 2013. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Annals of Neurology 74 (4):580–91. doi: 10.1002/ana.23944.
  • Qi, B., C. Shi, J. Meng, S. Xu, and J. Liu. 2018. Resveratrol alleviates ethanol-induced neuroinflammation in vivo and in vitro: involvement of TLR2-MyD88-NF-ΚB pathway. The International Journal of Biochemistry & Cell Biology 103:56–64. doi: 10.1016/j.biocel.2018.07.007.
  • Rehman, S. U., T. Ali, S. I. Alam, R. Ullah, A. Zeb, K. W. Lee, B. P. F. Rutten, and M. O. Kim. 2019. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Molecular Neurobiology 56 (4):2774–90. doi: 10.1007/s12035-018-1280-9.
  • Del Rio, D., A. Rodriguez-Mateos, J. P. E. Spencer, M. Tognolini, G. Borges, and A. Crozier. 2013. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling 18 (14):1818–92. doi: 10.1089/ars.2012.4581.
  • Rocha, N. P., A. S. De Miranda, and A. L. Teixeira. 2015. Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. BioMed Research International 2015:1–12. doi: 10.1155/2015/628192.
  • Rodriguez-Mateos, A., D. Vauzour, C. G. Krueger, D. Shanmuganayagam, J. Reed, L. Calani, P. Mena, D. D. Rio, and A. Crozier. 2014. bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Archives of Toxicology 88 (10):1803–53. doi: 10.1007/s00204-014-1330-7.
  • Rojanathammanee, L., K. L. Puig, and C. K. Combs. 2013. Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation invitroand inatransgenic mouse model of Alzheimer disease. The Journal of Nutrition 143 (5):597–605. doi: 10.3945/jn.112.169516.
  • Scheepens, A., K. Tan, and J. W. Paxton. 2010. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes & Nutrition 5 (1):75–87. doi: 10.1007/s12263-009-0148-z.
  • Serafini, M., M. F. Testa, D. Villaño, M. Pecorari, K. van Wieren, E. Azzini, A. Brambilla, and G. Maiani. 2009. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radical Biology and Medicine 46 (6):769–74. doi: 10.1016/j.freeradbiomed.2008.11.023.
  • Shabab, T., R. Khanabdali, S. Z. Moghadamtousi, A. Kadir, G. Mohan, T. Shabab, R. Khanabdali, S. Z. Moghadamtousi, and H. Abdul. 2017. Neuroinflammation pathways: a general review. International Journal of Neuroscience 127(7):624–33.
  • Shi, L. B., P. F. Tang, W. Zhang, Y. P. Zhao, L. C. Zhang, and H. Zhang. 2016. Naringenin inhibits spinal cord injury-induced activation of neutrophils through MiR-223. Gene 592 (1):128–33. doi: 10.1016/j.gene.2016.07.037.
  • Shi, Z.-M., Y.-W. Han, X.-H. Han, K. Zhang, Y.-N. Chang, Z.-M. Hu, H.-X. Qi, C. Ting, Z. Zhen, and W. Hong. 2016. Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. Journal of the Neurological Sciences 366:127–34. doi: 10.1016/j.jns.2016.05.022.
  • Shu, Z., B. Yang, H. Zhao, B. Xu, W. Jiao, Q. Wang, Z. Wang, and H. Kuang. 2014. Tangeretin exerts anti-neuroinflammatory effects via NF-ΚB modulation in lipopolysaccharide-stimulated microglial cells. International Immunopharmacology 19 (2):275–82. doi: 10.1016/j.intimp.2014.01.011.
  • Shukitt-Hale, B., F. C. Lau, A. N. Carey, R. L. Galli, E. L. Spangler, D. K. Ingram, and J. A. Joseph. 2008. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus. Nutritional Neuroscience 11 (4):172–82. doi: 10.1179/147683008X301487.
  • Siddiqui, S., A. Kamal, F. Khan, K. S. Jamali, and Z. S. Saify. 2019. Gallic and vanillic acid suppress inflammation and promote myelination in an in vitro mouse model of neurodegeneration. Molecular Biology Reports 46 (1):997–1011. doi: 10.1007/s11033-018-4557-1.
  • Singh, S., Sen, S. N. Rai, H. Birla, W. Zahra, A. S. Rathore, and S. P. Singh. 2020. NF-ΚB-Mediated neuroinflammation in Parkinson’s disease and potential therapeutic effect of polyphenols. Neurotoxicity Research 37 (3):491–507. doi: 10.1007/s12640-019-00147-2.
  • Solanki, I., P. Parihar, and M. S. Parihar. 2016. Neurodegenerative diseases: from available treatments to prospective herbal therapy. Neurochemistry International 95:100–8. doi: 10.1016/j.neuint.2015.11.001.
  • Song, F., Jiao, K. Wu Zeng, J. Feng Chen, Y. Li, X. Min Song, P. Fei Tu, and X. Mei Wang. 2019. Extract of fructus schisandrae chinensis inhibits neuroinflammation mediator production from microglia via NF-κ B and MAPK pathways. Chinese Journal of Integrative Medicine 25 (2):131–8. doi: 10.1007/s11655-018-3001-7.
  • Szwajgier, D., K. Borowiec, and K. Pustelniak. 2017. The neuroprotective effects of phenolic acids: molecular mechanism of action. Nutrients 9 (5):1–21.
  • Taofiq, O., R. C. Calhelha, S. Heleno, L. Barros, A. Martins, C. Santos-Buelga, M. J. R. P. Queiroz, and I. C. F. R. Ferreira. 2015. The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International (Ottawa, Ont.) 76 (Pt 3):821–7. doi: 10.1016/j.foodres.2015.07.044.
  • Taticchi, A., S. Urbani, E. Albi, M. Servili, M. Codini, G. Traina, S. Balloni, F. F. Patria, L. Perioli, T. Beccari, et al. 2019. In vitro anti-inflammatory E ects of phenolic compounds from Moraiolo Virgin Olive Oil (MVOO) in brain cells via regulating the TLR4/NLRP3 Axis. Molecules 24 (24):4523–1. doi: 10.3390/molecules24244523.
  • Tian, Y., W. Lu, H. Deng, F. Yang, Y. Guo, L. Gao, and Y. Xu. 2018. Phlorizin administration ameliorates cognitive deficits by reducing oxidative stress, tau hyper – phosphorylation, and neuroinflammation in a rat model of Alzheimer’s disease. Journal of Food Biochemistry 42 (6):e1. doi: 10.1111/jfbc.12644.
  • Tsao, R. 2010. Chemistry and biochemistry of dietary polyphenols. Nutrients 2 (12):1231–46.
  • Ullah, A., S. Munir, S. L. Badshah, N. Khan, L. Ghani, B. G. Poulson, A. Emwas, and M. Jaremko. 2020. Important flavonoids and their role as a therapeutic agent. Molecules 25 (22):5243. doi: 10.3390/molecules25225243.
  • Vafeiadou, K., D. Vauzour, H. Y. Lee, A. Rodriguez-Mateos, R. J. Williams, and J. P. E. Spencer. 2009. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Archives of Biochemistry and Biophysics 484 (1):100–9. doi: 10.1016/j.abb.2009.01.016.
  • Velagapudi, R., G. Baco, S. Khela, U. Okorji, and O. Olajide. 2016. Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β-stimulated SK-N-SH cells. European Journal of Nutrition 55 (4):1653–60. doi: 10.1007/s00394-015-0984-0.
  • Wang, H., Yu, H. Wang, J. Huan Wang, Q. Wang, Q. Feng Ma, and Y. Yang Chen. 2015. Protocatechuic acid inhibits inflammatory responses in LPS-stimulated BV2 microglia via NF-ΚB and MAPKs signaling pathways. Neurochemical Research 40 (8):1655–60. doi: 10.1007/s11064-015-1646-6.
  • Wang, Q., Y. Liu, and J. Zhou. 2015. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Translational Neurodegeneration 4 (1):1–9. doi: 10.1186/s40035-015-0042-0.
  • Wang, S. Y., C. T. Chen, W. Sciarappa, C. Y. Wang, and M. J. Camp. 2008. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. Journal of Agricultural and Food Chemistry 56 (14):5788–94. doi: 10.1021/jf703775r.
  • Winter, A. N., M. C. Brenner, N. Punessen, M. Snodgrass, C. Byars, Y. Arora, and D. A. Linseman. 2017. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxidative Medicine and Cellular Longevity 2017:1–13. doi: 10.1155/2017/6297080.
  • Wu, L. H., C. Lin, H. Y. Lin, Y. S. Liu, C. Y. J. Wu, C. F. Tsai, P. C. Chang, W. L. Yeh, and D. Y. Lu. 2016. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Molecular Neurobiology 53 (2):1080–91. doi: 10.1007/s12035-014-9042-9.
  • Xiang, C.-P., J.-X. Han, X.-C. Li, Y.-H. Li, Y. Zhang, L. Chen, Y. Qu, C.-Y. Hao, H.-Z. Li, C.-R. Yang, et al. 2017. Chemical composition and acetylcholinesterase inhibitory activity of essential oils from piper species. Journal of Agricultural and Food Chemistry 65 (18):3702–10. doi: 10.1021/acs.jafc.7b01350.
  • Yang, D., S. G. Elner, Z.-M. Bian, G. O. Till, H. R. Petty, and V. M. Elner. 2007. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Experimental Eye Research 85 (4):462–72. doi: 10.1016/j.exer.2007.06.013.
  • Yang, W., Z. K. Tian, H. X. Yang, Z. J. Feng, J. M. Sun, H. Jiang, C. Cheng, Q. L. Ming, and C. M. Liu. 2019. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the ampk/sirt1 and autophagy pathway. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 134:110824. doi: 10.1016/j.fct.2019.110824.
  • Zhang, H., and R. Tsao. 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science 8:33–42. doi: 10.1016/j.cofs.2016.02.002.
  • Zhao, Y., P. Wang, S. Chen, C. Han, Q. Yan, L. Zheng, J. Jia, Z. Ren, and X. Zhen. 2017. Dihydromyricetin protects against cerebral ischemia/reperfusion injury via suppressing microglia-mediated neuroinflammation and activation of ERK1/2-CREB signaling pathway. Journal of Functional Foods 33:76–84. doi: 10.1016/j.jff.2017.03.034.
  • Zhao, Y., M. Dang, W. Zhang, Y. Lei, T. Ramesh, V. P. Veeraraghavan, and X. Hou. 2020. Neuroprotective effects of syringic acid against aluminium chloride induced oxidative stress mediated neuroinflammation in rat model of Alzheimer’s disease. Journal of Functional Foods 71:104009. doi: 10.1016/j.jff.2020.104009.
  • Zhou, T., L. Liu, Q. Wang, and Y. Gao. 2020. Naringenin alleviates cognition deficits in high-fat diet-fed SAMP8 mice. Journal of Food Biochemistry 44:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.