543
Views
5
CrossRef citations to date
0
Altmetric
Reviews

β-glucan, “the knight of health sector”: critical insights on physiochemical heterogeneities, action mechanisms and health implications

, &

References

  • Ahmad, A., F. M. Anjum, T. Zahoor, H. Nawaz, and S. M. R. Dilshad. 2012. Beta glucan: A valuable functional ingredient in foods. Critical Reviews in Food Science and Nutrition 52 (3):201–12. doi: 10.1080/10408398.2010.499806.
  • Ahmed, I. A., M. A. Mikail, M. R. Mustafa, M. Ibrahim, and R. Othman. 2019. Lifestyle interventions for non-alcoholic fatty liver disease. Saudi Journal of Biological Sciences 26 (7):1519–24. doi: 10.1016/j.sjbs.2018.12.016.
  • Albillos, A., A. de Gottardi, and M. Rescigno. 2020. The gut-liver axis in liver disease: Pathophysiological basis for therapy. Journal of Hepatology 72 (3):558–77. doi: 10.1016/j.jhep.2019.10.003.
  • Aleixandre, A., and M. Miguel. 2008. Dietary fiber in the prevention and treatment of metabolic syndrome: A review. Critical Reviews in Food Science and Nutrition 48 (10):905–12. doi: 10.1080/10408390701761886.
  • Alp, H., S. Varol, M. M. Celik, M. Altas, O. Evliyaoglu, O. Tokgoz, M. H. Tanrıverdi, and E. Uzar. 2012. Protective effects of beta glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozosin. Experimental Diabetes Research 2012:230342. doi: 10.1155/2012/230342.
  • Anderson, J. W., P. Baird, R. H. Davis, S. Ferreri, M. Knudtson, A. Koraym, V. Waters, and C. L. Williams. 2009. Health benefits of dietary fiber. Nutrition Reviews 67 (4):188–205. doi: 10.1111/j.1753-4887.2009.00189.x.
  • Anttila, H., T. Sontag-Strohm, and H. Salovaara. 2004. Viscosity of beta-glucan in oat products. Agricultural and Food Science 13 (1–2):80–7. doi: 10.2137/1239099041838012.
  • Aoki, S., A. Iwai, K. Kawata, D. Muramatsu, H. Uchiyama, M. Okabe, M. Ikesue, N. Maeda, and T. Uede. 2015. Oral administration of the Aureobasidium pullulans-derived β-glucan effectively prevents the development of high fat diet-induced fatty liver in mice. Scientific Reports 5:1–10. doi: 10.1038/srep10457.
  • Bae, I. Y., H. W. Kim, H. J. Yoo, E. S. Kim, S. Lee, D. Y. Park, and H. G. Lee. 2013. Correlation of branching structure of mushroom β-glucan with its physiological activities. Food Research International 51 (1):195–200. doi: 10.1016/j.foodres.2012.12.008.
  • Barsanti, L., V. Passarelli, V. Evangelista, A. M. Frassanito, and P. Gualtieri. 2011. Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Natural Product Reports 28 (3):457–66. doi: 10.1039/c0np00018c.
  • Barton, C., K. Vigor, R. Scott, P. Jones, H. Lentfer, H. J. Bax, D. H. Josephs, S. N. Karagiannis, and J. F. Spicer. 2016. Beta-glucan contamination of pharmaceutical products: How much should we accept? Cancer Immunology, Immunotherapy: CII 65 (11):1289–301. doi: 10.1007/s00262-016-1875-9.
  • Bashir, K. M. I., and J. S. Choi. 2017. Clinical and physiological perspectives of β-glucans: The past, present, and future. International Journal of Molecular Sciences 18 (9):1906. doi: 10.3390/ijms18091906.
  • Berdal, M., H. I. Appelbom, J. H. Eikrem, Å. Lund, S. Zykova, L. T. Busund, R. Seljelid, and T. Jenssen. 2007. Aminated β-1,3-d-glucan improves wound healing in diabetic db/db mice. Wound Repair and Regeneration 15 (6):825–32. doi: 10.1111/j.1524-475X.2007.00286.x.
  • Biörklund, M., A. van Rees, R. P. Mensink, and G. Önning. 2005. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with β-glucans from oats or barley: A randomised dose-controlled trial. European Journal of Clinical Nutrition 59 (11):1272–81. doi: 10.1038/sj.ejcn.1602240.
  • Brockman, D. A., X. Chen, and D. D. Gallaher. 2013. Consumption of a high β-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. European Journal of Nutrition 52 (7):1743–53. doi: 10.1007/s00394-012-0478-2.
  • Carrico, T. J., A. I. Mehrhof, and I. K. Cohen. 1984. Biology of wound healing. The Surgical Clinics of North America 64 (4):721–33. doi: 10.1016/S0039-6109(16)43388-8.
  • Cetinkaya, E. A., O. Ciftci, S. Alan, M. N. Oztanır, and N. Basak. 2020. What is the effectiveness of beta-glucan for treatment of acute otitis media? Brazilian Journal of Otorhinolaryngology. doi: 10.1016/j.bjorl.2020.02.004.
  • Chan, G. C. F., W. K. Chan, and D. M. Y. Sze. 2009. The effects of beta-glucan on human immune and cancer cells. Journal of Hematology & Oncology 2:25. doi: 10.1186/1756-8722-2-25.
  • Chassaing, B., J. Miles-Brown, M. Pellizzon, E. Ulman, M. Ricci, L. Zhang, A. D. Patterson, M. Vijay-Kumar, and A. T. Gewirtz. 2015. Lack of soluble fiber drives diet-induced adiposity in mice. American Journal of Physiology. Gastrointestinal and Liver Physiology 309 (7):G528–41. doi: 10.1152/ajpgi.00172.2015.
  • Chen, J., T. Gislette, and X. F. Huang. 2010. The role of molecular weight and viscosity of oat β-glucan in hypocholesterolemic effect. The American Journal of Clinical Nutrition 92 (6):1538. doi: 10.3945/ajcn.110.003848.
  • Chen, J., and K. Raymond. 2008. Beta-glucans in the treatment of diabetes and associated cardiovascular risks. Vascular Health and Risk Management 4 (6):1265–72. doi: 10.2147/vhrm.s3803.
  • Chen, L., and L. A. Dipietro. 2017. Toll-like receptor function in acute wounds. Advances in Wound Care 6 (10):344–55. doi: 10.1089/wound.2017.0734.
  • Chen, P., Z. Wang, L. Zeng, X. Yang, S. Wang, W. Dong, A. Jia, C. Cai, and J. Zhang. 2011. A novel soluble beta-glucan salecan protects against acute alcohol-induced hepatotoxicity in mice. Bioscience, Biotechnology, and Biochemistry 75 (10):1990–3. doi: 10.1271/bbb.110412.
  • Chen, X., L. Zhang, and P. C. K. Cheung. 2010. Immunopotentiation and anti-tumor activity of carboxymethylated-sulfated β-(1→3)-d-glucan from Poria cocos. International Immunopharmacology 10 (4):398–405. doi: 10.1016/j.intimp.2010.01.002.
  • Chlubnová, I., B. Sylla, C. Nugier-Chauvin, R. Daniellou, L. Legentil, B. Kralová, and V. Ferrières. 2011. Natural glycans and glycoconjugates as immunomodulating agents. Natural Product Reports 28 (5):937–52. doi: 10.1039/c1np00005e.
  • Choi, J. S., H. Kim, M. H. Jung, S. Hong, and J. Song. 2010. Consumption of barley beta-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Molecular Nutrition & Food Research 54 (7):1004–13. doi: 10.1002/mnfr.200900127.
  • Chyau, C. C., H. F. Wang, W. J. Zhang, C. C. Chen, S. H. Huang, C. C. Chang, and R. Y. Peng. 2020. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. International Journal of Molecular Sciences 21 (1):360. doi: 10.3390/ijms21010360.
  • Cui, S. W., Y. Wu, and H. Ding. 2013. The range of dietary fibre ingredients and a comparison of their technical functionality. In Fibre-Rich and Wholegrain Foods, 96–119. Sawston, UK: Woodhead Publishing Limited. doi: 10.1533/9780857095787.1.96.
  • da Silva, L. P., R. L. Reis, V. M. Correlo, and A. P. Marques. 2019. Hydrogel-based strategies to advance therapies for chronic skin wounds. Annual Review of Biomedical Engineering 21:145–69. doi: 10.1146/annurev-bioeng-060418-052422.
  • de Araújo, T. V., E. F. Andrade, R. V. Lobato, D. R. Orlando, N. F. Gomes, R. V. de Sousa, M. G. Zangeronimo, and L. J. Pereira. 2017. Effects of beta-glucans ingestion (Saccharomyces cerevisiae) on metabolism of rats receiving high-fat diet. Journal of Animal Physiology and Animal Nutrition 101 (2):349–58. doi: 10.1111/jpn.12452.
  • De Paula, R., E. S. M. Abdel-Aal, M. C. Messia, I. Rabalski, and E. Marconi. 2017. Effect of processing on the beta-glucan physicochemical properties in barley and semolina pasta. Journal of Cereal Science 75:124–31. doi: 10.1016/j.jcs.2017.03.030.
  • Del Cornò, M., S. Gessani, and L. Conti. 2020. Shaping the innate immune response by dietary glucans: Any role in the control of cancer? Cancers (Basel) 12 (1):155. doi: 10.3390/cancers12010155.
  • Delatte, S. J., J. Evans, A. Hebra, W. Adamson, H. B. Othersen, and E. P. Tagge. 2001. Effectiveness of beta-glucan collagen for treatment of partial-thickness burns in children. Journal of Pediatric Surgery 36 (1):113–8. doi: 10.1053/jpsu.2001.20024.
  • Demir, G., H. O. Klein, N. Mandel-Molinas, and N. Tuzuner. 2007. Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. International Immunopharmacology 7 (1):113–6. doi: 10.1016/j.intimp.2006.08.011.
  • Desai, M. S., A. M. Seekatz, N. M. Koropatkin, N. Kamada, C. A. Hickey, M. Wolter, N. A. Pudlo, S. Kitamoto, N. Terrapon, A. Muller, et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167 (5):1339–53.e21. doi: 10.1016/j.cell.2016.10.043.
  • Donatto, F. F., J. Prestes, A. B. Frollini, A. C. Palanch, R. Verlengia, and C. R. Cavaglieri. 2010. Effect of oat bran on time to exhaustion, glycogen content and serum cytokine profile following exhaustive exercise. Journal of the International Society of Sports Nutrition 7:32. doi: 10.1186/1550-2783-7-32.
  • Dong, J., F. Cai, R. Shen, and Y. Liu. 2011. Hypoglycaemic effects and inhibitory effect on intestinal disaccharidases of oat beta-glucan in streptozotocin-induced diabetic mice. Food Chemistry 129 (3):1066–71. doi: 10.1016/j.foodchem.2011.05.076.
  • Du, B., M. Meenu, H. Liu, and B. Xu. 2019. A concise review on the molecular structure and function relationship of β-glucan. International Journal of Molecular Sciences 20 (16):4032. doi: 10.3390/ijms20164032.
  • Duss, R., and L. Nyberg. 2004. Oat soluble fibers (β-glucans) as a source for healthy snack and breakfast foods. Cereal Foods World 49:320–5.
  • El Khoury, D., C. Cuda, B. L. Luhovyy, and G. H. Anderson. 2012. Beta glucan: Health benefits in obesity and metabolic syndrome. Journal of Nutrition and Metabolism 2012:851362. doi: 10.1155/2012/851362.
  • Ermakova, S., R. Men'shova, O. Vishchuk, S.-M. Kim, B.-H. Um, V. Isakov, and T. Zvyagintseva. 2013. Water-soluble polysaccharides from the brown alga Eisenia bicyclis: Structural characteristics and antitumor activity. Algal Research 2 (1):51–8. doi: 10.1016/j.algal.2012.10.002.
  • Fang, J., Y. Wang, X. Lv, X. Shen, X. Ni, and K. Ding. 2012. Structure of a β-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-κB signaling. Glycoconjugate Journal 29 (5–6):365–77. doi: 10.1007/s10719-012-9416-z.
  • Freire, R. D., M. A. Cardoso, S. G. A. Gimeno, and S. R. G. Ferreira. 2005. Dietary fat is associated with metabolic syndrome in Japanese Brazilians. Diabetes Care 28 (7):1779–85. doi: 10.2337/diacare.28.7.1779.
  • Fusté, N. P., M. Guasch, P. Guillen, C. Anerillas, T. Cemeli, N. Pedraza, F. Ferrezuelo, M. Encinas, M. Moralejo, and E. Garí. 2019. Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydrate Polymers 210:389–98. doi: 10.1016/j.carbpol.2019.01.090.
  • Ganda Mall, J. P., M. Casado-Bedmar, M. E. Winberg, R. J. Brummer, I. Schoultz, and A. V. Keita. 2018. A β-glucan-based dietary fiber reduces mast cell-induced hyperpermeability in ileum from patients with Crohn’s disease and control subjects. Inflammatory Bowel Diseases 24 (1):166–78. doi: 10.1093/ibd/izx002.
  • Gaosong, J., and T. Vasanthan. 2000. Effect of extrusion cooking on the primary structure and water solubility of β-glucans from regular and waxy barley. Cereal Chemistry 77 (3):396–400. doi: 10.1094/CCHEM.2000.77.3.396.
  • Garvey, W. T., and C. Lara-Castro. 2006. 16—Metabolic syndrome. In Handbook of clinical nutrition. 4th ed., 357–70. New York, NY: Elsevier Inc. doi: 10.1016/B978-0-323-03952-9.50022-2.
  • Geng, P., K. C. Siu, Z. Wang, and J. Y. Wu. 2017. Antifatigue functions and mechanisms of edible and medicinal mushrooms. BioMed Research International 2017:9648496. doi: 10.1155/2017/9648496.
  • Glass, G. E. 2020. Cosmeceuticals: The principles and practice of skin rejuvenation by nonprescription topical therapy. Aesthetic Surgery Journal Open Forum 2:1–16. doi: 10.1093/asjof/ojaa038.
  • Goodridge, H. S., A. J. Wolf, and D. M. Underhill. 2009. Beta-glucan recognition by the innate immune system. Immunological Reviews 230 (1):38–50. doi: 10.1111/j.1600-065X.2009.00793.x.
  • Grip, J., R. E. Engstad, I. Skjaeveland, N. Škalko-Basnet, and A. M. Holsaeter. 2017. Sprayable Carbopol hydrogel with soluble beta-1,3/1,6-glucan as an active ingredient for wound healing—Development and in-vivo evaluation. European Journal of Pharmaceutical Sciences 107:24–31. doi: 10.1016/j.ejps.2017.06.029.
  • Grip, J., R. E. Engstad, I. Skjaeveland, N. Škalko-Basnet, J. Isaksson, P. Basnet, and A. M. Holsaeter. 2018. Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. European Journal of Pharmaceutical Sciences 121:269–80. doi: 10.1016/j.ejps.2018.05.031.
  • Gulcelik, M. A., H. Dincer, D. Sahin, O. Faruk Demir, E. Yenidogan, and H. Alagol. 2010. Glucan improves impaired wound healing in diabetic rats. Wounds 22 (1):12–6.
  • Gunzer, W., M. Konrad, and E. Pail. 2012. Exercise-induced immunodepression in endurance athletes and nutritional intervention with carbohydrate, protein and fat-what is possible, what is not? Nutrients 4 (9):1187–212. doi: 10.3390/nu4091187.
  • Guo, S., and L. A. DiPietro. 2010. Critical review in oral biology & medicine: Factors affecting wound healing. Journal of Dental Research 89 (3):219–29. doi: 10.1177/0022034509359125.
  • Gupta, B., R. Agarwal, and M. S. Alam. 2011. Hydrogels for wound healing applications. In Biomedical hydrogels. Sawston, UK: Woodhead Publishing Limited. doi: 10.1533/9780857091383.2.184.
  • Handayani, D., B. J. Meyer, J. Chen, P. Tang, P. C. L. Kwok, H.-K. Chan, and X.-F. Huang. 2012. The comparison of the effect of oat and shiitake mushroom powder to prevent body weight gain in rats fed high fat diet. Food and Nutrition Sciences 3 (7):1009–19. doi: 10.4236/fns.2012.37134.
  • Havrlentová, M., and J. Á. N. Kraic. 2006. Beta Glucan Composicion En Diferentes Granos 45:97–103.
  • Henrion, M., C. Francey, K. A. Lê, and L. Lamothe. 2019. Cereal B-glucans: The impact of processing and how it affects physiological responses. Nutrients 11 (8):1729–14. doi: 10.3390/nu11081729.
  • Herrera, M. P., J. Gao, T. Vasanthan, F. Temelli, and K. Henderson. 2016. β-Glucan content, viscosity, and solubility of Canadian grown oat as influenced by cultivar and growing location. Canadian Journal of Plant Science 96 (2):183–96. doi: 10.1139/cjps-2014-0440.
  • Hong, H., C. J. Kim, J. D. Kim, and J. H. Seo. 2014. β-glucan reduces exercise-induced stress through downregulation of c-Fos and c-Jun expression in the brains of exhausted rats. Molecular Medicine Reports 9 (5):1660–6. doi: 10.3892/mmr.2014.2005.
  • Hong, K., K. H. Jang, J. C. Lee, S. Kim, M. K. Kim, I. Y. Lee, S. M. Kim, Y. H. Lim, and S. A. Kang. 2005. Bacterial β-glucan exhibits potent hypoglycemic activity via decrease of serum lipids and adiposity, and increase of UCP mRNA expression. Journal of Microbiology and Biotechnology 15:823–30.
  • Hromádková, Z., A. Ebringerová, V. Sasinková, J. Šandula, V. Hřı́balová, and J. Omelková. 2003. Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1 → 3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydrate Polymers 51 (1):9–15. doi: 10.1016/S0144-8617(02)00110-8.
  • Hunt, S. D. 2018. A clinical observation evaluation of bioactive soluble beta-glucan gel compared with standard care. Journal of Wound Care 27 (9):620–30. doi: 10.12968/jowc.2018.27.9.620.
  • Immerstrand, T., B. Bergenståhl, C. Trägårdh, M. Nyman, S. Cui, and R. Öste. 2009. Extraction of β-glucan from oat bran in laboratory scale. Cereal Chemistry 86 (6):601–8. doi: 10.1094/CCHEM-86-6-0601.
  • Iñiguez, M., P. Pérez-Matute, M. J. Villanueva-Millán, E. Recio-Fernández, I. Roncero-Ramos, M. Pérez-Clavijo, and J. A. Oteo. 2018. Agaricus bisporus supplementation reduces high-fat diet-induced body weight gain and fatty liver development. Journal of Physiology and Biochemistry 74 (4):635–46. doi: 10.1007/s13105-018-0649-6.
  • Iraz, M., M. Iraz, M. Eşrefoğlu, and M. Ş. Aydin. 2015. Protective effect of β-glucan on acute lung injury induced by lipopolysaccharide in rats. Turkish Journal of Medical Sciences 45 (2):261–7. doi: 10.3906/sag-1312-1.
  • Jakobsdottir, G., J. Xu, G. Molin, S. Ahrné, and M. Nyman. 2013. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8 (11):e80476. doi: 10.1371/journal.pone.0080476.
  • Javmen, A. 2012. β-glucan extraction from Saccharomyces cerevisiae yeast using Actinomyces rutgersensis 88 yeast lyzing enzymatic complex. Biologija 58:51–9.
  • Javmen, A., A. Nemeikaite-Čeniene, M. Bratchikov, S. Grigiškis, F. Grigas, I. Jonauskiene, D. Zabulyte, and M. Mauricas. 2015. β-Glucan from Saccharomyces cerevisiae induces IFN-γ production in vivo in BALB/c mice. In Vivo (Brooklyn) 29:359–64.
  • Ji-Lin, D., Z. Ying-Ying, L. Lin, S. Rui-Ling, and L. Hong. 2014. Effect of oat soluble and insoluble β-glucan on lipid metabolism and intestinal Lactobacillus in high-fat diet-induced obese mice. Journal of Food and Nutrition Research 2 (8):510–6. doi: 10.12691/jfnr-2-8-13.
  • Jia, X., Q. Liu, S. Zou, X. Xu, and L. Zhang. 2015. Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydrate Polymers 117:434–42. doi: 10.1016/j.carbpol.2014.09.088.
  • Johansson, L., P. Tuomainen, H. Anttila, H. Rita, and L. Virkki. 2007. Effect of processing on the extractability of oat β-glucan. Food Chemistry 105 (4):1439–45. doi: 10.1016/j.foodchem.2007.05.021.
  • Jones, V., J. E. Grey, and K. G. Harding. 2006. ABC of wound healing: Wound dressings. BMJ (Clinical Research ed.) 332 (7544):777–80. doi: 10.1136/bmj.332.7544.777.
  • JR, P., and Y W. 2016. A review of physiological effects of soluble and insoluble dietary fibers. Journal of Nutrition & Food Sciences 6:2. doi: 10.4172/2155-9600.1000476.
  • Kanagasabapathy, G., S. N. A. Malek, A. A. Mahmood, K. H. Chua, S. Vikineswary, and U. R. Kuppusamy. 2013. Beta-glucan-rich extract from pleurotus sajor-caju (Fr.) singer prevents obesity and oxidative stress in C57BL/6J mice fed on a high-fat diet. Evidence-based Complement. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:185259. doi: 10.1155/2013/185259.
  • Kaur, R., M. Sharma, D. Ji, M. Xu, and D. Agyei. 2020. Structural features, modification, and functionalities of beta-glucan. Fibers 8 (1):1. doi: 10.3390/fib8010001.
  • Kerckhoffs, D. A. J. M., G. Hornstra, and R. P. Mensink. 2003. Cholesterol-lowering effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. The American Journal of Clinical Nutrition 78 (2):221–7. doi: 10.1093/ajcn/78.2.221.
  • Kim, H., K. S. Stote, K. M. Behall, K. Spears, B. Vinyard, and J. M. Conway. 2009. Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, beta-glucan: A dose response study in obese women with increased risk for insulin resistance. European Journal of Nutrition 48 (3):170–5. doi: 10.1007/s00394-009-0778-3.
  • Kim, H. J., and P. J. White. 2013. Impact of the molecular weight, viscosity, and solubility of β-glucan on in vitro oat starch digestibility. Journal of Agricultural and Food Chemistry 61 (13):3270–7. doi: 10.1021/jf305348j.
  • Kim, H. L., J. H. Lee, M. H. Lee, B. J. Kwon, and J. C. Park. 2012. Evaluation of electrospun (1,3)-(1,6)-β-D-glucans/biodegradable polymer as artificial skin for full-thickness wound healing. Tissue Engineering. Part A 18 (21–22):2315–22. doi: 10.1089/ten.tea.2011.0686.
  • Kim, H. S., J. T. Hong, Y. Kim, and S.-B. Han. 2011. Stimulatory Effect of β-glucans on Immune Cells. Immune Network 11 (4):191–5. doi: 10.4110/in.2011.11.4.191.
  • Kim, K., A. Ehrlich, V. Perng, J. A. Chase, H. Raybould, X. Li, E. R. Atwill, R. Whelan, A. Sokale, and Y. Liu. 2019. Algae-derived β-glucan enhanced gut health and immune responses of weaned pigs experimentally infected with a pathogenic E. coli. Animal Feed Science and Technology 248:114–25. doi: 10.1016/j.anifeedsci.2018.12.004.
  • Korolenko, T. A., N. P. Bgatova, and V. Vetvicka. 2019. Glucan and mannan—Two peas in a pod. International Journal of Molecular Sciences 20 (13):3189. doi: 10.3390/ijms20133189.
  • Kumagai, Y., M. Okuyama, and A. Kimura. 2016. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides. Carbohydrate Polymers 146:396–401. doi: 10.1016/j.carbpol.2016.03.066.
  • Kwon, A. H., Z. Qiu, M. Hashimoto, K. Yamamoto, and T. Kimura. 2009. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. American Journal of Surgery 197 (4):503–9. doi: 10.1016/j.amjsurg.2007.11.021.
  • Lan-Pidhainy, X., Y. Brummer, S. M. Tosh, T. M. Wolever, and P. J. Wood. 2007. Reducing beta-glucan solubility in oat bran muffins by freeze-thaw treatment attenuates its hypoglycemic effect. Cereal Chemistry 84 (5):512–7. doi: 10.1094/CCHEM-84-5-0512.
  • Lanktree, M. B., and R. A. Hegele. 2018. Metabolic syndrome. In Genomic and precision medicine: Cardiovascular disease. 3rd ed. New York, NY: Elsevier Inc. doi: 10.1016/B978-0-12-801812-5.00015-9.
  • Larson, B. J., A. Nauta, K. Kawai, M. T. Longaker, and H. P. Lorenz. 2011. Scarring and scarless wound healing. In Advanced wound repair therapies, 77–111. New York, NY: Elsevier Inc. doi: 10.1533/9780857093301.1.77.
  • Lattimer, J. M., and M. D. Haub. 2010. Effects of dietary fiber and its components on metabolic health. Nutrients 2 (12):1266–89. doi: 10.3390/nu2121266.
  • Lee, C. J., R. D. Horsley, F. A. Manthey, and P. B. Schwarz. 1997. Comparisons of β-glucan content of barley and oat. Cereal Chemistry 74 (5):571–5. doi: 10.1094/CCHEM.1997.74.5.571.
  • Lee, Y. T., P. Puligundla, and P. B. Schwarz. 2017. Molecular weight, solubility and viscosity of β-Glucan preparations from barley pearling byproducts. Sains Malaysiana 46 (5):713–8. doi: 10.17576/jsm-2017-4605-05.
  • Legentil, L., F. Paris, C. Ballet, S. Trouvelot, X. Daire, V. Vetvicka, and V. Ferrières. 2015. Molecular interactions of β-(1→3)-glucans with their receptors. Molecules (Basel, Switzerland) 20 (6):9745–66. doi: 10.3390/molecules20069745.
  • Li, X., P. Chen, P. Zhang, Y. Chang, M. Cui, and J. Duan. 2019. Protein-bound β-glucan from coriolus versicolor has potential for use against obesity. Molecular Nutrition & Food Research 63 (7):1801231. doi: 10.1002/mnfr.201801231.
  • Li, Y., Y. Fan, H. Pan, H. Qian, X. Qi, G. Wu, H. Zhang, M. Xu, Z. Rao, L. Wang, et al. 2018. Effects of functional β-glucan on proliferation, differentiation, metabolism and its anti-fibrosis properties in muscle cells. International Journal of Biological Macromolecules 117:287–93. doi: 10.1016/j.ijbiomac.2018.05.188.
  • Lim, Y. M., B. H. Kim, H. B. Kim, E. Park, S. W. Park, J. S. Park, S. I. Choi, T. K. Kwon, and S. K. Kwon. 2015. Vocal fold augmentation with beta glucan hydrogel cross-linked by γ irradiation for enhanced duration of effect: In vivo animal study. BioMed Research International 2015:592372. doi: 10.1155/2015/592372.
  • Long, N. T., T. L. T. Ha, H. N. Son, and L. Q. Luan. 2019. Radiation degradation of β-glucan extracted from brewer’s yeast for enhancing growth promotion and immunostimulant activities on broilers. International Journal of Polymeric Science 2019:1–9. doi: 10.1155/2019/8901824.
  • Ma, Z., J. Wang, L. Zhang, Y. Zhang, and K. Ding. 2010. Evaluation of water soluble β-d-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohydrate Polymers 80 (3):977–83. doi: 10.1016/j.carbpol.2010.01.015.
  • Magee, A. S., R. R. Langeslay, P. M. Will, M. E. Danielson, L. R. Wurst, and V. A. Iiams. 2015. Modification of the degree of branching of a beta-(1,3)-glucan affects aggregation behavior and activity in an oxidative burst assay. Biopolymers 103 (12):665–74. doi: 10.1002/bip.22685.
  • Mah, E., V. N. Kaden, K. M. Kelley, and D. A. J. Liska. 2020. Beverage containing dispersible yeast β-glucan decreases cold/flu symptomatic days after intense exercise: A randomized controlled trial. Journal of Dietary Supplements 17 (2):200–10. doi: 10.1080/19390211.2018.1495676.
  • Maheshwari, G., S. Sowrirajan, and B. Joseph. 2017. Extraction and isolation of β-glucan from grain sources—A review. Journal of Food Science 82 (7):1535–45. doi: 10.1111/1750-3841.13765.
  • Majtan, J., and M. Jesenak. 2018. β-Glucans: Multi-functional modulator of wound healing. Molecules 23 (4):806–15. doi: 10.3390/molecules23040806.
  • Mäkelä, N., O. Brinck, and T. Sontag-Strohm. 2020. Viscosity of β-glucan from oat products at the intestinal phase of the gastrointestinal model. Food Hydrocolloids 100:105422. doi: 10.1016/j.foodhyd.2019.105422.
  • Mäkeläinen, H., H. Anttila, J. Sihvonen, R. M. Hietanen, R. Tahvonen, E. Salminen, M. Mikola, and T. Sontag-Strohm. 2007. The effect of beta-glucan on the glycemic and insulin index. European Journal of Clinical Nutrition 61 (6):779–85. doi: 10.1038/sj.ejcn.1602561.
  • Many, J. N. 2014. Analysis of different extraction methods on the yield and recovery of β-glucan from Baker’s. Yeast (Saccharomyces Cerevisiae) 1:268–71.
  • Marasca, E., S. Boulos, and L. Nyström. 2020. Bile acid-retention by native and modified oat and barley β-glucan. Carbohydrate Polymers 236:116034. doi: 10.1016/j.carbpol.2020.116034.
  • McFarlin, B. K., A. S. Venable, K. C. Carpenter, A. L. Henning, and S. Ogenstad. 2017. Oral supplementation with Baker’s yeast beta glucan is associated with altered monocytes, T cells and cytokines following a bout of strenuous exercise. Frontiers in Physiology 8:1–13. doi: 10.3389/fphys.2017.00786.
  • Mitra, S., A. De, and A. Chowdhury. 2020. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Translational Gastroenterology and Hepatology 5:16. doi: 10.21037/tgh.2019.09.08.
  • Miyamoto, J., K. Watanabe, S. Taira, M. Kasubuchi, X. Li, J. Irie, H. Itoh, and I. Kimura. 2018. Barley β-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS One 13 (4):e0196579. doi: 10.1371/journal.pone.0196579.
  • Moore, D. R. 2015. Nutrition to support recovery from endurance exercise: Optimal carbohydrate and protein replacement. Current Sports Medicine Reports 14 (4):294–300. doi: 10.1249/JSR.0000000000000180.
  • Mudgil, D. 2017. The interaction between insoluble and soluble fiber, dietary fiber for the prevention of cardiovascular disease: Fiber’s interaction between gut micoflora, sugar metabolism, weight control and cardiovascular health. New York, NY: Elsevier Inc. doi: 10.1016/B978-0-12-805130-6.00003-3.
  • Murphy, E. J., E. Rezoagli, I. Major, N. J. Rowan, and J. G. Laffey. 2020. Β-glucan metabolic and immunomodulatory properties and potential for clinical application. Journal of Fungi 6 (4):356–33. doi: 10.3390/jof6040356.
  • Muthuramalingam, K., S. I. Choi, C. Hyun, Y. M. Kim, and M. Cho. 2019. β-glucan-based wet dressing for cutaneous wound healing. Advances in Wound Care 8 (4):125–35. doi: 10.1089/wound.2018.0843.
  • Muthuramalingam, K., S. Park, and M. Cho. 2018. Synthesis and optimization of immunomodulating hydrogel for biomedical application. Journal of Applied Biological Chemistry 61 (4):351–5. doi: 10.3839/jabc.2018.049.
  • Muthuramalingam, K., V. Singh, C. Choi, S. I. Choi, Y. M. Kim, T. Unno, and M. Cho. 2019. Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. European Journal of Nutrition 59 (6):2617–29. doi: 10.1007/s00394-019-02110-5.
  • Muthuramalingam, K., V. Singh, C. Choi, S. I. Choi, S. Park, Y. M. Kim, T. Unno, and M. Cho. 2019. Effect of mushroom (Schizophyllum spp.) derived β-glucan on low-fiber diet induced gut dysbiosis. Journal of Applied Biological Chemistry 62 (2):211–7. doi: 10.3839/jabc.2019.029.
  • Nair, A. V., M. Raman, and M. Doble. 2016. Cyclic β-(1→3) (1→6) glucan/carrageenan hydrogels for wound healing applications. RSC Advances 6 (100):98545–53. doi: 10.1039/C6RA23386D.
  • Nakamura, A., Q. Zhu, Y. Yokoyama, N. Kitamura, S. Uchida, K. Kumadaki, K. Tsubota, and M. Watanabe. 2019. Agaricus brasiliensis KA21 may prevent diet-induced nash through its antioxidant, anti-inflammatory, and anti-fibrotic activities in the liver. Foods 8 (11):546–16. doi: 10.3390/foods8110546.
  • Nakashima, A., R. Sugimoto, K. Suzuki, Y. Shirakata, T. Hashiguchi, C. Yoshida, and Y. Nakano. 2019. Anti-fibrotic activity of Euglena gracilis and paramylon in a mouse model of non-alcoholic steatohepatitis. Food Science & Nutrition 7 (1):139–47. doi: 10.1002/fsn3.828.
  • Nishantha, M. D. L. C., X. Zhao, D. C. Jeewani, J. Bian, X. Nie, and S. Weining. 2018. Direct comparison of β-glucan content in wild and cultivated barley. International Journal of Food Properties 21 (1):2218–28. doi: 10.1080/10942912.2018.1500486.
  • Novak, M., and V. Vetvicka. 2009. Glucans as biological response modifiers. Endocrine, Metabolic & Immune Disorders Drug Targets 9 (1):67–75. doi: 10.2174/187153009787582423.
  • Nseir, W., E. Hellou, and N. Assy. 2014. Role of diet and lifestyle changes in nonalcoholic fatty liver disease. World Journal of Gastroenterology 20 (28):9338–44. doi: 10.3748/wjg.v20.i28.9338.
  • Ohtani, N., and N. Kawada. 2019. Role of the gut-liver axis in liver inflammation, fibrosis, and cancer: A special focus on the gut microbiota relationship. Hepatology Communications 3 (4):456–70. doi: 10.1002/hep4.1331.
  • Paik, J. M., P. Golabi, Y. Younossi, A. Mishra, and Z. M. Younossi. 2020. Changes in the global burden of chronic liver diseases from 2012 to 2017: The growing impact of nonalcoholic fatty liver disease. Hepatology 72 (5):1605–16. doi: 10.1002/hep.31173.
  • Panchal, S. K., H. Poudyal, A. Iyer, R. Nazer, A. Alam, V. Diwan, K. Kauter, C. Sernia, F. Campbell, L. Ward, et al. 2011. High-carbohydrate high-fat diet–induced metabolic syndrome and cardiovascular remodeling in rats. Journal of Cardiovascular Pharmacology 57 (1):51–64. doi: 10.1097/FJC.0b013e3181feb90a.
  • Penney, J., Y. Lu, B. Pan, Y. Feng, C. Walk, and J. Li. 2019. Pure yeast beta-glucan and two types of yeast cell wall extracts enhance cell migration in porcine intestine model. Journal of Functional Foods 59:129–37. doi: 10.1016/j.jff.2019.05.037.
  • Peymaeei, F., F. Sadeghi, E. Safari, S. Khorrami, M. Falahati, S. R. Mohammadi, and M. Roudbary. 2020. Candida albicans beta-glucan induce anti-cancer activity of mesenchymal stem cells against lung cancer cell line: An in-vitro experimental study. Asian Pacific Journal of Cancer Prevention 21 (3):837–43. doi: 10.31557/APJCP.2020.21.3.837.
  • Przybylska-Diaz, D. A., J. G. Schmidt, N. I. Vera-Jiménez, D. Steinhagen, and M. E. Nielsen. 2013. β-glucan enriched bath directly stimulates the wound healing process in common carp (Cyprinus carpio L.). Fish & Shellfish Immunology 35 (3):998–1006. doi: 10.1016/j.fsi.2013.05.014.
  • Qi, C., Y. Cai, L. Gunn, C. Ding, B. Li, G. Kloecker, K. Qian, J. Vasilakos, S. Saijo, Y. Iwakura, et al. 2011. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood 117 (25):6825–36. doi: 10.1182/blood-2011-02-339812.
  • Queenan, K. M., M. L. Stewart, K. N. Smith, W. Thomas, R. G. Fulcher, and J. L. Slavin. 2007. Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutrition Journal 6:1–8. doi: 10.1186/1475-2891-6-6.
  • Raa, J. 2015. Immune modulation by non-digestible and non-absorbable beta-1,3/1,6-glucan. Microbial Ecology in Health and Disease 26:4–7. doi: 10.3402/mehd.v26.27824.
  • Regand, A., S. M. Tosh, T. M. S. Wolever, and P. J. Wood. 2009. Physicochemical properties of beta-glucan in differently processed oat foods influence glycemic response. Journal of Agricultural and Food Chemistry 57 (19):8831–8. doi: 10.1021/jf901271v.
  • Roeder, A., C. J. Kirschning, R. A. Rupec, M. Schaller, G. Weindl, and H. C. Korting. 2004. Toll-like receptors as key mediators in innate antifungal immunity. Medical Mycology 42 (6):485–98. doi: 10.1080/13693780400011112.
  • Rohr, M. W., C. A. Narasimhulu, T. A. Rudeski-Rohr, and S. Parthasarathy. 2020. Negative effects of a high-fat diet on intestinal permeability: A review. Advances in Nutrition (Bethesda, Md.) 11 (1):77–91. doi: 10.1093/advances/nmz061.
  • Sahasrabudhe, N. M., J. Dokter-Fokkens, and P. de Vos. 2016. Particulate β-glucans synergistically activate TLR4 and Dectin-1 in human dendritic cells. Molecular Nutrition & Food Research 60 (11):2514–22. doi: 10.1002/mnfr.201600356.
  • Sari, M., A. Prange, J. I. Lelley, and R. Hambitzer. 2017. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chemistry 216:45–51. doi: 10.1016/j.foodchem.2016.08.010.
  • Sato, T., K. Iwabuchi, I. Nagaoka, Y. Adachi, N. Ohno, H. Tamura, K. Seyama, Y. Fukuchi, H. Nakayama, F. Yoshizaki, et al. 2006. Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta-glucan. Journal of Leukocyte Biology 80 (1):204–11. doi: 10.1189/jlb.0106069.
  • Savelkoul, H. F. J., W. Chanput, and H. J. Wichers. 2013. Immunomodulatory effects of mushroom β-glucans, Diet, Immunity and Inflammation. Sawston, UK: Woodhead Publishing Limited. doi: 10.1533/9780857095749.3.416.
  • Seo, G., C. Hyun, S. Choi, Y. M. Kim, and M. Cho. 2019. The wound healing effect of four types of beta-glucan. Applied Biological Chemistry 62:20. doi: 10.1186/s13765-019-0428-2.
  • Shaw, T. J., and P. Martin. 2009. Wound repair at a glance. Journal of Cell Science 122 (Pt 18):3209–13. doi: 10.1242/jcs.031187.
  • Shibakami, M., K. Shibata, A. Akashi, N. Onaka, J. Takezaki, G. Tsubouchi, and H. Yoshikawa. 2019. Correction to: Creation of straight-chain cationic polysaccharide-based bile salt sequestrants made from euglenoid β-1,3-glucan as potential antidiabetic agents. Pharmaceutical Research 36 (1):23. doi:10.1007/s11095-018-2559-2.
  • Shimizu, C., M. Kihara, S. Aoe, S. Araki, K. Ito, K. Hayashi, J. Watari, Y. Sakata, and S. Ikegami. 2008. Effect of high beta-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men-a randomized, double-blinded, placebo-controlled trial. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 63 (1):21–5. doi: 10.1007/s11130-007-0064-6.
  • Shokri, H., F. Asadi, and A. R. Khosravi. 2008. Isolation of beta-glucan from the cell wall of Saccharomyces cerevisiae. Natural Product Research 22 (5):414–21. doi: 10.1080/14786410701591622.
  • Silva, F. M., T. Steemburgo, V. D. F. De Mello, S. F. Tonding, J. L. Gross, and M. J. Azevedo. 2011. High dietary glycemic index and low fiber content are associated with metabolic syndrome in patients with type 2 diabetes. Journal of the American College of Nutrition 30 (2):141–8. doi: 10.1080/07315724.2011.10719953.
  • Singh, V., B. S. Yeoh, B. Chassaing, X. Xiao, P. Saha, R. Aguilera Olvera, J. D. Lapek, L. Zhang, W. B. Wang, S. Hao, et al. 2018. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175 (3):679–94.e22. doi: 10.1016/j.cell.2018.09.004.
  • Spahis, S., J. M. Borys, and E. Levy. 2017. Metabolic syndrome as a multifaceted risk factor for oxidative stress. Antioxidants & Redox Signaling 26 (9):445–61. doi: 10.1089/ars.2016.6756.
  • Stier, H., V. Ebbeskotte, and J. Gruenwald. 2014. Immune-modulatory effects of dietary yeast beta-1,3/1,6-D-glucan. Nutrition Journal 13:1–9. doi: 10.1186/1475-2891-13-38.
  • Sun, Q., M. Li, X. Yang, X. Xu, J. Wang, and J. Zhang. 2017. Dietary salecan reverts partially the metabolic gene expressions and NMR-based metabolomic profiles from high-fat-diet-induced obese rats. The Journal of Nutritional Biochemistry 47:53–62. doi: 10.1016/j.jnutbio.2017.04.015.
  • Sun, X., Y. Gao, Z. Ding, Y. Zhao, Y. Yang, Q. Sun, X. Yang, W. Ge, X. Xu, R. Cheng, et al. 2020. Soluble beta-glucan salecan improves vaginal infection of Candida albicans in mice. International Journal of Biological Macromolecules 148:1053–60. doi: 10.1016/j.ijbiomac.2020.01.220.
  • Suzuki, T., N. Ohno, T. Yadomae, and K. Saito. 1992. Activation of the complement system by (l->3)-/5-D-glucans having different degrees of branching and different ultrastructures. Journal of Pharmacobio-Dynamics 15 (6):277–85. doi: 10.1248/bpb1978.15.277.
  • Tejiram, S., S. L. Kavalukas, J. W. Shupp, and A. Barbul. 2016. Wound healing. In Wound healing biomaterials. New York, NY: Elsevier Ltd. doi: 10.1016/B978-1-78242-455-0.00001-X.
  • Thondre, P. S., and C. J. K. Henry. 2011. Effect of a low molecular weight, high-purity β-glucan on in vitro digestion and glycemic response. International Journal of Food Sciences and Nutrition 62 (7):678–84. doi: 10.3109/09637486.2011.566849.
  • Tiwari, U. P., A. K. Singh, and R. Jha. 2019. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 5 (3):217–26. doi: 10.1016/j.aninu.2019.04.003.
  • van den Berg, L. M., E. M. Zijlstra-Willems, C. D. Richters, M. M. W. Ulrich, and T. B. H. Geijtenbeek. 2014. Dectin-1 activation induces proliferation and migration of human keratinocytes enhancing wound re-epithelialization. Cellular Immunology 289 (1–2):49–54. doi: 10.1016/j.cellimm.2014.03.007.
  • Vannucci, L., J. Krizan, P. Sima, D. Stakheev, F. Caja, L. Rajsiglova, V. Horak, and M. Saieh. 2013. Immunostimulatory properties and antitumor activities of glucans (Review). International Journal of Oncology 43 (2):357–64. doi: 10.3892/ijo.2013.1974.
  • Vasconcelos, A. F. D., N. K. Monteiro, R. F. H. Dekker, A. M. Barbosa, E. R. Carbonero, J. L. M. Silveira, G. L. Sassaki, R. da Silva, and M. de Lourdes Corradi da Silva. 2008. Three exopolysaccharides of the β-(1→6)-d-glucan type and a β-(1→3;1→6)-d-glucan produced by strains of Botryosphaeria rhodina isolated from rotting tropical fruit. Carbohydrate Research 343 (14):2481–5. doi: 10.1016/j.carres.2008.06.013.
  • Velikonja, A., L. Lipoglavšek, M. Zorec, R. Orel, and G. Avguštin. 2019. Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe 55:67–77. doi: 10.1016/j.anaerobe.2018.11.002.
  • Vetvicka, V., J. Richter, V. Svozil, L. R. Dobiášová, and V. Král. 2013. Placebo-driven clinical trials of yeast-derived ß-(1,3) glucan in children with chronic respiratory problems. Annals of Translational Medicine 1:3–7. doi: 10.3978/j.issn.2305-5839.2013.07.01.
  • Vetvicka, V., L. Vannucci, P. Sima, and J. Richter. 2019. Beta glucan: Supplement or drug? From laboratory to clinical trials. Molecules 24 (7):1251. doi: 10.3390/molecules24071251.
  • Vetvicka, V., and J. Vetvickova. 2011. β(1-3)-D-glucan affects adipogenesis, wound healing and inflammation. Oriental Pharmacy and Experimental Medicine 11 (3):169–75. doi: 10.1007/s13596-011-0024-4.
  • Wang, Y., N. P. Ames, H. M. Tun, S. M. Tosh, P. J. Jones, and E. Khafipour. 2016. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Frontiers in Microbiology 7:1–15. doi: 10.3389/fmicb.2016.00129.
  • Waqar, A. B., T. Koike, Y. Yu, T. Inoue, T. Aoki, E. Liu, and J. Fan. 2010. High-fat diet without excess calories induces metabolic disorders and enhances atherosclerosis in rabbits. Atherosclerosis 213 (1):148–55. doi: 10.1016/j.atherosclerosis.2010.07.051.
  • Waszkiewicz-Robak, B. 2013. Spent Brewer’s yeast and beta-glucans isolated from them as diet components modifying blood lipid metabolism disturbed by an atherogenic diet. In Lipid metabolism. London, UK: InTech Open. doi: 10.5772/51530.
  • Watanabe, T., R. Shimada, A. Matsuyama, M. Yuasa, H. Sawamura, E. Yoshida, and K. Suzuki. 2013. Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice. Food & Function 4 (11):1685–90. doi: 10.1039/c3fo60256g.
  • Williams, B. A., L. J. Grant, M. J. Gidley, and D. Mikkelsen. 2017. Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. International Journal of Molecular Sciences 18 (10):2203. doi: 10.3390/ijms18102203.
  • Woo, Y. I., B. J. Park, H. L. Kim, M. H. Lee, J. Kim, Y. I. Yang, J. K. Kim, K. Tsubaki, D. W. Han, and J. C. Park. 2010. The biological activities of (1,3)-(1,6)-beta-d-glucan and porous electrospun PLGA membranes containing beta-glucan in human dermal fibroblasts and adipose tissue-derived stem cells. Biomedical Materials (Bristol, England) 5 (4):044109. doi: 10.1088/1748-6041/5/4/044109.
  • Woodward, J. R., G. B. Fincher, and B. A. Stone. 1983. Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydrate Polymers 3 (3):207–25. doi: 10.1016/0144-8617(83)90019-X.
  • Wypych, T. P., B. J. Marsland, and N. D. J. Ubags. 2017. The impact of diet on immunity and respiratory diseases. Annals of the American Thoracic Society 14 (Supplement_5):S339–S47. doi: 10.1513/AnnalsATS.201703-255AW.
  • Xin-Zhong, H., S. Xia-Lu, L. Xiao-Ping, L. Liu, Z. Jian-Mei, and C. Xing-Yun. 2015. Effect of dietary oat β-glucan on high-fat diet induced obesity in HFA mice. Bioactive Carbohydrates and Dietary Fibre 5 (1):79–85. doi: 10.1016/j.bcdf.2014.12.006.
  • Xu, C., J. Lv, Y. M. Lo, S. W. Cui, X. Hu, and M. Fan. 2013. Effects of oat β-glucan on endurance exercise and its anti-fatigue properties in trained rats. Carbohydrate Polymers 92 (2):1159–65. doi: 10.1016/j.carbpol.2012.10.023.
  • Xu, J., X. Wang, K. Cao, Z. Dong, Z. Feng, and J. Liu. 2017. Combination of β-glucan and morus alba L. Leaf extract promotes metabolic benefits in mice fed a high-fat diet. Nutrients 9 (10):1110. doi: 10.3390/nu9101110.
  • Xu, X., Y. Ding, Y. Yang, Y. Gao, Q. Sun, J. Liu, X. Yang, J. Wang, and J. Zhang. 2018. β-glucan salecan improves exercise performance and displays anti-fatigue effects through regulating energy metabolism and oxidative stress in mice. Nutrients 10 (7):858. doi: 10.3390/nu10070858.
  • Yadav, M., and J. S. Schorey. 2006. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108 (9):3168–75. doi: 10.1182/blood-2006-05-024406.
  • Yasuda, K., M. Ogushi, A. Nakashima, Y. Nakano, and K. Suzuki. 2018. Accelerated wound healing on the skin using a film dressing with β-glucan paramylon. In Vivo (Athens, Greece) 32 (4):799–805. doi: 10.21873/invivo.11310.
  • You, S., X. Hu, Q. Zhao, X. Chen, and C. Xu. 2013. Oat β-glucan inhibits lipopolysaccharide-induced nonalcoholic steatohepatitis in mice. Food & Function 4 (9):1360–8. doi: 10.1039/c3fo60081e.
  • Younossi, Z., Q. M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, J. George, and E. Bugianesi. 2018. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nature Reviews. Gastroenterology & Hepatology 15 (1):11–20. doi: 10.1038/nrgastro.2017.109.
  • Yousef, H., M. Alhajj, S. Sharma, and M. F. Hospital. 2020. Anatomy, skin (integument), epidermis. In StatPearls [internet], 1–7. Treasure Island, FL: StatPearls Publishing.
  • Zabriskie, H. A., J. C. Blumkaitis, J. M. Moon, B. S. Currier, R. Stefan, K. Ratli, P. S. Harty, R. A. Stecker, K. Rudnicka, R. Jäger, et al. 2020. Yeast beta-glucan supplementation downregulates treadmill exercise 8.
  • Zacharski, D. M., S. Esch, S. König, M. Mormann, S. Brandt, G. Ulrich-Merzenich, and A. Hensel. 2018. β-1,3/1,4-Glucan Lichenan from Cetraria islandica (L.) ACH. induces cellular differentiation of human keratinocytes. Fitoterapia 129:226–36. doi: 10.1016/j.fitote.2018.07.010.
  • Zhang, M., P. C. K. Cheung, L. Zhang, C. M. Chiu, and V. E. C. Ooi, 2004. Carboxymethylated β-glucans from mushroom sclerotium of Pleurotus tuber-regium as novel water-soluble anti-tumor agent. Carbohydrate Polymers 57:319–25. doi: 10.1016/j.carbpol.2004.05.008.
  • Zhao, R., H. Liang, E. Clarke, C. Jackson, and M. Xue. 2016. Inflammation in chronic wounds. International Journal of Molecular Sciences 17 (12):2085–14. doi: 10.3390/ijms17122085.
  • Zheng, J., N. Shen, S. Wang, and G. Zhao. 2013. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet. Food & Nutrition Research 57 (1):22754. doi: 10.3402/fnr.v57i0.22754.
  • Zielke, C., O. Kosik, M. L. Ainalem, A. Lovegrove, A. Stradner, and L. Nilsson. 2017. Characterization of cereal β-glucan extracts from oat and barley and quantification of proteinaceous matter. PLoS One 12 (2):e0172034. doi: 10.1371/journal.pone.0172034.
  • Zoller, H., and H. Tilg. 2016. Nonalcoholic fatty liver disease and hepatocellular carcinoma. Metabolism: clinical and Experimental 65 (8):1151–60. doi: 10.1016/j.metabol.2016.01.010.
  • Zykova, S. N., K. A. Balandina, N. V. Vorokhobina, A. V. Kuznetsova, R. Engstad, and T. A. Zykova. 2014. Macrophage stimulating agent soluble yeast β-1,3/1,6-glucan as a topical treatment of diabetic foot and leg ulcers: A randomized, double blind, placebo-controlled phase II study. Journal of Diabetes Investigation 5 (4):392–9. doi: 10.1111/jdi.12165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.