1,485
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Sustainable food drying technologies based on renewable energy sources

, ORCID Icon, , , ORCID Icon & ORCID Icon

References

  • Abdullah, K., and I. B. P. Gunadnya. 2010. Use of goothermal energy for drying and cooling purposes. In use of goothermal energy for drying and cooling purposes. Proceedings World Geothermal Congress:1–5.
  • Abujas, C. R., A. Jové, C. Prieto, M. Gallas, and L. F. Cabeza. 2016. Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application. Renewable Energy. 97:434–43. doi: 10.1016/j.renene.2016.06.003.
  • Agarwal, A., and R. M. Sarviya. 2016. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material. Engineering Science Technology, an International 19 (1):619–31. doi: 10.1016/j.jestch.2015.09.014.
  • Alves, O., and I. Strommen. 1996. The application of heat pump in drying of biomaterials. Drying Technology 14:2061–90.
  • Ambriz-Diaz, V. M., C. Rubio-Maya, J. J. P. Ibarra, S. R. G. Gonzalez, and J. M. Patino. 2017. Analysis of a sequential production of electricity, ice and drying of agricultural products by cascading geothermal energy. International Journal of Hydrogen Energy 42 (28):18092–102. doi: 10.1016/j.ijhydene.2017.02.154.
  • Amer, B. M. A., K. Gottschalk, and M. A. Hossain. 2018. Integrated hybrid solar drying system and its drying kinetics of chamomile. Renewable Energy 121:539–47. doi: 10.1016/j.renene.2018.01.055.
  • Ananno, A. A., M. H. Masud, P. Dabnichki, and A. Ahmed. 2020. Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy 196:270–86. doi: 10.1016/j.solener.2019.11.069.
  • Arason, S. 2003. The drying of fish and utilization of geothermal energy; the Icelandic experience. The drying of fish and utilization of geothermal energy; the Icelandic experience, International Geothermal Conference, Reykjavík. Citeseer.
  • Araszkiewicz, M., A. Koziol, A. Oskwarek, and A. C. Lupinski. 2004. Microwave drying of porous materials. Drying Technology 22 (10):2331–41. doi: 10.1081/DRT-200040014.
  • Ayensu, A., and V. Asiedu-Bondzie. 1986. Solar drying with convective self-flow and energy storage. Solar & Wind Technology 3 (4):273–9. doi: 10.1016/0741-983X(86)90006-8.
  • Ayyappan, S., K. Mayilsamy, and V. V. Sreenarayanan. 2016. Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat and Mass Transfer 52 (3):459–67. doi: 10.1007/s00231-015-1568-5.
  • Baksir, A., K. Daud, E. S. Wibowo, N. Akbar, and I. Haji. 2019. Pemanfaatan sumber energi panas bumi untuk pengeringan ikan di Desa Idamdehe Kabupaten Halmahera Barat Provinsi Maluku Utara. Jurnal Pengolahan Hasil Perikanan Indonesia 22 (3):423–32. doi: 10.17844/jphpi.v22i3.28922.
  • Bal, L. M., S. Satya, and S. N. Naik. 2010. Solar dryer with thermal energy storage systems for drying agricultural food products: A review. Renewable and Sustainable Energy Reviews 14 (8):2298–314. doi: 10.1016/j.rser.2010.04.014.
  • Bhattacharya, M., P. P. Srivastav, and H. N. Mishra. 2015. Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). Journal of Food Science and Technology 52 (4):2013–22. doi: 10.1007/s13197-013-1209-2.
  • Björnsson, S. 2006. Geothermal development and research in Iceland: Orkustofnun.
  • Chauhan, P. M., C. Choudhury, and H. P. Garg. 1996. Comparative performance of coriander dryer coupled to solar air heater and solar air-heater-cum-rockbed storage. Applied Thermal Engineering 16 (6):475–86. doi: 10.1016/1359-4311(95)00038-0.
  • Chou, S. K., and K. J. Chua. 2001. New hybrid drying technologies for heat sensitive foodstuffs. Trends in Food Science & Technology 12 (10):359–69. doi: 10.1016/S0924-2244(01)00102-9.
  • Chua, K. J., S. K. Chou, J. C. Ho, and M. N. A. Hawlader. 2002. Heat pump drying: Recent developments and future trends. Drying Technology 20 (8):1579–610. doi: 10.1081/DRT-120014053.
  • Delina, L. L. 2017. Accelerating sustainable energy transition(s) in developing countries: The challenges of climate change and sustainable development. Oxfordshire, UK: Routledge.
  • Deng, Y., Y. L. Luo, Y. G. Wang, and Y. Y. Zhao. 2015. Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chemistry 171:168–76. doi: 10.1016/j.foodchem.2014.09.002.
  • Devahastin, S., N. Chinprahast, L. Wiset, N. Poomsa-Ad, C. Borompichaichartkul, and T. Ratchapo. 2013. Multistage heat pump drying of macadamia nut under modified atmosphere. International Food Research Journal 20:2199–203.
  • Dinçer, İ., and C. Zamfirescu. 2016. Drying phenomena: Theory and applications. New Jersey, USA: John Wiley & Sons.
  • Dincer, I., and M. A. Ezan. 2018. Heat storage: A unique solution for energy systems: Springer.
  • Duc Pham, N., M. I. H. Khan, M. U. H. Joardder, M. M. Rahman, M. Mahiuddin, A. M. N. Abesinghe, and M. A. Karim. 2019. Quality of plant-based food materials and its prediction during intermittent drying. Critical Reviews in Food Science and Nutrition 59 (8):1197–211. doi: 10.1080/10408398.2017.1399103.
  • FAO. 2019a. The State of Food and Agiculture - Moving forward on food loss and waste reduction. In 2019 The State of Food and Agiculture - Moving Forward on Food Loss and Waste Reduction. http://www.fao.org/3/ca6030en/ca6030en.pdf.
  • FAO. 2019b. World Food and Agiculture - Statistical Pocketbook 2019. http://www.fao.org/3/ca6463en/ca6463en.pdf.
  • Fayose, F., and Z. Huan. 2016. Heat pump drying of fruits and vegetables: Principles and potentials for Sub-Saharan Africa. International Journal of Food Science 2016:9673029. doi: 10.1155/2016/9673029.
  • Fito, P., C. Amparo, and M. E. Martin. 2004. Current state of microwave applications to food processing. In Novel food processing technologies, 525–37. Boca Raton, Florida, USA: CRC Press.
  • Fudholi, A., and K. Sopian. 2019. A review of solar air flat plate collector for drying application. Renewable and Sustainable Energy Reviews 102:333–45. doi: 10.1016/j.rser.2018.12.032.
  • Ghnimi, S., S. Umer, A. Karim, and A. Kamal-Eldin. 2017. Date fruit (Phoenix dactyliferous L.): An underutilized food seeking industrial valorization. NFS Journal 6:1–10. doi: 10.1016/j.nfs.2016.12.001.
  • Gupta, H. K., and S. Roy. 2006. Geothermal energy: An alternative resource for the 21st century. Oxford, UK: Elsevier
  • Hamdani, T. A., Rizal, and Z. Muhammad. 2018. Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Studies in Thermal Engineering 12:489–96. doi: 10.1016/j.csite.2018.06.008.
  • Hao, W. G., Y. F. Lu, Y. H. Lai, H. W. Yu, and M. X. Lyu. 2018. Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products. Renewable Energy. 127:685–96. doi: 10.1016/j.renene.2018.05.021.
  • Harchegani, M. T., M. Sadeghi, M. D. Emami, and A. Moheb. 2012. Investigating energy consumption and quality of rough rice drying process using a grain heat pump dryer. Australian Journal of Crop Science 6:592–7.
  • Helvaci, H. U., A. Menon, L. Y. Aydemir, F. Korel, and G. G. Akkurt. 2019. Drying of olive leaves in a geothermal dryer and determination of quality parameters of dried product. Energy Procedia 161:108–14. doi: 10.1016/j.egypro.2019.02.065.
  • Hii, C. L., C. L. Law, and S. Suzannah. 2012. Drying kinetics of the individual layer of cocoa beans during heat pump drying. Journal of Food Engineering 108 (2):276–82. doi: 10.1016/j.jfoodeng.2011.08.017.
  • Hii, C. L., S. Vinayak Jangam, S. P. Ong, and A. S. Mujumdar. 2012. Solar drying: Fundamentals, applications and innovations. Singapore: TPR Group Publication.
  • Hirunlabh, J., S. Thiebrat, and J. Khedari. 2007. Chilli and garlic drying by using waste heat recovery from geothermal power plant. International Energy Journal 21:25–7.
  • Hou, H., Q. Chen, J. Bi, X. Wu, X. Jin, X. Li, Y. Qiao, and Y. Lyu. 2020. Understanding appearance quality improvement of jujube slices during heat pump drying via water state and glass transition. Journal of Food Engineering 272:109874. doi: 10.1016/j.jfoodeng.2019.109874.
  • Ibrahim, M., K. Sopian, W. R. W. Daud, and M. A. Alghoul. 2009. An experimental analysis of solar-assisted chemical heat pump dryer. International Journal of Low-Carbon Technologies 4 (2):78–83. doi: 10.1093/ijlct/ctp016.
  • IEA. 2011. Solar energy perspectives. https://www.oecd-ilibrary.org/docserver/9789264124585-en.pdf?expires=1581641138&id=id&accname=ocid195112&checksum=94EA51F5042CC41339568AB73D4A50ED.
  • Isaksson, J., A. Åsblad, and T. Berntsson. 2013. Influence of dryer type on the performance of a biomass gasification combined cycle co-located with an integrated pulp and paper mill. Biomass and Bioenergy. 59:336–47. doi: 10.1016/j.biombioe.2013.10.002.
  • Islam, M., M. I. Islam, M. Tusar, and A. H. Limon. 2019. Effect of cover design on moisture removal rate of a cabinet type solar dryer for food drying application. Energy Procedia 160:769–76. doi: 10.1016/j.egypro.2019.02.181.
  • Islam, M., S. Miller, P. Yarlagadda, and A. Karim. 2017. Investigation of the effect of physical and optical factors on the optical performance of a parabolic trough collector. Energies 10 (11):1907. doi: 10.3390/en10111907.
  • Islam, M., P. Yarlagadda, and A. Karim. 2019. Effect of the orientation schemes of the energy collection element on the optical performance of a parabolic trough concentrating collector. Energies 12 (1):128. doi: 10.3390/en12010128.
  • Ismaeel, H. H., and R. Yumrutaş. 2020. Investigation of a solar assisted heat pump wheat drying system with underground thermal energy storage tank. Solar Energy 199:538–51. doi: 10.1016/j.solener.2020.02.022.
  • Jairaj, K. S., S. P. Singh, and K. Srikant. 2009. A review of solar dryers developed for grape drying. Solar Energy 83 (9):1698–712. doi: 10.1016/j.solener.2009.06.008.
  • Jia, X. G., S. Clements, and P. Jolly. 1993. Study of heat-pump assisted microwave drying. Drying Technology 11 (4):851–1616. doi: 10.1080/07373939308916920.
  • Jiang, H., M. Zhang, Z. Fang, A. S. Mujumdar, and B. Xu. 2016. Effect of different dielectric drying methods on the physic-chemical properties of a starch–water model system. Food Hydrocolloids. 52:192–200. doi: 10.1016/j.foodhyd.2015.06.021.
  • Joardder, M. U. H., C. Kumar, R. J. Brown, and M. A. Karim. 2015. A micro-level investigation of the solid displacement method for porosity determination of dried food. Journal of Food Engineering 166:156–64. doi: 10.1016/j.jfoodeng.2015.05.034.
  • Joardder, M. U., S. Mandal, and M. H. Masud. 2020. Proposal of a solar storage system for plant-based food materials in Bangladesh. International Journal of Ambient Energy 41 (14):1664–17. doi: 10.1080/01430750.2018.1507932.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2016. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Conversion and Management 113:264–72. doi: 10.1016/j.enconman.2016.01.068.
  • Kant, K., A. Shukla, A. Sharma, A. Kumar, and A. Jain. 2016. Thermal energy storage based solar drying systems: A review. Innovative Food Science & Emerging Technologies 34:86–99. doi: 10.1016/j.ifset.2016.01.007.
  • Karim, A., A. Burnett, and S. Fawzia. 2018. Investigation of stratified thermal storage tank performance for heating and cooling applications. Energies 11 (5):1049. doi: 10.3390/en11051049.
  • Karim, A., and M. N. A. Hawlader. 2005a. Mathematical modelling and experimental investigation of tropical fruits drying. International Journal of Heat and Mass Transfer 48 (23-24):4914–25. doi: 10.1016/j.ijheatmasstransfer.2005.04.035.
  • Karim, A., and M. N. A. Hawlader. 2005b. Drying characteristics of banana: Theoretical modelling and experimental validation. Journal of Food Engineering 70 (1):35–45. doi: 10.1016/j.jfoodeng.2004.09.010.
  • Karim, A., E. Perez, and Z. M. Amin. 2014. Mathematical modelling of counter flow v-grove solar air collector. Renewable Energy 67:192–201. doi: 10.1016/j.renene.2013.11.027.
  • Karim, M. A., O. Arthur, P. K. Yarlagadda, M. Islam, and M. Mahiuddin. 2019. Performance investigation of high temperature application of molten solar salt nanofluid in a direct absorption solar collector. Molecules 24 (2):285. doi: 10.3390/molecules24020285.
  • Karim, M. A., and M. N. A. Hawlader. 2006a. Performance evaluation of a v-groove solar air collector for drying applications. Applied Thermal Engineering 26 (1):121–30. doi: 10.1016/j.applthermaleng.2005.03.017.
  • Karim, M. A., and M. N. A. Hawlader. 2006b. Performance investigation of flat plate, v-corrugated and finned air collectors. Energy 31 (4):452–70. doi: 10.1016/j.energy.2005.03.007.
  • Karim, M. A., M. Islam, O. Arthur, and P. K. Yarlagadda. 2020. Performance of graphite-dispersed Li2CO3-K2CO3 molten salt nanofluid for a direct absorption solar collector system. Molecules 25 (2):375. doi: 10.3390/molecules25020375.
  • Khan, I. H., H. M. M. Afroz, and M. A. Karim. 2017. Effect of PCM on temperature fluctuation during the door opening of a household refrigerator. International Journal of Green Energy 14 (4):379–84. doi: 10.1080/15435075.2016.1261705.
  • Khan, M. I. H., T. Farrell, S. A. Nagy, and M. A. Karim. 2018. Fundamental understanding of cellular water transport process in bio-food material during drying. Scientific Reports 8 (1):15191. doi: 10.1038/s41598-018-33159-7.
  • Khan, M. I. H., M. U. H. Joardder, C. Kumar, and M. A. Karim. 2018. Multiphase porous media modelling: A novel approach to predicting food processing performance. Critical Reviews in Food Science and Nutrition 58 (4):528–46. doi: 10.1080/10408398.2016.1197881.
  • Khan, M. I. H., and M. A. Karim. 2017. Cellular water distribution, transport, and its investigation methods for plant-based food material. Food Research International 99 (Pt 1):1–14. doi: 10.1016/j.foodres.2017.06.037.
  • Khan, M. I. H., S. A. Nagy, and M. A. Karim. 2018. Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue. Food Research International (Ottawa, Ont.) 105:772–81. doi: 10.1016/j.foodres.2017.12.010.
  • Khan, M. I. H., N. Patel, M. Mahiuddin, and M. A. Karim. 2021. Characterisation of mechanical properties of food materials during drying using nanoindentation. Journal of Food Engineering 291:110306. doi: 10.1016/j.jfoodeng.2020.110306.
  • Khan, M. I. H., Welsh, Z. Y. Gu, M. A. Karim, and B. Bhandari. 2020. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying. International Journal of Heat and Mass Transfer 153:119668. doi: 10.1016/j.ijheatmasstransfer.2020.119668.
  • Kostoglou, M., N. Chrysafis, and N. Andritsos. 2013. Modelling tomato dehydration in a tunnel dryer using geothermal energy. Drying Technology 31 (1):5–16. doi: 10.1080/07373937.2012.710694.
  • Kumar, A., and T. C. Kandpal. 2005. Solar drying and CO2 emissions mitigation: Potential for selected cash crops in India. Solar Energy 78 (2):321–9. doi: 10.1016/j.solener.2004.10.001.
  • Kumar, C., M. U. H. Joardder, T. W. Farrell, and M. A. Karim. 2016. Multiphase porous media model for intermittent microwave convective drying (IMCD) of food. International Journal of Thermal Sciences 104:304–14. doi: 10.1016/j.ijthermalsci.2016.01.018.
  • Kumar, C., M. U. H. Joardder, T. W. Farrell, and M. A. Karim. 2018. Investigation of intermittent microwave convective drying (IMCD) of food materials by a coupled 3D electromagnetics and multiphase model. Drying Technology 36 (6):736–50. doi: 10.1080/07373937.2017.1354874.
  • Kumar, C., M. U. Joardder, T. W. Farrell, G. J. Millar, and M. A. Karim. 2018. A porous media transport model for apple drying. Biosystems Engineering 176:12–25. doi: 10.1016/j.biosystemseng.2018.06.021.
  • Kumar, C., M. U. H. Joardder, T. W. Farrell, G. J. Millar, and M. A. Karim. 2016. Mathematical model for intermittent microwave convective drying of food materials. Drying Technology 34 (8):962–73. doi: 10.1080/07373937.2015.1087408.
  • Kumar, C., and A. Karim. 2019. Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition 59 (3):379–94. doi: 10.1080/10408398.2017.1373269.
  • Kumar, C., G. J. Millar, and A. Karim. 2015. Effective diffusivity and evaporative cooling in convective drying of food material. Drying Technology 33 (2):227–37. doi: 10.1080/07373937.2014.947512.
  • Labed, A., N. Moummi, K. Aoues, and A. Benchabane. 2016. Solar drying of henna (Lawsonia inermis) using different models of solar flat plate collectors: An experimental investigation in the region of Biskra (Algeria). Journal of Cleaner Production 112:2545–52. doi: 10.1016/j.jclepro.2015.10.058.
  • Lamidi, R. O., L. Jiang, P. B. Pathare, Y. D. Wang, and A. P. Roskilly. 2019. Recent advances in sustainable drying of agricultural produce: A review. Applied Energy 233-234:367–85. doi: 10.1016/j.apenergy.2018.10.044.
  • Lane, G. A. 2018. Solar heat storage: Latent heat materials. CRC Press, Boca Raton, Florida, USA
  • Liu, Y., Y. Kansha, M. Ishizuka, Q. Fu, and A. Tsutsumi. 2015. Experimental and simulation investigations on self-heat recuperative fluidized bed dryer for biomass drying with superheated steam. Fuel Processing Technology 136:79–86. doi: 10.1016/j.fuproc.2014.10.005.
  • Lund, J. W. 2012. Geothermal resources geothermal resource worldwide, direct heat utilization geothermal resource direct heat utilization of. In Encyclopedia of sustainability science and technology, ed. Robert A. Meyers, 4353–79. NY, USA: Springer.
  • Lund, J. W., and M. A. Rangel. 1995. Pilot fruit drier for the Los Azufres geothermal field, Mexico. In Pilot fruit drier for the Los Azufres geothermal field, Mexico, Processing of The World Geothermal Congress, Florence, Italy, 18–31.
  • Mahiuddin, M., D. Godhani, L. Feng, F. Liu, T. Langrish, and M. A. Karim. 2020. Application of Caputo fractional rheological model to determine the viscoelastic and mechanical properties of fruit and vegetables. Postharvest Biology and Technology 163:111147. doi: 10.1016/j.postharvbio.2020.111147.
  • Mahiuddin, M., M. I. H. Khan, N. Duc Pham, and M. A. Karim. 2018. Development of fractional viscoelastic model for characterizing viscoelastic properties of food material during drying. Food Bioscience 23:45–53. doi: 10.1016/j.fbio.2018.03.002.
  • Mahiuddin, M., M. Khan, C. Kumar, M. Rahman, and A. Karim. 2018. Shrinkage of food materials during drying: Current status and challenges. Comprehensive Reviews in Food Science and Food Safety 17 (5):1113–26. doi: 10.1111/1541-4337.12375.
  • Mahmood, A. J., L. B. Y. Aldabbagh, and F. Egelioglu. 2015. Investigation of single and double pass solar air heater with transverse fins and a package wire mesh layer. Energy Conversion and Management 89:599–607. doi: 10.1016/j.enconman.2014.10.028.
  • Mangi, P. 2012. Geothermal resource optimization: A case of the geothermal health spa and demonstration centre at the Olkaria geothermal project. Exploration for Geothermal Resources, Lake Bogoria and Lake Naivasha, Kenya.
  • Masud, M. H., A. Karim, A. A. Ananno, and A. Ahmed. 2020. Sustainable food drying techniques for developing countries. Switzerland: Springer.
  • Minea, V. 2013a. Drying heat pumps - Part I: System integration. International Journal of Refrigeration 36 (3):643–58. doi: 10.1016/j.ijrefrig.2012.11.025.
  • Minea, V. 2013b. Drying heat pumps - Part II: Agro-food, biological and wood products. International Journal of Refrigeration 36 (3):659–73. doi: 10.1016/j.ijrefrig.2012.11.026.
  • Minea, V. 2013c. Heat-pump-assisted drying: Recent technological advances and R&D needs. Drying Technology 31 (10):1177–89. doi: 10.1080/07373937.2013.781623.
  • Minea, V. 2018. Industrial heat pump-assisted wood drying. Boca Raton, Florida, USA: CRC Press.
  • Muffler, P., and R. Cataldi. 1978. Methods for regional assessment of geothermal resources. Geothermics 7 (2-4):53–89. doi: 10.1016/0375-6505(78)90002-0.
  • Mujumdar, A. S. 2015. Handbook of industrial drying. Boca Raton, Florida, USA: CRC press.
  • Mujumdar, A. S., and H. W. Xiao. 2019. Advanced drying technologies for foods. Boca Raton, Florida, USA: CRC Press
  • Murthy, M. V. R. 2009. A review of new technologies, models and experimental investigations of solar driers. Renewable and Sustainable Energy Reviews 13 (4):835–44. doi: 10.1016/j.rser.2008.02.010.
  • Nalawade, R., and N. L. Panwar. 2019. Experimental investigation on biomass fired dryer for drying of agricultural products. International Journal of Ambient Energy:1–4. doi: 10.1080/01430750.2019.1614990.
  • Naphon, P. 2005. On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renewable Energy 30 (9):1345–57. doi: 10.1016/j.renene.2004.10.014.
  • Pal, U. S., M. K. Khan, and S. N. Mohanty. 2008. Heat pump drying of green sweet pepper. Drying Technology 26 (12):1584–90. doi: 10.1080/07373930802467144.
  • Patel, K. K., and A. Kar. 2012. Heat pump assisted drying of agricultural produce-an overview. Journal of Food Science and Technology 49 (2):142–60. doi: 10.1007/s13197-011-0334-z.
  • Patil, R. T., and B. D. Shukla. 2006. A novel design of crop dryer for use in developing countries. Drying Technology 24 (5):663–9. doi: 10.1080/07373930600626685.
  • Pham, N. D., M. I. H. Khan, and M. A. Karim. 2020. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chemistry 325:126932. doi: 10.1016/j.foodchem.2020.126932.
  • Popovska-Vasilevska, S. 2003. Drying of agricultural products with geothermal energy. International Summer School on Direct Application of Geothermal Energy, Doganbey, Turkey, 2–15.
  • Popovski, K., K. Dimitrov, B. Andrejevski, and S. Popovska. 1992. Geothermal rice drying unit in Kotchany. Geothermics 21 (5-6):709–16. doi: 10.1016/0375-6505(92)90024-4.
  • Prakash, O., and A. Kumar. 2017. Solar drying technology: Concept, design, testing, modeling, economics, and environment. Springer.
  • Qiu, Y., M. Li, R. H. E. Hassanien, Y. F. Wang, X. Luo, and Q. F. Yu. 2016. Performance and operation mode analysis of a heat recovery and thermal storage solar-assisted heat pump drying system. Solar Energy 137:225–35. doi: 10.1016/j.solener.2016.08.016.
  • Rahman, M., Y. Gu, and A. Karim. 2018. Development of realistic food microstructure considering the structural heterogeneity of cells and intercellular space. Food Structure 15:9–16. doi: 10.1016/j.foostr.2018.01.002.
  • Rahman, M. M., M. U. H. Joardder, M. I. H. Khan, N. D. Pham, and M. A. Karim. 2018. Multi-scale model of food drying: Current status and challenges. Critical Reviews in Food Science and Nutrition 58 (5):858–76. doi: 10.1080/10408398.2016.1227299.
  • Sadeghi, M., O. Mirzabeigi Kesbi, and S. A. Mireei. 2013. Mass transfer characteristics during convective, microwave and combined microwave-convective drying of lemon slices. Journal of the Science of Food and Agriculture 93 (3):471–8. doi: 10.1002/jsfa.5786.
  • Saha, B., M. P. Bucknall, J. Arcot, and R. Driscoll. 2018. Profile changes in banana flavour volatiles during low temperature drying. Food Research International (Ottawa, Ont.) 106:992–8. doi: 10.1016/j.foodres.2018.01.047.
  • Sanio, M. R., and P. S. Schmidt. 1990. A procedure for estimating capital and operating costs of dielectric heating equipment. Geography 114:494–8.
  • Sevik, S., M. Aktas, H. Dogan, and S. Kocak. 2013. Mushroom drying with solar assisted heat pump system. Energy Conversion and Management 72:171–8.
  • Shalaby, S. M., M. A. Bek, and A. A. El-Sebaii. 2014. Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews 33:110–6. doi: 10.1016/j.rser.2014.01.073.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13 (2):318–45. doi: 10.1016/j.rser.2007.10.005.
  • Shi, Q. L., Y. Q. Zheng, and Y. Zhao. 2013. Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energy Conversion and Management 71:208–16. doi: 10.1016/j.enconman.2013.03.032.
  • Shi, Q. L., Y. Q. Zheng, and Y. Zhao. 2014. Optimization of combined heat pump and microwave drying of yacon (Smallanthus sonchifolius) using response surface methodology. Journal of Food Processing and Preservation 38 (5):2090–8. doi: 10.1111/jfpp.12189.
  • Singh, A., J. Sarkar, and R. R. Sahoo. 2020. Experimental energy‐exergy performance and kinetics analyses of compact dual‐mode heat pump drying of food chips. Journal of Food Process Engineering 43 (6):e13404. doi: 10.1111/jfpe.13404.
  • Sinha, N., S. Jiwan, B. Jozsef, W. James, and C. M Pilar. 2012. Handbook of fruits and fruit processing. John Wiley & Sons.
  • Stober, I., and K. Bucher. 2013. Geothermal energy: From theoretical models to exploration and development. Berlin, Germany: Springer.
  • Talens, C., M. Castro-Giraldez, and P. J. Fito. 2016. A thermodynamic model for hot air microwave drying of orange peel. Journal of Food Engineering 175:33–42. doi: 10.1016/j.jfoodeng.2015.12.001.
  • Taşeri, L., M. Aktaş, S. Şevik, M. Gülcü, G. Uysal Seçkin, and B. Aktekeli. 2018. Determination of drying kinetics and quality parameters of grape pomace dried with a heat pump dryer. Food Chemistry 260:152–9. doi: 10.1016/j.foodchem.2018.03.122.
  • Tiwari, G. N., A. K. Singh, and P. S. Bhatia. 1994. Experimental simulation of a grain drying system. Energy Conversion and Management 35 (5):453–8. doi: 10.1016/0196-8904(94)90103-1.
  • Tsotsas, E., and A. S. Mujumdar. 2011. Modern drying technology, volume 4: Energy savings. New Jersey, USA: John Wiley & Sons.
  • Tunckal, C., and İ. Doymaz. 2020. Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy. 150:918–23. doi: 10.1016/j.renene.2020.01.040.
  • Van't Land, C. M. 2011. Drying in the process industry. New Jersey, USA: John Wiley & Sons
  • Van Nguyen, M., A. Sigurjón, M. Gissurarson, and P. G. Pálsson. 2015. Uses of geothermal energy in food and agriculture. Opportunities for developing countries, vol. 52. Rome, Italy: FAO.
  • Vasquez, N. C., R. O. Bernardo, and R. L. Cornelio. 1992. Industrial uses of geothermal energy a framework for application in a developing country. Geothermics 21 (5-6):733–43. doi: 10.1016/0375-6505(92)90026-6.
  • Verma, M., C. Loha, A. N. Sinha, and P. K. Chatterjee. 2017. Drying of biomass for utilising in co-firing with coal and its impact on environment - A review. Renewable and Sustainable Energy Reviews 71:732–41. doi: 10.1016/j.rser.2016.12.101.
  • Wilkins, G. 2010. Technology transfer for renewable energy. Earthscan. Oxfordshire, UK: Routledge.
  • Yeh, H. M., and T. T. Lin. 1996. Efficiency improvement of flat-plate solar air heaters. Energy 21 (6):435–43. doi: 10.1016/0360-5442(96)00008-4.
  • Yi, J. P., X. Li, J. He, and X. Duan. 2020. Drying efficiency and product quality of biomass drying: A review. Drying Technology 38 (15):2039–54. doi: 10.1080/07373937.2019.1628772.
  • Zhang, M., J. Tang, A. S. Mujumdar, and S. Wang. 2006. Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology 17 (10):524–34. doi: 10.1016/j.tifs.2006.04.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.