1,562
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Advances on the rapid and multiplex detection methods of food allergens

, , , &

References

  • Abdelmoteleb, M., C. Zhang, B. Furey, M. Kozubal, H. Griffiths, M. Champeaud, and R. E. Goodman. 2021. Evaluating potential risks of food allergy of novel food sources based on comparison of proteins predicted from genomes and compared to www.AllergenOnline.org. Food and Chemical Toxicology 147:111888. doi: 10.1016/j.fct.2020.111888.
  • Alves, R. C., M. F. Barroso, M. B. Gonzalez-Garcia, M. Oliveira, and C. Delerue-Matos. 2016. New trends in food allergens detection: Toward biosensing strategies. Critical Reviews in Food Science and Nutrition 56 (14):2304–19. doi: 10.1080/10408398.2013.831026.
  • Angulo-Ibanez, A., U. Eletxigerra, X. Lasheras, S. Campuzano, and S. Merino. 2019. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta 1079:94–102. doi: 10.1016/j.aca.2019.06.030.
  • Ashley, J., R. D’Aurelio, M. Piekarska, J. Temblay, M. Pleasants, L. Trinh, T. Rodgers, and I. Tothill. 2018. Development of a beta-lactoglobulin sensor based on SPR for milk allergens detection. Biosensors 8 (2):32. doi: 10.3390/bios8020032.
  • Ashley, J., M. Piekarska, C. Segers, L. Trinh, T. Rodgers, R. Willey, and I. E. Tothill. 2017. An SPR based sensor for allergens detection. Biosensors & Bioelectronics 88:109–13. doi: 10.1016/j.bios.2016.07.101.
  • Ashley, J., Y. Shukor, R. D’Aurelio, L. Trinh, T. L. Rodgers, J. Temblay, M. Pleasants, and I. E. Tothill. 2018. Synthesis of molecularly imprinted polymer nanoparticles for α-casein detection using surface plasmon resonance as a milk allergen sensor. ACS Sensors 3 (2):418–24. doi: 10.1021/acssensors.7b00850.
  • Badran, A. A., S. Morais, and A. Maquieira. 2017. Simultaneous determination of four food allergens using compact disc immunoassaying technology. Analytical and Bioanalytical Chemistry 409 (9):2261–8. doi: 10.1007/s00216-016-0170-0.
  • Branum, A. M., and S. L. Lukacs. 2009. Food allergy among children in the United States. Pediatrics 124 (6):1549–55. doi: 10.1542/peds.2009-1210.
  • Canan, C., D. Adamante, D. Kalschne, M. P. Corso, and E. R. Zanatta. 2020. Soy protein: A food allergen frequently used in the preparation of meat products. Revista Chilena de Nutrición 47 (3):463–9. doi: 10.4067/S0717-75182020000300463.
  • Chardin, H., and G. Peltre. 2005. Allergome: The characterization of allergens based on a 2D gel electrophoresis approach. Expert Review of Proteomics 2 (5):757–65. doi: 10.1586/14789450.2.5.757.
  • Chen, Y. S., C. C. Wu, J. J. Tsai, and G. J. Wang. 2012. Electrochemical impedimetric biosensor based on a nanostructured polycarbonate substrate. International Journal of Nanomedicine 7:133–40. doi: 10.2147/ijn.s27225.
  • Chen, Y. T., and Y. H. P. Hsieh. 2014. A sandwich ELISA for the detection of fish and fish products. Food Control 40:265–73. doi: 10.1016/j.foodcont.2013.12.010.
  • Cheng, S., Y. J. Yang, X. Q. Ni, J. Peng, and W. H. Lai. 2017. Fluorescent microspheres lateral flow assay for sensitive detection of the milk allergen casein. Food and Agricultural Immunology 28 (6):1017–28. doi: 10.1080/09540105.2017.1325841.
  • Chinnappan, R., A. A. Rahamn, R. AlZabn, S. Kamath, A. L. Lopata, K. M. Abu-Salah, and M. Zourob. 2020. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chemistry 314:126133. doi: 10.1016/j.foodchem.2019.126133.
  • Cho, C. Y., K. O. Ivens, W. L. Nowatzke, J. Robotham, M. Samadpour, T. Grace, K. G. Oliver, and E. A. E. Garber. 2020. Extension of xMAP food allergen detection assay to include sesame. Journal of Food Protection 83 (1):129–35. doi: 10.4315/0362-028x.jfp-19-304.
  • Cho, C. Y., W. Nowatzke, K. Oliver, and E. A. E. Garber. 2015. Multiplex detection of food allergens and gluten. Analytical and Bioanalytical Chemistry 407 (14):4195–206. doi: 10.1007/s00216-015-8645-y.
  • Christensen, L. H., P. Amondsen, H. Henmar, K. Bergmann, and H. Ipsen. 2011. Ragweed allergomics: Identification of allergens in an Ambrosia artemisiifolia pollen extract using a 'shotgun' liquid chromatography tandem mass spectrometry approach. Allergy 66: 141.
  • Church, M. K., P. Kolkhir, M. Metz, and M. Maurer. 2018. The role and relevance of mast cells in urticaria. Immunological Reviews 282 (1):232–47. doi: 10.1111/imr.12632.
  • Costa, J., T. J. R. Fernandes, C. Villa, M. B. P. P. Oliveira, and I. Mafra. 2017. Advances in food allergen analysis. In Food safety: Innovative analytical tools for safety assessment, ed. U. G. Spizzirri and G. Cirillo, 305–47. America: Scrivener Publishing LLC. doi: 10.1002/9781119160588.ch9.
  • De Angelis, E., R. Pilolli, and L. Monaci. 2017. Coupling SPE on-line pre-enrichment with HPLC and MS/MS for the sensitive detection of multiple allergens in wine. Food Control 73:814–20. doi: 10.1016/j.foodcont.2016.09.031.
  • De Gier, S., and K. Verhoeckx. 2018. Insect (food) allergy and allergens. Molecular Immunology 100:82–106. doi: 10.1016/j.molimm.2018.03.015.
  • Dorris, S. 2020. Fatal food anaphylaxis: Registering a rare outcome. Annals of Allergy, Asthma & Immunology 124 (5):445–6. doi: 10.1016/j.anai.2020.02.001.
  • DunnGalvin, A., G. Roberts, S. Schnadt, S. Astley, M. Austin, W. M. Blom, J. Baumert, C.-H. Chan, R. W. R. Crevel, K. E. C. Grimshaw, et al. 2019. Evidence-based approaches to the application of precautionary allergen labelling: Report from two iFAAM workshops. Clinical and Experimental Allergy 49 (9):1191–200. doi: 10.1111/cea.13464.
  • EFSA Panel on Dietetic Products, Nutrition and Allergies. 2014. Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA Journal 12 (11):3894. doi: 10.2903/j.efsa.2014.3894.
  • Eissa, S., and M. Zourob. 2017. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosensors & Bioelectronics 91:169–74. doi: 10.1016/j.bios.2016.12.020.
  • Eissa, S., L. L’Hocine, M. Siaj, and M. Zourob. 2013. A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin. The Analyst 138 (15):4378–84. doi: 10.1039/c3an36883a.
  • European Network of GMO Laboratories. 2015. Definition of minimum performance requirements for analytical methods of GMO Testing. Last Modified April 20. Accessed March 16, 2021. https://gmo-crl.jrc.ec.europa.eu/guidancedocs.htm.
  • Fang, J., D. Chen, C. Y. Chen, F. Ge, D. Q. Liu, B. Y. Han, and X. F. Xiong. 2015. Quantitative indirect ELISA for determination of walnut proteins in foods. Food Science and Biotechnology 24 (6):2251–5. doi: 10.1007/s10068-015-0300-z.
  • FDA. 2020. PALFORZIA. Accessed March 10, 2021. Last Modified February 24. https://www.fda.gov/vaccines-blood-biologics/allergenics/palforzia.
  • Fernandes, T. J. R., J. Costa, I. Carrapatoso, M. B. P. P. Oliveira, and I. Mafra. 2017. Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens. Critical Reviews in Food Science and Nutrition 57 (15):3281–96. doi: 10.1080/10408398.2015.1113157.
  • Filep, S., B. Smith, K. R. Black, B. Murphy, E. M. King, and M. D. Chapman. 2018. Simultaneous quantification of eight purified food allergens using fluorescent multiplex array. Allergy 73:40.
  • Galan-Malo, P., M. Lopez, J. C. Ortiz, M. D. Perez, L. Sanchez, P. Razquin, and L. Mata. 2017. Detection of egg and milk residues on working surfaces by ELISA and lateral flow immunoassay tests. Food Control 74:45–53. doi: 10.1016/j.foodcont.2016.11.027.
  • Galan-Malo, P., S. Pellicer, M. D. Perez, L. Sanchez, P. Razquin, and L. Mata. 2019. Development of a novel duplex lateral flow test for simultaneous detection of casein and β-lactoglobulin in food . Food Chemistry 293:41–8. doi: 10.1016/j.foodchem.2019.04.039.
  • Garber, E. A. E., C. Y. Cho, P. Rallabhandi, W. L. Nowatzke, K. G. Oliver, K. V. Venkateswaran, and N. Venkateswaran. 2020. Multi-laboratory validation of the xMAP-food allergen detection assay: A multiplex, antibody-based assay for the simultaneous detection of food allergens. PLoS One 15 (7):e0234899. doi: 10.1371/journal.pone.0234899.
  • Garib, V., E. Rigler, F. Gastager, R. Campana, Y. Dorofeeva, P. Gattinger, Y. Zhernov, M. Khaitov, and R. Valenta. 2019. Determination of IgE and IgG reactivity to more than 170 allergen molecules in paper-dried blood spots . The Journal of Allergy and Clinical Immunology 143 (1):437–40. doi: 10.1016/j.jaci.2018.08.047.
  • Gendel, S. M. 2012. Comparison of international food allergen labeling regulations. Regulatory Toxicology and Pharmacology 63 (2):279–85. doi: 10.1016/j.yrtph.2012.04.007.
  • Gu, S. Q., N. N. Chen, Y. Zhou, C. M. Zhao, L. N. Zhan, L. Qu, C. Cao, L. Han, X. J. Deng, T. Ding, et al. 2018. A rapid solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for simultaneous screening of multiple allergens in chocolates. Food Control 84:89–96. doi: 10.1016/j.foodcont.2017.07.033.
  • Gupta, R. S., E. E. Springston, M. R. Warrier, B. Smith, R. Kumar, J. Pongracic, and R. Kumar. 2011. The prevalence, severity, and distribution of childhood food allergy in the United States. Pediatrics 128 (1):e9–e17. doi: 10.1542/peds.2011-0204.
  • Henrottin, J., M. Planque, A. C. Huet, R. Marega, A. Lamote, and N. Gillard. 2019. Gluten analysis in processed foodstuffs by a multi-allergens and grain-specific UHPLC-MS/MS method: One method to detect them all. Journal of AOAC International 102 (5):1286–302. doi: 10.5740/jaoacint.19-0057.
  • Herman, R., and P. Song. 2019. Validation of bioinformatic approaches for predicting allergen cross reactivity. Food and Chemical Toxicology 132:110656. doi: 10.1016/j.fct.2019.110656.
  • Hoffmann, B., S. Münch, F. Schwägele, C. Neusüß, and W. Jira. 2017. A sensitive HPLC-MS/MS screening method for the simultaneous detection of lupine, pea, and soy proteins in meat products. Food Control 71:200–9. doi: 10.1016/j.foodcont.2016.06.021.
  • Holzhauser, T. 2018. Protein or no protein? Opportunities for DNA-based detection of allergenic foods. Journal of Agricultural and Food Chemistry 66 (38):9889–94. doi: 10.1021/acs.jafc.8b03657.
  • Holzhauser, T., P. Johnson, J. P. Hindley, G. O'Connor, C.-H. Chan, J. Costa, C. K. Faeste, B. J. Hirst, F. Lambertini, M. Miani, et al. 2020. Are current analytical methods suitable to verify VITAL® 2.0/3.0 allergen reference doses for EU allergens in foods? Food and Chemical Toxicology 145:111709. doi: 10.1016/j.fct.2020.111709.
  • Holzhauser, T., and M. Röder. 2015. Polymerase chain reaction (PCR) methods for detecting allergens in foods. In Handbook of food allergen detection and control, ed. S. Flanagan, 243–63. London, UK: Elsevier. doi: 10.1533/9781782420217.2.245.
  • Holzhauser, T., and S. Vieths. 1999. Quantitative sandwich ELISA for determination of traces of hazelnut (Corylus avellana) protein in complex food matrixes. Journal of Agricultural and Food Chemistry 47 (10):4209–18. doi: 10.1021/jf990478q.
  • Hourihane, J. O., K. Beyer, A. Abbas, M. Fernández-Rivas, P. J. Turner, K. Blumchen, C. Nilsson, M. D. Ibáñez, A. Deschildre, A. Muraro, et al. 2020. Efficacy and safety of oral immunotherapy with AR101 in European children with a peanut allergy (ARTEMIS): A multicentre, double-blind, randomised, placebo-controlled phase 3 trial. The Lancet Child & Adolescent Health 4 (10):728–39. doi: 10.1016/S2352-4642(20)30234-0.
  • Hoyos-Bachiloglu, R., J. J. Escobar, C. Cifuentes, R. Aguilera-Insunza, P. S. Morales, and A. Borzutzky. 2020. Increasing food allergies in Chile, a developing country post-epidemiological transition. Pediatric Allergy and Immunology 31 (5):585–8. doi: 10.1111/pai.13225.
  • Igarashi, A., Y. Ebihara, T. Kumagai, H. Hirai, K. Nagata, and K. Tsuji. 2018. Mast cells derived from human induced pluripotent stem cells are useful for allergen tests. Allergology International 67 (2):234–42. doi: 10.1016/j.alit.2017.08.008.
  • Jauset-Rubio, M., M. Svobodova, T. Mairal, C. McNeil, N. Keegan, M. S. El-Shahawi, A. S. Bashammakh, A. O. Alyoubi, and C. K. O’Sullivan. 2016. Aptamer lateral flow assays for ultrasensitive detection of β-conglutin combining recombinase polymerase amplification and tailed primers . Analytical Chemistry 88 (21):10701–9. doi: 10.1021/acs.analchem.6b03256.
  • Jayasena, S., S. J. Koppelman, B. Nayak, S. L. Taylor, and J. L. Baumert. 2019. Comparison of recovery and immunochemical detection of peanut proteins from differentially roasted peanut flour using ELISA. Food Chemistry 292:32–8. doi: 10.1016/j.foodchem.2019.04.026.
  • Ji, J., P. Zhu, F. W. Pi, C. Sun, J. D. Sun, M. Jia, C. Ying, Y. Z. Zhang, and X. L. Sun. 2017. Development of a liquid chromatography-tandem mass spectrometry method for simultaneous detection of the main milk allergens. Food Control 74:79–88. doi: 10.1016/j.foodcont.2016.11.030.
  • Jiang, D., H. Jiang, J. Ji, X. Sun, H. Qian, G. Zhang, and L. Tang. 2014. Mast-cell-based fluorescence biosensor for rapid detection of major fish allergen parvalbumin. Journal of Agricultural and Food Chemistry 62 (27):6473–80. doi: 10.1021/jf501382t.
  • Jiang, D. L., P. W. Ge, L. F. Wang, H. Jiang, M. Yang, L. M. Yuan, Q. F. Ge, W. M. Fang, and X. R. Ju. 2019. A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosensors & Bioelectronics 130:299–06. doi: 10.1016/j.bios.2019.01.050.
  • Jiang, D. L., P. Zhu, H. Jiang, J. Ji, X. L. Sun, W. S. Gu, and G. Y. Zhang. 2015. Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. Biosensors & Bioelectronics 70:482–90. doi: 10.1016/j.bios.2015.03.058.
  • Jiang, H., D. Jiang, P. Zhu, F. Pi, J. Ji, C. Sun, J. Sun, and X. Sun. 2016. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen. Biosensors & Bioelectronics 83:126–33. doi: 10.1016/j.bios.2016.04.028.
  • Joeris, T., K. Müller-Luda, W. W. Agace, and A. M. Mowat. 2017. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunology 10 (4):845–64. doi: 10.1038/mi.2017.22.
  • Kabasser, S., C. Hafner, S. Chinthrajah, S. B. Sindher, D. Kumar, L. E. Kost, A. J. Long, K. C. Nadeau, H. Breiteneder, and M. Bublin. 2020. Identification of Pru du 6 as a potential marker allergen for almond allergy. Allergy. Advance online publication. doi: 10.1111/all.14613.
  • Kanagaratham, C., Y. El Ansari, S. O. L. Lewis, and H. C. Oettgen. 2020. IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy. Frontiers in Immunology 11:603050. doi: 10.3389/fimmu.2020.603050.
  • Khedri, M., M. Ramezani, H. Rafatpanah, and K. Abnous. 2018. Detection of food-borne allergens with aptamer-based biosensors. TrAC Trends in Analytical Chemistry 103:126–36. doi: 10.1016/j.trac.2018.04.001.
  • Kilic, T., P. J. Philipp, P. Giavedoni, and S. Carrara. 2020. Milk allergen detection: Sensitive label-free voltammetric immunosensor based on electropolymerization. BioNanoScience 10 (2):512–22. doi: 10.1007/s12668-020-00730-4.
  • Kim, M. J., H. I. Kim, J. H. Kim, S. M. Suh, and H. Y. Kim. 2019. Rapid on-site detection of shrimp allergen tropomyosin using a novel ultrafast PCR system. Food Science and Biotechnology 28 (2):591–7. doi: 10.1007/s10068-018-0479-x.
  • Koplin, J. J., E. N. C. Mills, and K. J. Allen. 2015. Epidemiology of food allergy and food-induced anaphylaxis: Is there really a western world epidemic? Current Opinion in Allergy and Clinical Immunology 15 (5):409–16. doi: 10.1097/aci.0000000000000196.
  • Kulkarni, A., L. Ananthanarayan, and K. Raman. 2013. Identification of putative and potential cross-reactive chickpea (Cicer arietinum) allergens through an in silico approach. Computational Biology and Chemistry 47:149–55. doi: 10.1016/j.compbiolchem.2013.08.003.
  • Liu, B., D. Teng, Y. L. Yang, X. M. Wang, and J. H. Wang. 2012. Development of a competitive ELISA for the detection of soybean α subunit of β-conglycinin. Process Biochemistry 47 (2):280–7. doi: 10.1016/j.procbio.2011.11.005.
  • Liu, C. Q., V. D. Zaffran, S. Gupta, K. H. Roux, and S. K. Sathe. 2019. Pecan (Carya illinoinensis) detection using a monoclonal antibody-based direct sandwich enzyme-linked immunosorbent assay. Lwt-Food Science and Technology 116:108516. doi: 10.1016/j.lwt.2019.108516.
  • Liu, W. Y., J. J. Xiang, H. L. Jiang, H. Wang, and Y. Tang. 2008. Cell model of releasing histamine by sensitized mast cells in vitro usedfor analysis of food allergens. Food Science 29 (8):576–8.
  • Ma, X. L., H. Li, J. K. Zhang, W. S. Huang, J. X. Han, Y. Q. Ge, J. Y. Sun, and Y. Chen. 2020. Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control 107:106744. doi: 10.1016/j.foodcont.2019.106744.
  • Madrid, R., S. D. L. Cruz, A. García-García, M. J. C. Alcocer, I. González, T. García, and R. Martín. 2018. Multimeric recombinant antibody (scFv) for ELISA detection of allergenic walnut. An alternative to animal antibodies. Journal of Food Composition and Analysis 67:201–10. doi: 10.1016/j.jfca.2018.01.017.
  • Malvano, F., D. Albanese, R. Pilloton, and M. Di Matteo. 2017. A new label-free impedimetric aptasensor for gluten detection. Food Control 79:200–6. doi: 10.1016/j.foodcont.2017.03.033.
  • Mao, R. F., K. W. Xie, M. H. Zhao, M. Q. Li, L. Lu, Y. Liu, Q. Wu, Y. Y. Chen, T. Zhang, and E. J. Diao. 2020. Development and evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of pistachio (Pistacia vera) in food samples. Food Analytical Methods 13 (3):658–66. doi: 10.1007/s12161-019-01684-4.
  • Mari, A., and E. Scala. 2006. Allergome: A unifying platform. Arbeiten aus dem Paul-Ehrlich-Institut (Bundesamt fur Sera und Impfstoffe) zu Frankfurt a.M 95 (95):29–40.
  • Masiri, J., L. Benoit, M. Meshgi, J. Day, C. Nadala, and M. Samadpour. 2016. A novel immunoassay test system for detection of modified allergen residues present in almond-, cashew-, coconut-, hazelnut-, and soy-based nondairy beverages. Journal of Food Protection 79 (9):1572–82. doi: 10.4315/0362-028X.JFP-15-493.
  • Mattison, C. P., Y. Bren-Mattison, B. Vant-Hull, A. M. Vargas, R. L. Wasserman, and C. C. Grimm. 2016. Heat-induced alterations in cashew allergen solubility and IgE binding. Toxicology Reports 3:244–51. doi: 10.1016/j.toxrep.2015.12.009.
  • Meyer, R., A. T. Fox, A. Chebar Lozinsky, L. J. Michaelis, and N. Shah. 2019. Non-IgE-mediated gastrointestinal allergies—Do they have a place in a new model of the Allergic March. Pediatric Allergy and Immunology 30 (2):149–58. doi: 10.1111/pai.13000.
  • Miyazaki, A., S. Watanabe, K. Ogata, Y. Nagatomi, R. Kokutani, Y. Minegishi, N. Tamehiro, S. Sakai, R. Adachi, and T. Hirao. 2019. Real-time PCR detection methods for food allergens (wheat, buckwheat, and peanuts) using reference plasmids. Journal of Agricultural and Food Chemistry 67 (19):5680–6. doi: 10.1021/acs.jafc.9b01234.
  • Montiel, V. R., S. Campuzano, A. Pellicano, R. M. Torrente-Rodriguez, A. J. Reviejo, M. S. Cosio, and J. M. Pingarron. 2015. Sensitive and selective magnetoimmunosensing platform for determination of the food allergen Ara h 1. Analytica Chimica Acta 880:52–9. doi: 10.1016/j.aca.2015.04.041.
  • Montiel, V. R., A. Pellicanò, S. Campuzano, R. M. Torrente-Rodríguez, Á. J. Reviejo, M. S. Cosio, and J. M. Pingarrón. 2016. Electrochemical detection of peanuts at trace levels in foods using a magnetoimmunosensor for the allergenic protein Ara h 2. Sensors and Actuators B: Chemical 236:825–33. doi: 10.1016/j.snb.2016.01.123.
  • Montserrat, M., D. Sanz, T. Juan, A. Herrero, L. Sanchez, M. Calvo, and M. D. Perez. 2015. Detection of peanut (Arachis hypogaea) allergens in processed foods by immunoassay: Influence of selected target protein and ELISA format applied. Food Control 54:300–7. doi: 10.1016/j.foodcont.2015.01.049.
  • Nehra, M., M. Lettieri, N. Dilbaghi, S. Kumar, and G. Marrazza. 2020. Nano-biosensing platforms for detection of cow’s milk allergens: An overview. Sensors 20 (1):32. doi: 10.3390/s20010032.
  • New, L. S., A. Schreiber, J. Stahl-Zeng, and H. F. Liu. 2018. Simultaneous analysis of multiple allergens in food products by LC-MS/MS. Journal of AOAC International 101 (1):132–45. doi: 10.5740/jaoacint.17-0403.
  • Nowatzke, W. L., K. G. Oliver, C. Y. Cho, P. Rallabhandi, and E. A. E. Garber. 2019. Single-laboratory validation of the multiplex xMAP food allergen detection assay with incurred food samples. Journal of Agricultural and Food Chemistry 67 (1):484–98. doi: 10.1021/acs.jafc.8b05136.
  • Ogura, T., R. Clifford, and U. Oppermann. 2019. Simultaneous detection of 13 allergens in thermally processed food using targeted LC-MS/MS approach. Journal of AOAC International 102 (5):1316–29. doi: 10.5740/jaoacint.19-0060.
  • Oliver, M., A. Kuklinska-Pijanka, M. Bermingham, M. Chapman, and J. Hindley. 2017. Development and validation of a novel multiplex immunoassay for the simultaneous quantification of food allergen proteins. Allergy 72: 333.
  • Pasquariello, M. S., P. Palazzo, L. Tuppo, M. Liso, M. Petriccione, P. Rega, A. Tartaglia, M. Tamburrini, C. Alessandri, M. A. Ciardiello, et al. 2012. Analysis of the potential allergenicity of traditional apple cultivars by Multiplex Biochip-Based Immunoassay. Food Chemistry 135 (1):219–27. doi: 10.1016/j.foodchem.2012.04.075.
  • Pepper, A. N., A. Assa’ad, M. Blaiss, E. Brown, S. Chinthrajah, C. Ciaccio, M. B. Fasano, R. Gupta, N. Hong, D. Lang, et al. 2020. Consensus report from the Food Allergy Research & Education (FARE) 2019 oral immunotherapy for food allergy summit. The Journal of Allergy and Clinical Immunology 146 (2):244–9. doi: 10.1016/j.jaci.2020.05.027.
  • Perner, S. P., L. Heupel, L. Zimmermann, Y. Peters, K. U. Vongehr, H. El-Bedewy, S. Siebeneicher, T. Weiß, T. Hektor, B. Lindemann, et al. 2019. Investigation of reduced ELISA recovery of almond and hazelnut traces from roasted nut samples by SDS-PAGE and mass spectrometry. Journal of AOAC International 102 (5):1271–9. doi: 10.5740/jaoacint.19-0055.
  • Polenta, G., S. Godefroy-Benrejeb, P. Delahaut, D. Weber, and M. Abbott. 2010. Development of a competitive ELISA for the detection of pecan (Carya illinoinensis (Wangenh.) K. Koch) traces in food. Food Analytical Methods 3 (4):375–81. doi: 10.1007/s12161-009-9075-2.
  • Polloni, L., and A. Muraro. 2020. Anxiety and food allergy: A review of the last two decades. Clinical and Experimental Allergy 50 (4):420–41. doi: 10.1111/cea.13548.
  • Qi, K. L., T. Liu, Y. J. Yang, J. Zhang, J. Yin, X. J. Ding, W. J. Qin, and Y. Yang. 2019. A rapid immobilized trypsin digestion combined with liquid chromatography—Tandem mass spectrometry for the detection of milk allergens in baked food. Food Control 102:179–87. doi: 10.1016/j.foodcont.2019.03.017.
  • Quesada-Gonzalez, D., and A. Merkoci. 2015. Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics 73:47–63. doi: 10.1016/j.bios.2015.05.050.
  • Rallabhandi, P., C. Y. Cho, S. MacMahon, and E. Garber. 2019. Development of an in vitro bio-assay using human intestinal and immune cell-lines to measure the immuno-pathogenicity of food allergens. Journal of Allergy and Clinical Immunology 143 (2):AB426. doi: 10.1016/j.jaci.2018.12.961.
  • Rallabhandi, P., C. Y. Cho, W. L. Nowatzke, K. G. Oliver, and E. A. E. Garber. 2020. Robustness testing of the xMAP food allergen detection assay: A multiplex assay for the simultaneous detection of food allergens. Journal of Food Protection 83 (6):1050–6. doi: 10.4315/jfp-19-531.
  • Reber, L. L., J. D. Hernandez, and S. J. Galli. 2017. The pathophysiology of anaphylaxis. The Journal of Allergy and Clinical Immunology 140 (2):335–48. doi: 10.1016/j.jaci.2017.06.003.
  • Roder, M., A. Ibach, I. Baltruweit, H. Gruyters, A. Janise, C. Suwelack, R. Matissek, S. Vieths, and T. Holzhauser. 2008. Pilot plant investigations on cleaning efficiencies to reduce hazelnut cross-contamination in industrial manufacture of cookies. Journal of Food Protection 71 (11):2263–71. doi: 10.4315/0362-028x-71.11.2263.
  • Ross, G. M. S., G. I. Salentijn, and M. W. F. Nielen. 2019. A critical comparison between flow-through and lateral flow immunoassay formats for visual and smartphone-based multiplex allergen detection. Biosensors 9 (4):143. doi: 10.3390/bios9040143.
  • Sakai, S., R. Adachi, H. Akiyama, and R. Teshima. 2013. Validation of quantitative and qualitative methods for detecting allergenic ingredients in processed foods in Japan. Journal of Agricultural and Food Chemistry 61 (24):5675–80. doi: 10.1021/jf3033396.
  • Sathe, S. K., M. Venkatachalam, G. M. Sharma, H. H. Kshirsagar, S. S. Teuber, and K. H. Roux. 2009. Solubilization and electrophoretic characterization of select edible nut seed proteins. Journal of Agricultural and Food Chemistry 57 (17):7846–56. doi: 10.1021/jf9016338.
  • Segura-Gil, I., A. Blazquez-Soro, P. Galan-Malo, L. Mata, A. P. Tobajas, L. Sanchez, and M. D. Perez. 2019. Development of sandwich and competitive ELISA formats to determine beta-conglycinin: Evaluation of their performance to detect soy in processed food. Food Control 103:78–85. doi: 10.1016/j.foodcont.2019.03.035.
  • Sena-Torralba, A., Y. Pallas-Tamarit, S. Morais, and A. Maquieira. 2020. Recent advances and challenges in food-borne allergen detection. TrAC Trends in Analytical Chemistry 132:116050. doi: 10.1016/j.trac.2020.116050.
  • Sharma, G. M., S. E. Khuda, C. H. Parker, A. C. Eischeid, and M. Pereira. 2017. Detection of allergen markers in food: Analytical methods. In Food safety: Innovative analytical tools for safety assessment, ed. U. G. Spizzirri and G. Cirillo, 65–99. Beverly, MA: Scrivener Publishing LLC. doi: 10.1002/9781119160588.ch4.
  • Sheu, S. C., P. C. Tsou, Y. Y. Lien, and M. S. Lee. 2020. Rapid and specific detection of mango (Mangifera indica) in processed food using an isothermal nucleic acid amplification assay. European Food Research and Technology 246 (4):759–66. doi: 10.1007/s00217-020-03440-z.
  • Shibahara, Y., T. Ii, J. Wang, S. Yamada, and K. Shiomi. 2014. [Detection of fish protein in food products by lateral flow immunoassay]. Shokuhin Eiseigaku Zasshi. Journal of the Food Hygienic Society of Japan 55 (2):88–93. doi: 10.3358/shokueishi.55.88.
  • Shoormasti, R. S., N. Sabetkish, A. Kazemnejad, N. Vahabi, M. R. Fazlollahi, and Z. Pourpak. 2019. Are the most common food allergens in an Iranian atopic population compatible with worldwide reports? A systemic review and meta-analysis with molecular classification of frequent allergens. Allergologia et Immunopathologia 47 (6):604–18. doi: 10.1016/j.aller.2019.04.005.
  • Sircar, G., D. Sarkar, S. G. Bhattacharya, and S. Saha. 2014. Allergen databases. Methods in Molecular Biology 1184:165–81. doi: 10.1007/978-1-4939-1115-8_9.
  • Studerus, D., E. I. Hampe, D. Fahrer, M. Wilhelmi, and S. R. Vavricka. 2018. Cross-contamination with gluten by using kitchen utensils: Fact or fiction? Journal of Food Protection 81 (10):1679–84. doi: 10.4315/0362-028X.JFP-17-383.
  • Su, H. B., Y. Zhang, and H. W. Peng. 2018. Progress in applications of biochip in food safety and detection. Journal of Food Safety and Quality 9 (11):2756–61.
  • Suh, S. M., M. J. Kim, H. I. Kim, H. J. Kim, and H. Y. Kim. 2020. A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chemistry 317:126451. doi: 10.1016/j.foodchem.2020.126451.
  • Suh, S. M., S. B. Park, M. J. Kim, and H. Y. Kim. 2019. Simultaneous detection of fruit allergen-coding genes in tomato, apple, peach and kiwi through multiplex PCR. Food Science and Biotechnology 28 (5):1593–8. doi: 10.1007/s10068-019-00591-y.
  • Tan, A. L., Y. Zhao, K. Sivashanmugan, K. Squire, and A. X. Wang. 2019. Quantitative TLC-SERS detection of histamine in seafood with support vector machine analysis. Food Control 103:111–8. doi: 10.1016/j.foodcont.2019.03.032.
  • Taylor, S. L., and J. L. Baumert. 2010. Cross-contamination of foods and implications for food allergic patients. Current Allergy and Asthma Reports 10 (4):265–70. doi: 10.1007/s11882-010-0112-4.
  • Teufel, M., T. Biedermann, N. Rapps, C. Hausteiner, P. Henningsen, P. Enck, and S. Zipfel. 2007. Psychological burden of food allergy. World Journal of Gastroenterology 13 (25):3456–65. doi: 10.3748/wjg.v13.i25.3456.
  • The PALISADE Group of Clinical Investigators. 2018. AR101 oral immunotherapy for peanut allergy. The New England Journal of Medicine 379:1991–2001. doi: 10.1056/NEJMoa1812856.
  • Toomer, O. T., E. Sanders, T. C. Vu, M. L. Livingston, B. Wall, R. D. Malheiros, L. V. Carvalho, K. A. Livingston, P. R. Ferket, and K. E. Anderson. 2020. Potential transfer of peanut and/or soy proteins from poultry feed to the meat and/or eggs produced. ACS Omega 5 (2):1080–5. doi: 10.1021/acsomega.9b03218.
  • Trashin, S., M. de Jong, T. Breugelmans, S. Pilehvar, and K. De Wael. 2015. Label-free impedance aptasensor for major peanut allergen Ara h 1. Electroanalysis 27 (1):32–7. doi: 10.1002/elan.201400365.
  • Ueberham, E., H. Spiegel, H. Havenith, P. Rautenberger, N. Lidzba, S. Schillberg, and J. Lehmann. 2019. Simplified tracking of a soy allergen in processed food using a monoclonal antibody-based sandwich ELISA targeting the soybean 2S albumin Gly m 8. Journal of Agricultural and Food Chemistry 67 (31):8660–7. doi: 10.1021/acs.jafc.9b02717.
  • Villa, C., J. Costa, M. Oliveira, and I. Mafra. 2020. Cow’s milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products. Food Control 108:106823. doi: 10.1016/j.foodcont.2019.106823.
  • Waiblinger, H. U., B. Boernsen, C. Geppert, E. M. Ladenburger, R. Koeppel, and D. Made. 2019. Collaborative trial validation of RT-PCR methods for the detection and quantification of the allergenic foods fish and peanut. Journal of Consumer Protection and Food Safety 14 (3):301–11. doi: 10.1007/s00003-019-01235-3.
  • Wambre, E., V. Bajzik, J. H. DeLong, K. O’Brien, Q.-A. Nguyen, C. Speake, V. H. Gersuk, H. A. DeBerg, E. Whalen, C. Ni, et al. 2017. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Science Translational Medicine 9 (401):eaam9171. doi: 10.1126/scitranslmed.aam9171.
  • Wang, C., Y. B. Wang, G. M. Liu, and L. L. Fu. 2020. Food allergomics based on high-throughput and bioinformatics technologies. Food Research International 130:108942. doi: 10.1016/j.foodres.2019.108942.
  • Wang, H., G. Li, Y. Wu, F. Yuan, and Y. Chen. 2014. Development of an indirect competitive immunoassay for walnut protein component in food. Food Chemistry 147:106–10. doi: 10.1016/j.foodchem.2013.09.013.
  • Wang, W., Y. Y. Li, F. Y. Zhao, Y. Chen, and Y. Q. Ge. 2011. Optical thin-film biochips for multiplex detection of eight allergens in food. Food Research International 44 (10):3229–34. doi: 10.1016/j.foodres.2011.08.013.
  • Wang, W., X. D. Zhu, S. Teng, Q. J. Fan, and H. Qian. 2017. Label-free biochips for rapid detection of soybean allergen GlymBd 30K (P34) in foods. Tropical Journal of Pharmaceutical Research 16 (4):755–60. doi: 10.4314/tjpr.v16i4.3.
  • Wang, Y. B., Q. Q. Qi, J. R. Zhou, H. Li, and L. L. Fu. 2020. Graphene oxide and gold nanoparticles-based dual amplification method for immunomagnetic beads-derived ELISA of parvalbumin. Food Control 110:106989. doi: 10.1016/j.foodcont.2019.106989.
  • Wang, Y. Q., Z. X. Li, H. Lin, R. N. Siddanakoppalu, J. Zhou, G. Z. Chen, and Z. W. Yu. 2019. Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control 106:106714. doi: 10.1016/j.foodcont.2019.106714.
  • Wang, Y., Z. Z. Li, Y. F. Pei, Q. M. Li, Y. N. Sun, J. F. Yang, Y. Y. Yang, Y. B. Zhi, R. G. Deng, Y. Z. Hou, et al. 2017. Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of soybean allergen β-conglycinin. Food Analytical Methods 10 (7):2429–35. doi: 10.1007/s12161-017-0800-y.
  • Weng, X., G. Gaur, and S. Neethirajan. 2016. Rapid detection of food allergens by microfluidics ELISA-based optical sensor. Biosensors 6 (2):24. doi: 10.3390/bios6020024.
  • Weng, X., and S. Neethirajan. 2016. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Biosensors & Bioelectronics 85:649–56. doi: 10.1016/j.bios.2016.05.072.
  • Weng, X., and S. Neethirajan. 2017. Ensuring food safety: Quality monitoring using microfluidics. Trends in Food Science & Technology 65:10–22. doi: 10.1016/j.tifs.2017.04.015.
  • Xi, J., and Q. R. Yu. 2020. The development of lateral flow immunoassay strip tests based on surface enhanced Raman spectroscopy coupled with gold nanoparticles for the rapid detection of soybean allergen β-conglycinin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 241:118640. doi: 10.1016/j.saa.2020.118640.
  • Yoshimura, T., H. Kuribara, T. Kodama, S. Yamata, S. Futo, S. Watanabe, N. Aoki, T. Iizuka, H. Akiyama, T. Maitani, et al. 2005. Comparative Studies of the Quantification of Genetically Modified Organisms in Foods Processed from Maize and Soy Using Trial Producing. Journal of Agricultural and Food Chemistry 53 (6):2060–9. doi:10.1021/jf0483265.
  • Yuan, D., X. E. Fang, Y. X. Liu, J. L. Kong, and Q. Chen. 2019. A hybridization chain reaction coupled with gold nanoparticles for allergen gene detection in peanut, soybean and sesame DNAs. The Analyst 144 (12):3886–91. doi: 10.1039/c9an00394k.
  • Yuan, D., J. L. Kong, X. E. Fang, and Q. Chen. 2019. A graphene oxide-based paper chip integrated with the hybridization chain reaction for peanut and soybean allergen gene detection. Talanta 196:64–70. doi: 10.1016/j.talanta.2018.12.036.
  • Zhang, M., P. Wu, J. Wu, J. Ping, and J. Wu. 2019. Advanced DNA-based methods for the detection of peanut allergens in processed food. TrAC Trends in Analytical Chemistry 114:278–92. doi: 10.1016/j.trac.2019.01.021.
  • Zhang, S. Y., K. F. Cao, D. D. Liu, N. R. Gaowa, N. Bao, and Y. Zhao. 2016. Development of dcELISA method for rapid detection of beta-conglycinin in soybean. International Journal of Food Engineering 12 (5):461–8. doi: 10.1515/ijfe-2015-0359.
  • Zhang, Y., Q. Wu, M. Sun, J. Zhang, S. Mo, J. Wang, X. Wei, and J. Bai. 2018. Magnetic-assisted aptamer-based fluorescent assay for allergen detection in food matrix. Sensors and Actuators B: Chemical 263:43–9. doi: 10.1016/j.snb.2018.02.098.
  • Zhou, J. R., Y. B. Wang, Y. F. Qian, T. Zhang, L. Zheng, and L. L. Fu. 2020. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned biochips. Food Control 107:106547. doi: 10.1016/j.foodcont.2019.02.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.