989
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Real wine or not? Protecting wine with traceability and authenticity for consumers: chemical and technical basis, technique applications, challenge, and perspectives

, , ORCID Icon, , , , & show all

References

  • Aceto, M., O. Abollino, M. C. Bruzzoniti, E. Mentasti, C. Sarzanini, and M. Malandrino. 2002. Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES); a review. Food Additives and Contaminants 19 (2):126–33. doi: 10.1080/02652030110071336.
  • Anderson, K., D. Norman, and G. Wittwer. 2003. Globalisation of the world’s wine markets. The World Economy 26 (5):659–87. doi: 10.1111/1467-9701.00541.
  • Annesley, T. M. 2003. Ion suppression in mass spectrometry ion suppression in mass spectrometry. Clinical Chemistry 49 (7):1041–4. doi: 10.1373/49.7.1041.
  • Arvanitoyannis, I. 1999. Application of quality control methods for assessing wine authenticity: Use of multivariate analysis (chemometrics). Trends in Food Science & Technology 10 (10):321–36. doi: 10.1016/S0924-2244(99)00053-9.
  • Arvanitoyannis, I. S., and O. B. Vaitsi. 2007. A review on tomato authenticity: Quality control methods in conjunction with multivariate analysis (chemometrics). Critical Reviews in Food Science and Nutrition 47 (7):675–99. doi: 10.1080/10408390600948568.
  • Augagneur, S., B. Médina, J. Szpunar, and R. Lobiński. 1996. Determination of rare earth elements in wine by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. Journal of Analytical Atomic Spectrometry 11 (9):713–21. doi: 10.1039/JA9961100713.
  • Azcarate, S. M., A. de Araújo Gomes, M. R. Alcaraz, M. C. Ugulino de Araújo, J. M. Camiña, and H. C. Goicoechea. 2015. Modeling excitation-emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety. Food Chemistry 184:214–19. doi: 10.1016/j.foodchem.2015.03.081.
  • Banc, R., F. Loghin, D. Miere, F. Fetea, and C. Socaciu. 2014. Romanian wines quality and authenticity using FT-MIR spectroscopy coupled with multivariate data analysis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42 (2):556–64. doi: 10.15835/nbha4229674.
  • Barrias, S., J. R. Fernandes, J. E. Eiras-Dias, J. Brazão, and P. Martins-Lopes. 2019. Label free DNA-based optical biosensor as a potential system for wine authenticity. Food Chemistry 270:299–304. doi: 10.1016/j.foodchem.2018.07.058.
  • Basalekou, M., C. Pappas, Y. Kotseridis, P. A. Tarantilis, E. Kontaxakis, and S. Kallithraka. 2017. Red wine age estimation by the alteration of its color parameters: Fourier transform infrared spectroscopy as a tool to monitor wine maturation time. Journal of Analytical Methods in Chemistry 2017:5767613–9. doi: 10.1155/2017/5767613.
  • Baxter, M., J. M. Crews, H. M. J. Dennis, I. Goodall, and D. Anderson. 1997. The determination of the authenticity of wine from its trace element composition. Food Chemistry 60 (3):443–50. doi: 10.1016/S0308-8146(96)00365-2.
  • Bevin, C. J., A. J. Fergusson, W. B. Perry, L. J. Janik, and D. Cozzolino. 2006. Development of a rapid “fingerprinting” system for wine authenticity by mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry 54 (26):9713–8. doi: 10.1021/jf062265o.
  • Bevin, C. J., R. G. Dambergs, A. J. Fergusson, and D. Cozzolino. 2008. Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Analytica Chimica Acta 621 (1):19–23. doi: 10.1016/j.aca.2007.10.042.
  • Bisotto, A., A. Julien, P. Rigou, R. Schneider, and J. M. Salmon. 2015. Evaluation of the inherent capacity of commercial yeast strains to release glycosidic aroma precursors from Muscat grape must. Australian Journal of Grape and Wine Research 21 (2):194–9. doi: 10.1111/ajgw.12127.
  • Boccacci, P., W. Chitarra, A. Schneider, L. Rolle, and G. Gambino. 2020. Single-nucleotide polymorphism (SNP) genotyping assays for the varietal authentication of “'Nebbiolo' musts and wines” . Food Chemistry 312:126100. doi: 10.1016/j.foodchem.2019.126100.
  • Bocková, J., Y. Tian, H. Yin, N. Delepine-Gilon, Y. Chen, P. Veis, and J. Yu. 2017. Determination of metal elements in wine using laser-induced breakdown spectroscopy (LIBS). Appl Spectrosc 71 (8):1750–9. doi: 10.1177/0003702817708337.
  • Bosona, T., and G. Gebresenbet. 2013. Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control 33 (1):32–48. doi: 10.1016/j.foodcont.2013.02.004.
  • Brenna, J. T., T. N. Corso, H. J. Tobias, and R. J. Caimi. 1997. High-precision continuous-flow isotope ratio mass spectrometry. Mass Spectrometry Reviews 16 (5):227–58. doi: 10.1002/(sici)1098-2787(1997)16:5 < 227::aid-mas1 > 3.0.co;2-j.
  • Bronzi, B., C. Brilli, G. M. Beone, M. C. Fontanella, D. Ballabio, R. Todeschini, V. Consonni, F. Grisoni, F. Parri, and M. Buscema. 2020. Geographical identification of Chianti red wine based on ICP-MS element composition. Food Chemistry 315:126248. doi: 10.1016/j.foodchem.2020.126248.
  • Cabrita, M. J., N. Martins, P. Barrulas, R. Garcia, C. B. Dias, E. P. Pérez-Álvarez, A. M. C. Freitas, and T. Garde-Cerdán. 2018. Multi-element composition of red, white and palhete amphora wines from Alentejo by ICPMS. Food Control 92:80–5. doi: 10.1016/j.foodcont.2018.04.041.
  • Câmara, J., M. Alves, and J. Marques. 2006. Multivariate analysis for the classification and differentiation of Madeira wines according to main grape varieties. Talanta 68 (5):1512–21. doi: 10.1016/j.talanta.2005.08.012.
  • Cappiello, A., G. Famiglini, P. Palma, E. Pierini, V. Termopoli, and H. Trufelli. 2008. Overcoming matrix effects in liquid chromatography-mass spectrometry. Analytical Chemistry 80 (23):9343–8. doi: 10.1021/ac8018312.
  • Casale, M., P. Oliveri, C. Armanino, S. Lanteri, and M. Forina. 2010. NIR and UV-vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterisation of Italian red wines. Analytica Chimica Acta 668 (2):143–8. doi: 10.1016/j.aca.2010.04.021.
  • Catalano, V., P. Moreno-Sanz, S. Lorenzi, and M. S. Grando. 2016. Experimental review of DNA-based methods for wine traceability and development of a single-nucleotide polymorphism (SNP) genotyping assay for quantitative varietal authentication. Journal of Agricultural and Food Chemistry 64 (37):6969–84. doi: 10.1021/acs.jafc.6b02560.
  • Cheynier, V. 2012. Phenolic compounds: From plants to foods. Phytochemistry Reviews 11 (2-3):153–77. doi: 10.1007/s11101-012-9242-8.
  • Coetzee, P. P., F. P. van Jaarsveld, and F. Vanhaecke. 2014. Intraregional classification of wine via ICP-MS elemental fingerprinting. Food Chemistry 164:485–92. doi: 10.1016/j.foodchem.2014.05.027.
  • Colquhoun, I. J. 1993. NMR spectroscopy in food science. Nutrition & Food Science 93 (1):8–12. doi: 10.1108/EUM0000000000975.
  • Cordella, C., I. Moussa, A.-C. Martel, N. Sbirrazzuoli, and L. Lizzani-Cuvelier. 2002. Recent developments in food characterization and adulteration detection: Technique-oriented perspectives. Journal of Agricultural and Food Chemistry 50 (7):1751–64. doi: 10.1021/jf011096z.
  • Cozzolino, D. 2015. The role of visible and infrared spectroscopy combined with chemometrics to measure phenolic compounds in grape and wine samples. Molecules (Basel, Switzerland) 20 (1):726–37. doi: 10.3390/molecules20010726.
  • Cozzolino, D., W. Cynkar, N. Shah, and P. Smith. 2011. Technical solutions for analysis of grape juice, must, and wine: The role of infrared spectroscopy and chemometrics. Analytical and Bioanalytical Chemistry 401 (5):1475–84. doi: 10.1007/s00216-011-4946-y.
  • Darwaish, S. F., E. Moradian, T. Rahmani, and M. Knauer. 2014. Biometric identification on android smartphones. Procedia Computer Science 35:832–41. doi: 10.1016/j.procs.2014.08.250.
  • De Lima, C. M., D. D. S. Fernandes, G. E. Pereira, A. D. A. Gomes, M. C. U. de Araújo, and P. H. G. D. Diniz. 2020. Digital image-based tracing of geographic origin, winemaker, and grape type for red wine authentication. Food Chemistry 312:126060. doi: 10.1016/j.foodchem.2019.126060.
  • Di Natale, C., F. A. M. Davide, A. D'Amico, G. Sberveglieri, P. Nelli, G. Faglia, and C. Perego. 1995. Complex chemical pattern recognition with sensor array: The discrimination of vintage years of wine. Sensors and Actuators B: Chemical 25 (1–3):801–4. doi: 10.1016/0925-4005(95)85178-X.
  • Dordevic, N., R. Wehrens, G. J. Postma, L. M. C. Buydens, and F. Camin. 2012. Statistical methods for improving verification of claims of origin for Italian wines based on stable isotope ratios. Analytica Chimica Acta 757:19–25. doi: 10.1016/j.aca.2012.10.046.
  • Dos Santos, C. A. T., R. N. M. J. Páscoa, and J. A. Lopes. 2017. A review on the application of vibrational spectroscopy in the wine industry: From soil to bottle. Trac Trends in Analytical Chemistry 88:100–18. doi: 10.1016/j.trac.2016.12.012.
  • Dronov, M., T. Koza, A. Schwiers, T. C. Schmidt, and J. Schram. 2018. Strontium carbonate precipitation as a sample preparation technique for isotope ratio analysis of Sr in mineral water and wine by quadrupole-based inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry : RCM 32 (2):149–58. doi: 10.1002/rcm.8018.
  • Durante, C., C. Baschieri, L. Bertacchini, D. Bertelli, M. Cocchi, A. Marchetti, D. Manzini, G. Papotti, and S. Sighinolfi. 2015. An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes. Food Chemistry 173:557–63. doi: 10.1016/j.foodchem.2014.10.086.
  • EC No. 479/2008. 2008. Draft commission implementing regulation amending regulation (EC) no. 607/2009 laying down detailed rules for the application of Council Regulation (EC) No 479/2008 as regards protected designations of origin and geographical indications, traditional terms, labelling and presentation of certain wine sector products. Official Journal of the European Union.
  • Efremov, E. V., F. Ariese, and C. Gooijer. 2008. Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Analytica Chimica Acta 606 (2):119–34. doi: 10.1016/j.aca.2007.11.006.
  • Epova, E. N., S. Bérail, F. Séby, V. Vacchina, G. Bareille, B. Médina, L. Sarthou, and O. F. X. Donard. 2019. Strontium elemental and isotopic signatures of Bordeaux wines for authenticity and geographical origin assessment. Food Chemistry 294:35–45. doi: 10.1016/j.foodchem.2019.04.068.
  • EU No.1151/2012. 2012. Regulation (EU) no. 1151/2012 of the European Parliament and of the Council of 21 November 2012 on quality schemes for agricultural products and foodstuffs. Official Journal of the European Union
  • Fan, S., Q. Zhong, C. Fauhl-Hassek, M. K.-H. Pfister, B. Horn, and Z. Huang. 2018. Classification of Chinese wine varieties using 1H NMR spectroscopy combined with multivariate statistical analysis. Food Control 88:113–22. doi: 10.1016/j.foodcont.2017.11.002.
  • Fantoni, R., L. Caneve, F. Colao, L. Fornarini, V. Lazic, and V. Spizzichino. 2008. Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative analysis—A review. Spectrochimica Acta Part B: Atomic Spectroscopy 63 (10):1097–108. doi: 10.1016/j.sab.2008.08.008.
  • Feng, H., X. Wang, Y. Duan, J. Zhang, and X. Zhang. 2020. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. Journal of Cleaner Production 260:121031. doi: 10.1016/j.jclepro.2020.121031.
  • Ferman, A. M., A. M. Tekalp, and R. Mehrotra. 2002. Robust color histogram descriptors for video segment retrieval and identification. IEEE Transactions on Image Processing : A Publication of the IEEE Signal Processing Society 11 (5):497–508. doi: 10.1109/tip.2002.1006397.
  • Flamini, R. 2003. Mass spectrometry in grape and wine chemistry. Part I: Polyphenols. Mass Spectrometry Reviews 22 (4):218–50. doi: 10.1002/mas.10052.
  • Flamini, R., and A. Panighel. 2006. Mass spectrometry in grape and wine chemistry. Part II: The consumer protection. Mass Spectrometry Reviews 25 (5):741–74. doi: 10.1002/mas.20087.
  • Galgano, F., F. Favati, M. Caruso, T. Scarpa, and A. Palma. 2008. Analysis of trace elements in southern Italian wines and their classification according to provenance. LWT - Food Science and Technology 41 (10):1808–15. doi: 10.1016/j.lwt.2008.01.015.
  • García-Beneytez, E., F. Cabello, and E. Revilla. 2003. Analysis of grape and wine anthocyanins by HPLC-MS. Journal of Agricultural and Food Chemistry 51 (19):5622–9. doi: 10.1021/jf0302207.
  • Garde-Cerdán, T., C. Lorenzo, J. M. Carot, J. M. Jabaloyes, M. D. Esteve, and M. R. Salinas. 2008. Statistical differentiation of wines of different geographic origin and aged in barrel according to some volatile components and ethylphenols. Food Chemistry 111 (4):1025–31. doi: 10.1016/j.foodchem.2008.05.006.
  • Garde-Cerdán, T., C. Lorenzo, J. M. Carot, M. D. Esteve, M. D. Climent, and M. R. Salinas. 2009. Differentiation of barrel-aged wines according to their origin, variety, storage time and enological parameters using fermentation products. Food Control 20 (3):269–76. doi: 10.1016/j.foodcont.2008.05.003.
  • Geana, E. I., R. Popescu, D. Costinel, O. R. Dinca, I. Stefanescu, R. E. Ionete, and C. Bala. 2016. Verifying the red wines adulteration through isotopic and chromatographic investigations coupled with multivariate statistic interpretation of the data. Food Control 62:1–9. doi: 10.1016/j.foodcont.2015.10.003.
  • Geana, I., A. Iordache, R. Ionete, A. Marinescu, A. Ranca, and M. Culea. 2013. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chemistry 138 (2-3):1125–34. doi: 10.1016/j.foodchem.2012.11.104.
  • German, J. B., and R. L. Walzem. 2000. The health benefits of wine. Annual Review of Nutrition 20 (1):561–93. doi: 10.1146/annurev.nutr.20.1.561.
  • Ghaani, M., C. A. Cozzolino, G. Castelli, and S. Farris. 2016. An overview of the intelligent packaging technologies in the food sector. Trends in Food Science & Technology 51:1–11. doi: 10.1016/j.tifs.2016.02.008.
  • Godelmann, R., F. Fang, E. Humpfer, B. Schütz, M. Bansbach, H. Schäfer, and M. Spraul. 2013. Targeted and nontargeted wine analysis by (1)h NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: grape variety, geographical origin, year of vintage. Journal of Agricultural and Food Chemistry 61 (23):5610–19. doi: 10.1021/jf400800d.
  • Gómez-Alonso, S., E. García-Romero, and I. Hermosín-Gutiérrez. 2007. HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis 20 (7):618–26. doi: 10.1016/j.jfca.2007.03.002.
  • González, G., and E. M. Peña-Méndez. 2000. Multivariate data analysis in classification of must and wine from chemical measurements. European Food Research and Technology 212 (1):100–7. doi: 10.1007/s002170000207.
  • Gonzálvez, A., A. Llorens, M. Cervera, S. Armenta, and M. de la Guardia. 2009. Elemental fingerprint of wines from the protected designation of origin Valencia. Food Chemistry 112 (1):26–34. doi: 10.1016/j.foodchem.2008.05.043.
  • Gosetti, F., E. Mazzucco, D. Zampieri, and M. C. Gennaro. 2010. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A 1217 (25):3929–37. doi: 10.1016/j.chroma.2009.11.060.
  • Gougeon, L., G. da Costa, T. Richard, and F. Guyon. 2019. Wine authenticity by quantitative 1H NMR versus multitechnique analysis: A case study. Food Analytical Methods 12 (4):956–65. doi: 10.1007/s12161-018-01425-z.
  • Granato, D., P. Putnik, D. B. Kovačević, J. S. Santos, V. Calado, R. S. Rocha, A. G. D. Cruz, B. Jarvis, O. Y. Rodionova, and A. Pomerantsev. 2018. Trends in chemometrics: Food authentication, microbiology, and effects of processing. Comprehensive Reviews in Food Science and Food Safety 17 (3):663–77. doi: 10.1111/1541-4337.12341.
  • Greenberg, R. R., P. Bode, and E. A. De Nadai Fernandes. 2011. Neutron activation analysis: A primary method of measurement. Spectrochimica Acta Part B: Atomic Spectroscopy 66 (3-4):193–241. doi: 10.1016/j.sab.2010.12.011.
  • Grindlay, G., J. Mora, L. Gras, and M. T. C. de Loos-Vollebregt. 2011. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications. Analytica Chimica Acta 691 (1–2):18–32. doi: 10.1016/j.aca.2011.02.050.
  • Guilbault, G. G., M. Pravda, M. Kreuzer, and C. K. O'Sullivan. 2004. Biosensors—42 Years and Counting. Analytical Letters 37 (8):1481–96. doi: 10.1081/AL-120037582.
  • Holmberg. 2010. Wine fraud. International Journal of Wine Research 105:14102. doi: 10.2147/ijwr.s14102.
  • Hong, E., S. Y. Lee, J. Y. Jeong, J. M. Park, B. H. Kim, K. Kwon, and H. S. Chun. 2017. Modern analytical methods for the detection of food fraud and adulteration by food category. Journal of the Science of Food and Agriculture 97 (12):3877–96. doi: 10.1002/jsfa.8364.
  • Horn, P., P. Schaaf, B. Holbach, S. HuLzl, and H. Eschnauer. 1993. 87Sr/86Sr from rock and soil into vine and wine. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung 196 (5):407–9. doi: 10.1007/BF01190802.
  • Işçi, B., H. K. Yildirim, and A. Altindisli. 2014. Evaluation of methods for DNA extraction from must and wine. Journal of the Institute of Brewing 120 (3):238–43. doi: 10.1002/jib.129.
  • Jaitz, L., K. Siegl, R. Eder, G. Rak, L. Abranko, G. Koellensperger, and S. Hann. 2010. LC–MS/MS analysis of phenols for classification of red wine according to geographic origin, grape variety and vintage. Food Chemistry 122 (1):366–72. doi: 10.1016/j.foodchem.2010.02.053.
  • Jiang, W., J. Xue, X. Liu, D. Wang, Y. Guo, and L. Wang. 2015. The application of SNIF-NMR and IRMS combined with C, H and O isotopes for detecting the geographical origin of Chinese wines. International Journal of Food Science & Technology 50 (3):774–81. doi: 10.1111/ijfs.12686.
  • Kelly, S. D. 2003. Using stable isotope ratio mass spectrometry (IRMS) in food authentication and traceability. Food Authenticity and Traceability 156–83. doi: 10.1533/9781855737181.1.156.
  • Kment, P., M. Mihaljevič, V. Ettler, O. Šebek, L. Strnad, and L. Rohlová. 2005. Differentiation of Czech wines using multielement composition – A comparison with vineyard soil. Food Chemistry 91 (1):157–65. doi: 10.1016/j.foodchem.2004.06.010.
  • Kokkinofta, R., C. Fotakis, M. Zervou, P. Zoumpoulakis, C. Savvidou, K. Poulli, C. Louka, N. Economidou, E. Tzioni, K. Damianou, et al. 2017. Isotopic and elemental authenticity markers: A case study on cypriot wines. Food Analytical Methods 10 (12):3902–13. doi: 10.1007/s12161-017-0959-2.
  • Košir, I. J., M. Kocjančič, N. Ogrinc, and J. Kidrič. 2001. Use of SNIF-NMR and IRMS in combination with chemometric methods for the determination of captalisation and geographical origin of wines (the example of Slovenian wines). Analytica Chimica Acta 429 (2):195–206. doi: 10.1016/S0003-2670(00)01301-5.
  • Košir, I., M. Kocjančič, and J. Kidrič. 1998. Wine analysis by 1D and 2D NMR spectroscopy. Analusis 26 (2):97–101. doi: 10.1051/analusis:1998118.
  • Lakowicz, J. R. 1999. Introduction to fluorescence. Principles of Fluorescence Spectroscopy 1–23. doi: 10.1007/978-1-4757-3061-6_1.
  • Lecat, B., J. Brouard, and C. Chapuis. 2017. Fraud and counterfeit wines in France: An overview and perspectives. British Food Journal 119 (1):84–104. doi: 10.1108/BFJ-09-2016-0398.
  • Lohumi, S., S. Lee, H. Lee, and B.-K. Cho. 2015. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology 46 (1):85–98. doi: 10.1016/j.tifs.2015.08.003.
  • Lorrain, B., I. Ky, L. Pechamat, and P.-L. Teissedre. 2013. Evolution of analysis of polyphenols from grapes, wines, and extracts. Molecules (Basel, Switzerland) 18 (1):1076–100. doi: 10.3390/molecules18011076.
  • Luykx, D. M. A. M., and S. M. van Ruth. 2008. An overview of analytical methods for determining the geographical origin of food products. Food Chemistry 107 (2):897–911. doi: 10.1016/j.foodchem.2007.09.038.
  • Ma, T., T. Lan, Y. Ju, G. Cheng, Z. Que, T. Geng, Y. Fang, and X. Sun. 2019. Comparison of the nutritional properties and biological activities of kiwifruit (Actinidia) and their different forms of products: Towards making kiwifruit more nutritious and functional. Food & Function 10 (3):1317–29. doi: 10.1039/C8FO02322K.
  • Ma, T., X. Sun, G. Gao, X. Wang, X. Liu, G. Du, and J. Zhan. 2014. Phenolic characterisation and antioxidant capacity of young wines made from different grape varieties grown in Helanshan Donglu wine zone (China). South African Journal of Enology and Viticulture 35 (2):321–31.
  • Macrae, R. 2007. Recent applications of high pressure liquid chromatography to food analysis. International Journal of Food Science & Technology 16 (1):1–11. doi: 10.1111/j.1365-2621.1981.tb00990.x.
  • Makris, D. P., S. Kallithraka, and A. Mamalos. 2006. Differentiation of young red wines based on cultivar and geographical origin with application of chemometrics of principal polyphenolic constituents. Talanta 70 (5):1143–52. doi: 10.1016/j.talanta.2006.03.024.
  • Mandrile, L., G. Zeppa, A. M. Giovannozzi, and A. M. Rossi. 2016. Controlling protected designation of origin of wine by Raman spectroscopy. Food Chemistry 211:260–7. doi: 10.1016/j.foodchem.2016.05.011.
  • Markechová, D., P. Májek, and J. Sádecká. 2014. Fluorescence spectroscopy and multivariate methods for the determination of brandy adulteration with mixed wine spirit. Food Chemistry 159:193–9. doi: 10.1016/j.foodchem.2014.02.085.
  • Martin, A. E., R. J. Watling, and G. S. Lee. 2012. The multi-element determination and regional discrimination of Australian wines. Food Chemistry 133 (3):1081–9. doi: 10.1016/j.foodchem.2012.02.013.
  • Martin, G. J., C. Guillou, M. L. Martin, M. T. Cabanis, Y. Tep, and J. Aerny. 1988. Natural factors of isotope fractionation and the characterization of wines. Journal of Agricultural and Food Chemistry 36 (2):316–22. doi: 10.1021/jf00080a019.
  • McDonald, J. G., B. M. Thompson, E. C. McCrum, and D. W. Russell. 2007. Extraction and analysis of sterols in biological matrices by high performance liquid chromatography electrospray ionization mass spectrometry. Lipidomics and Bioactive Lipids: Mass Spectrometry-Based Lipid Analysis 432:145–70. doi: 10.1016/s0076-6879(07)32006-5.
  • Merken, H. M., and G. R. Beecher. 2000. Measurement of food flavonoids by high-performance liquid chromatography: A review. Journal of Agricultural and Food Chemistry 48 (3):577–99. doi: 10.1021/jf990872o.
  • Messai, H., M. Farman, A. Sarraj-Laabidi, A. Hammami-Semmar, and N. Semmar. 2016. Chemometrics methods for specificity, authenticity and traceability analysis of olive oils: Principles, classifications and applications. Foods 5 (4):77. doi: 10.3390/foods5040077.
  • Moe, T. 1998. Perspectives on traceability in food manufacture. Trends in Food Science & Technology 9 (5):211–14. doi: 10.1016/S0924-2244(98)00037-5.
  • Monakhova, Y. B., R. Godelmann, A. Hermann, T. Kuballa, C. Cannet, H. Schäfer, M. Spraul, and D. N. Rutledge. 2014. Synergistic effect of the simultaneous chemometric analysis of 1H NMR spectroscopic and stable isotope (SNIF-NMR, 18O, 13C) data: Application to wine analysis. Analytica Chimica Acta 833:29–39. doi: 10.1016/j.aca.2014.05.005.
  • Moncayo, S., J. D. Rosales, R. Izquierdo-Hornillos, J. Anzano, and J. O. Caceres. 2016. Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS). Talanta 158:185–91. doi: 10.1016/j.talanta.2016.05.059.
  • Mugo, S. M., W. Lu, T. Mundle, and D. Berg. 2020. Thin film composite conductive polymers chemiresistive sensor and sample holder for methanol detection in adulterated beverages. IEEE Sensors Journal 20 (2):656–63. doi: 10.1109/JSEN.2019.2943088.
  • Mutavdžić, M., D. Mutavdžić, K. Radotić, and D. M. Opsenica. 2013. Differentiation of wine commercial samples by using fluorescence spectroscopy and multivariate analysis. Acta Agriculturae Serbica 36:169–77.
  • Ogrinc, N., I. J. Košir, J. E. Spangenberg, and J. Kidrič. 2003. The application of NMR and MS methods for detection of adulteration of wine, fruit juices, and olive oil. A review. Analytical and Bioanalytical Chemistry 376 (4):424–30. doi: 10.1007/s00216-003-1804-6.
  • OIV. 2015. International standard for the labelling of wines. http://www.oiv.int/en/technical-standards-and-documents/products-definition-and-labelling/international-standard-for-labelling-wines.
  • Otto, M. 2016. Pattern recognition and classification. Chemometrics 135–211. doi: 10.1002/9783527699377.ch5.
  • Pappas, D., B. W. Smith, and J. D. Winefordner. 2000. Raman spectroscopy in bioanalysis. Talanta 51 (1):131–44. doi: 10.1016/S0039-9140(99)00254-4.
  • Pepi, S., M. Chicca, G. Piroddi, R. Tassinari, and C. Vaccaro. 2019. Geographical origin of Vitis vinifera cv. Cannonau established by the index of bioaccumulation and translocation coefficients. Environmental Monitoring and Assessment 191 (7): 75447. doi: 10.1007/s10661-019-7544-7.
  • Pereira, L., S. Gomes, C. Castro, J. E. Eiras-Dias, J. Brazão, A. Graça, J. R. Fernandes, and P. Martins-Lopes. 2017. High resolution melting (HRM) applied to wine authenticity. Food Chemistry 216:80–6. doi: 10.1016/j.foodchem.2016.07.185.
  • Perestrelo, R., C. Silva, and J. S. Câmara. 2014. A useful approach for the differentiation of wines according to geographical origin based on global volatile patterns. Journal of Separation Science 37 (15):1974–81. doi: 10.1002/jssc.201400374.
  • Pérez-Elortondo, F. J., R. Symoneaux, I. Etaio, C. Coulon-Leroy, I. Maître, and M. Zannoni. 2018. Current status and perspectives of the official sensory control methods in protected designation of origin food products and wines. Food Control 88:159–68. doi: 10.1016/j.foodcont.2018.01.010.
  • Peris, M., and L. Escuder-Gilabert. 2016. Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science & Technology 58:40–54. doi: 10.1016/j.tifs.2016.10.014.
  • Pîrnău, A., M. Bogdan, D. A. Măgdaş, and D. Stătescu. 2013. Isotopic analysis of some Romanian wines by 2H NMR and IRMS. Food Biophysics 8 (1):24–8. doi: 10.1007/s11483-012-9278-8.
  • Pudney, P. D. A., and T. M. Hancewicz. 2010. The role of confocal Raman spectroscopy in food science. Handbook of Vibrational Spectroscopy doi: 10.1002/0470027320.s8939.
  • Qian, J., L. Ruiz-Garcia, B. Fan, J. I. Robla Villalba, U. McCarthy, B. Zhang, Q. Yu, and W. Wu. 2020. Food traceability system from governmental, corporate, and consumer perspectives in the European Union and China: A comparative review. Trends in Food Science & Technology 99:402–12. doi: 10.1016/j.tifs.2020.03.025.
  • Que, Z., T. Ma, Y. Shang, Q. Ge, Q. Zhang, P. Xu, J. Zhang, F. Uwamahoro, X. Liu, and X. Sun. 2020. Microorganisms: Producers of melatonin in fermented foods and beverages. Journal of Agricultural and Food Chemistry 68 (17):4799–811. doi: 10.1021/acs.jafc.0c01082.
  • Raco, B., E. Dotsika, D. Poutoukis, R. Battaglini, and P. Chantzi. 2015. O-H-C isotope ratio determination in wine in order to be used as a fingerprint of its regional origin. Food Chemistry 168:588–94. doi: 10.1016/j.foodchem.2014.07.043.
  • Reid, L. M., C. P. O'Donnell, and G. Downey. 2006. Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology 17 (7):344–53. doi: 10.1016/j.tifs.2006.01.006.
  • Rossier, J. S., V. Maury, L. Gaillard, and E. Pfammatter. 2016. Use of isotope ratio determination (13C/12C) to assess the production method of sparkling wine. Chimia 70 (5):338–44. doi: 10.2533/chimia.2016.338.
  • Rossmann, A. 2001. Determination of stable isotope ratios in food analysis. Food Reviews International 17 (3):347–81. doi: 10.1081/FRI-100104704.
  • Rudnitskaya, A., I. Delgadillo, A. Legin, S. M. Rocha, A. Costa, and T. Simões. 2007. Prediction of the Port wine age using an electronic tongue. Chemometrics and Intelligent Laboratory Systems 88 (1):125–31. doi: 10.1016/j.chemolab.2006.07.005.
  • Rudnitskaya, A., S. M. Rocha, A. Legin, V. Pereira, and J. C. Marques. 2010. Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds. The case-study of Madeira wine. Analytica Chimica Acta 662 (1):82–9. doi: 10.1016/j.aca.2009.12.042.
  • Rusak, D. A., B. C. Castle, B. W. Smith, and J. D. Winefordner. 1997. Fundamentals and applications of laser-induced breakdown spectroscopy. Critical Reviews in Analytical Chemistry 27 (4):257–90. doi: 10.1080/10408349708050587.
  • Sayago, I., M. D. C. Horrillo, L. Arés, M. J. Fernández, and J. Gutierrez. 2003. Tin oxide multisensor for detection of grape juice and fermented wine varieties. Sensors and Materials 15 (3):165–76.
  • Šelih, V. S., M. Šala, and V. Drgan. 2014. Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia. Food Chemistry 153:414–23. doi: 10.1016/j.foodchem.2013.12.081.
  • Serrano-Lourido, D., J. Saurina, S. Hernández-Cassou, and A. Checa. 2012. Classification and characterisation of Spanish red wines according to their appellation of origin based on chromatographic profiles and chemometric data analysis. Food Chemistry 135 (3):1425–31. doi: 10.1016/j.foodchem.2012.06.010.
  • Shaw, T. B. 2017. Climate change and the evolution of the Ontario cool climate wine regions in Canada. Journal of Wine Research 28 (1):13–45. doi: 10.1080/09571264.2016.1238349.
  • Sivertsen, H. K., B. Holen, F. Nicolaysen, and E. Risvik. 1999. Classification of French red wines according to their geographical origin by the use of multivariate analyses. Journal of the Science of Food and Agriculture 79 (1):107–15. doi: 10.1002/(sici)1097-0010(199901)79:1 < 107::aid-jsfa193 > 3.0.co;2-a.
  • Springer, A. E., J. Riedl, S. Esslinger, T. Roth, M. A. Glomb, and C. Fauhl-Hassek. 2014. Validated modeling for German white wine varietal authentication based on headspace solid-phase microextraction online coupled with gas chromatography mass spectrometry fingerprinting. Journal of Agricultural and Food Chemistry 62 (28):6844–51. doi: 10.1021/jf502042c.
  • Sun, X., L. Li, T. Ma, F. Zhao, D. Yu, W. Huang, and J. Zhan. 2016. High hydrostatic pressure treatment: An artificial accelerating aging method which did not change the region and variety non-colored phenolic characteristic of red wine. Innovative Food Science & Emerging Technologies 33:123–34. doi: 10.1016/j.ifset.2015.10.017.
  • Sun, X., L. Li, T. Ma, X. Liu, W. Huang, and J. Zhan. 2015a. Profiles of phenolic acids and flavan-3-ols for select Chinese red wines: A comparison and differentiation according to geographic origin and grape variety. Journal of Food Science 80 (10):C2170–C2179. doi: 10.1111/1750-3841.13011.
  • Sun, X., X. Chen, L. Li, T. Ma, F. Zhao, W. Huang, and J. Zhan. 2015b. Effect of ultra-high pressure treatment on the chemical properties, color and sensory quality of young red wine. South African Journal of Enology and Viticulture 36 (3):391–9. doi: 10.21548/36-3-972.
  • Sun, X., X. Cheng, J. Zhang, Y. Ju, Z. Que, X. Liao, F. Lao, Y. Fang, and T. Ma. 2020a. Letting wine polyphenols functional: Estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns. Food Research International (Ottawa, Ont.) 127:108704. doi: 10.1016/j.foodres.2019.108704.
  • Sun, X., X. Wei, J. Zhang, Q. Ge, Y. Liang, Y. Ju, A. Zhang, T. Ma, and Y. Fang. 2020b. Biomass estimation and physicochemical characterization of winter vine prunings in the Chinese and global grape and wine industries. Waste Management 104:119–29. doi: 10.1016/j.wasman.2020.01.018.
  • Tang, K., L. Ma, Y. Han, Y. Nie, J. Li, and Y. Xu. 2015. Comparison and chemometric analysis of the phenolic compounds and organic acids composition of Chinese wines. Journal of Food Science 80 (1):C20–C28. doi: 10.1111/1750-3841.12691.
  • Temerdashev, Z., A. Khalafyan, A. Kaunova, A. Abakumov, V. Titarenko, and V. Akin'shina. 2019. Using neural networks to identify the regional and varietal origin of Cabernet and Merlot dry red wines produced in Krasnodar region. Foods and Raw Materials 7:124–30. doi: 10.21603/2308-4057-2019-1-124-130.
  • Tenenhaus, M., V. E. Vinzi, Y.-M. Chatelin, and C. Lauro. 2005. PLS path modeling. Computational Statistics & Data Analysis 48 (1):159–205. doi: 10.1016/j.csda.2004.03.005.
  • The national standard of China, GB/T 18966-2008. Product of geographical indication — Yantai wines. Accessed June 25, 2008. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?QueryID=3andCurRec=5anddbcode=SCHFanddbname=SCSFandfilename=SCSF00027181.
  • The national standard of China, GB/T 19049-2008. Product of geographical indication — Changli wines. Accessed December 31, 2008. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?QueryID=16andCurRec=3anddbcode=SCHFanddbname=SCSFandfilename=SCSF00027179.
  • The national standard of China, GB/T 19265-2008. Product of geographical indication—Shacheng wines. Accessed December 31, 2008. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?QueryID=16andCurRec=3anddbcode=SCHFanddbname=SCSFandfilename=SCSF00027179.
  • The national standard of China, GB/T 19504-2008. Product of geographical indication—Wine in Helan mountain east region. Accessed July 31, 2008. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?QueryID=16andCurRec=1anddbcode=SCHFanddbname=SCSFandfilename=SCSF00027150.
  • The national standard of China, GB/T 20820. Product of geographical indication - Tonghua amur-wine. Accessed March 26, 2007. http://dbpub.cnki.net/grid2008/dbpub/detail.aspx?QueryID=16andCurRec=4anddbcode=SCHFanddbname=SCSFandfilename=SCSF00027180.
  • Thompson, J. M. 2018. Mass spectrometry. Singapore: Pan Stanford Publishing Pvt. Ltd.
  • Tominaga, T., A. Furrer, R. Henry, and D. Dubourdieu. 1998. Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour and Fragrance Journal 13 (3):159–62. doi: 10.1002/(sici)1099-1026(199805/06)13:3 < 159::aid-ffj709 > 3.0.co;2-7.
  • Urvieta, R., F. Buscema, R. Bottini, B. Coste, and A. Fontan. 2018. Phenolic and sensory profiles discriminate geographical indications for Malbec wines from different regions of Mendoza, Argentina. Food Chemistry 265:120–7. doi: 10.1016/j.foodchem.2018.05.083.
  • Van Leeuwen, C., and G. Seguin. 2006. The concept of terroir in viticulture. Journal of Wine Research 17 (1):1–10. doi: 10.1080/09571260600633135.
  • Vergara, C., D. von Baer, C. Mardones, and L. Gutiérrez. 2011. Overview of chemical markers for varietal authentication of red wines. Progress in Authentication of Food and Wine :101–11. doi: 10.1021/bk-2011-1081.ch007.
  • Vicol, C., G. Râpeanu, and G. Bahrim. 2010. Evaluation of the wines adulteration from Cotesti vineyard. Journal of Agroalimentary Processes and Technologies 16 (3):294–8.
  • Volschenk, H., H. J. J. Van Vuuren, and M. Viljoen-Bloom. 2006. Malic acid in wine: Origin, function and metabolism during vinification. South African Journal of Enology and Viticulture 27 (2):123–36. doi: 10.21548/27-2-1613.
  • Von Baer, D., M. Rentzsch, M. A. Hitschfeld, C. Mardones, C. Vergara, and P. Winterhalter. 2008. Relevance of chromatographic efficiency in varietal authenticity verification of red wines based on their anthocyanin profiles: Interference of pyranoanthocyanins formed during wine ageing. Analytica Chimica Acta 621 (1):52–6. doi: 10.1016/j.aca.2007.11.034.
  • Wachs, T., J. C. Conboy, F. Garcia, and J. D. Henion. 1991. Liquid chromatography-mass spectrometry and related techniques via atmospheric pressure ionization. Journal of Chromatographic Science 29 (8):357–66. doi: 10.1093/chromsci/29.8.357.
  • Winquist, F., I. Lundström, and P. Wide. 1999. The combination of an electronic tongue and an electronic nose. Sensors and Actuators B: Chemical 58 (1-3):512–7. doi: 10.1016/S0925-4005(99)00155-0.
  • Wu, H., L. Tian, B. Chen, B. Jin, B. Tian, L. Xie, K. M. Rogers, and G. Lin. 2019. Verification of imported red wine origin into china using multi isotope and elemental analyses. Food Chemistry 301:125137 doi: 10.1016/j.foodchem.2019.125137.
  • Yang, H. and H. Wang. 2013. Regulation and oversight of wine production and making. Yangling: Northwest A and F University Press.
  • Yoo, Y. J., A. J. Saliba, and P. D. Prenzler. 2010. Should red wine be considered a functional food? Comprehensive Reviews in Food Science and Food Safety 9 (5):530–51. doi: 10.1111/j.1541-4337.2010.00125.x.
  • Zinicovscaia, I., O. G. Duliu, O. A. Culicov, R. Sturza, C. Bilici, and S. Gundorina. 2017. Geographical origin identification of Moldavian wines by neutron activation analysis. Food Analytical Methods 10 (11):3523–30. doi: 10.1007/s12161-017-0913-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.