1,235
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Current developments on the application of microbial carotenoids as an alternative to synthetic pigments

, &

References

  • Abe, K., H. Hattori, and M. Hirano. 2007. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry 100 (2):656–61. doi: 10.1016/j.foodchem.2005.10.026.
  • Aksu, Z., and A. T. Eren. 2007. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochemical Engineering Journal 35 (2):107–13. doi: 10.1016/j.bej.2007.01.004.
  • Al-Yafeai, A., A. Malarski, and V. Böhm. 2018. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chemistry 242:435–42. doi: 10.1016/j.foodchem.2017.09.070.
  • Algatech. 2021. Accessed January 21, 2021. https://www.algatech.com/
  • Amado, I. R., and J. A. Vázquez. 2015. Mussel processing wastewater: A low-cost substrate for the production of astaxanthin by Xanthophyllomyces dendrorhous. Microbial Cell Factories 14:177 doi: 10.1186/s12934-015-0375-5.
  • Ambati, R. R., D. Gogisetty, R. G. Aswathanarayana, S. Ravi, P. N. Bikkina, L. Bo, and S. Yuepeng. 2019. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews in Food Science and Nutrition 59 (12):1880–902. doi: 10.1080/10408398.2018.1432561.
  • AMR. 2021. Accessed January 21, 2021. https://www.alliedmarketresearch.com/carotenoids-market
  • An, G. H., B. G. Jang, and M. H. Cho. 2001. Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses. Journal of Bioscience and Bioengineering 92 (2):121–5. doi: 10.1263/jbb.92.121.
  • Banzatto, D. A., L. A. de Freita, and M. J. R. Rossini. 2013. Carotenoid production by Rhodotorula rubra cultivated in sugarcane juice, molasses, and syrup. Ciência e Tecnologia de Alimentos 33:14–8. doi: 10.1590/S0101-20612013000500003.
  • Bhosale, P., and R. Gadre. 2001. β-carotene production in sugarcane molasses by a Rhodotorula glutinis mutant. Journal of Industrial Microbiology & Biotechnology 26 (6):327–32. doi: 10.1038/sj.jim.7000138.
  • Black, H. S., F. Boehm, R. Edge, and T. G. Truscott. 2020. The benefits and risks of certain dietary carotenoids that exhibit both anti-and pro-oxidative mechanisms—A comprehensive review. Antioxidants 9 (3):264. doi: 10.3390/antiox9030264.
  • Bogacz-Radomska, L., and J. Harasym. 2018. β-Carotene- properties and production methods. Food Quality and Safety 2 (2):69–74. doi: 10.1093/fqsafe/fyy004.
  • Bolhassani, A. 2015. Cancer chemoprevention by natural carotenoids as an efficient strategy. Anti-Cancer Agents in Medicinal Chemistry 15 (8):1026–31. doi: 10.2174/1871520615666150302125707.
  • Breil, C., M. Abert Vian, T. Zemb, W. Kunz, and F. Chemat. 2017. “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. International Journal of Molecular Sciences 18 (4):708. doi: 10.3390/ijms18040708.
  • Brizio, P., A. Benedetto, M. Righetti, M. Prearo, L. Gasco, S. Squadrone, and M. C. Abete. 2013. Astaxanthin and canthaxanthin (xanthophyll) as supplements in rainbow trout diet: In vivo assessment of residual levels and contributions to human health. Journal of Agricultural and Food Chemistry 61 (46):10954–9. doi: 10.1021/jf4012664.
  • Cardoso, L. A. C., S. Jäckel, S. G. Karp, X. Framboisier, I. Chevalot, and I. Marc. 2016. Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol. Bioresource Technology 200:374–9. doi: 10.1016/j.biortech.2015.09.108.
  • Cardoso, L. A. C., S. G. Karp, and F. Vendruscolo. 2017. Biotechnological production of carotenoids and their applications in food and pharmaceutical products. Carotenoids, eds Dragan J. Cvetkovic and Goran S. Nikolic. IntechOpen. doi: 10.5772/67725
  • Chaiyaso, T., and A. Manowattana. 2018. Enhancement of carotenoids and lipids production by oleaginous red yeast Sporidiobolus pararoseus KM281507. Preparative Biochemistry & Biotechnology 48 (1):13–23. doi: 10.1080/10826068.2017.1381620.
  • Cheng, Y. T., and C. F. Yang. 2016. Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. Journal of the Taiwan Institute of Chemical Engineers 61:270–5. doi: 10.1016/j.jtice.2015.12.027.
  • Choi, S.-A., Y.-K. Oh, J. Lee, S. J. Sim, M. E. Hong, J.-Y. Park, M.-S. Kim, S. W. Kim, and J.-S. Lee. 2019. High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresource Technology 274:120–6. doi: 10.1016/j.biortech.2018.11.082.
  • Choubert, G., and O. Heinrich. 1993. Carotenoid pigments of the green alga Haematococcus pluvialis: Assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112 (2–3):217–26. doi: 10.1016/0044-8486(93)90447-7.
  • Colet, R., L. Urnau, J. Bampi, J. Zeni, B. B. Dias, E. Rodrigues, R. A. Jacques, M. Di Luccio, and E. Valduga. 2017. Use of low-cost agro products as substrate in semi-continuous process to obtain carotenoids by Sporidiobolus salmonicolor. Biocatalysis and Agricultural Biotechnology 11:268–74. doi: 10.1016/j.bcab.2017.07.015.
  • Cyanotech. 2021. Accessed March 21, 2019. https://www.cyanotech.com/astaxanthin/
  • Das, A., S.-H. Yoon, S.-H. Lee, J.-Y. Kim, D.-K. Oh, and S.-W. Kim. 2007. An update on microbial carotenoid production: Application of recent metabolic engineering tools. Applied Microbiology and Biotechnology 77 (3):505–12. doi: 10.1007/s00253-007-1206-3.
  • Davinelli, S., M. E. Nielsen, and G. Scapagnini. 2018. Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients 10 (4):522. doi: 10.3390/nu10040522.
  • de Souza Mesquita, L. M., M. Martins, L. P. Pisani, S. P. M. Ventura, and V. V. de Rosso. 2021. Insights on the use of alternative solvents and technologies to recover bio-based food pigments. Comprehensive Reviews in Food Science and Food Safety 20 (1):787–818. doi: 10.1111/1541-4337.12685.
  • de Souza Mesquita, L. M., S. P. M. Ventura, A. R. C. Braga, L. P. Pisani, A. C. R. V. Dias, and V. V. de Rosso. 2019. Ionic liquid-high performance extractive approach to recover carotenoids from: Bactris gasipaes fruits. Green Chemistry 21 (9):2380–91. doi: 10.1039/C8GC03283A.
  • Delgado-Vargas, F., A. R. Jiménez, O. Paredes-López, and F. J. Francis. 2000. Natural pigments: Carotenoids, anthocyanins, and betalains-characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition 40 (3):173–289. doi: 10.1080/10408690091189257.
  • Di Visconte, G. S., A. Spicer, C. J. Chuck, and M. J. Allen. 2019. The microalgae biorefinery: A perspective on the current status and future opportunities using genetic modification. Applied Sciences 9 (22):4793. doi: 10.3390/app9224793.
  • Dufossé, L. 2018. Microbial pigments from bacteria, yeasts, fungi, and microalgae for the food and feed industries. In Handbook of food bioengineering, natural and artificial flavoring agents and food dyes, eds A. M. Grumezescu, A. M. Holban. Academic Press, 113–32. doi: 10.1016/B978-0-12-811518-3.00004-1.
  • Dufossé, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. Chidambara Murthy, and G. A. Ravishankar. 2005. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science & Technology 16 (9):389–406. doi: 10.1016/j.tifs.2005.02.006.
  • Dumitriu, C., C. Ungureanu, S. Popescu, V. Tofan, M. Popescu, and C. Pirvu. 2015. Ti surface modification with a natural antioxidant and antimicrobial agent. Surface and Coatings Technology 276:175–85. doi: 10.1016/j.surfcoat.2015.06.063.
  • Eggersdorfer, M., and A. Wyss. 2018. Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics 652:18–26. doi: 10.1016/j.abb.2018.06.001.
  • Eren, B., T. S. Tuncay, K. F. Aydin, and Ö. Özer. 2019. Antioxidant properties evaluation of topical astaxanthin formulations as anti-aging products. Journal of Cosmetic Dermatology 18 (1):242–50. doi: 10.1111/jocd.12665.
  • Esatbeyoglu, T., and G. Rimbach. 2017. Canthaxanthin: From molecule to function. Molecular Nutrition & Food Research 61 (6):1600469. doi: 10.1002/mnfr.201600469.
  • Fakhri, S., F. Abbaszadeh, L. Dargahi, and M. Jorjani. 2018. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological Research 136:1–20. doi: 10.1016/j.phrs.2018.08.012.
  • Farkas, Á., T. Bencsik, and J. Deli. 2020. Carotenoids as food additives. In Pigments from microalgae handbook, eds E. Jacob-Lopes, M. Queiroz, L. Zepka, 421–47. Cham: Springer. doi: 10.1007/978-3-030-50971-2_17.
  • Fernández-Sevilla, J. M., F. F. G. Acién, and G. E. Molina. 2010. Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology 86 (1):27–40. doi: 10.1007/s00253-009-2420-y.
  • Foong, L. C., C. W. L. Loh, H. S. Ng, and J. C. W. Lan. 2021. Recent development in the production strategies of microbial carotenoids. World Journal of Microbiology & Biotechnology 37 (1):12 doi: 10.1007/s11274-020-02967-3.
  • Fraser, P. D., M. J. R. Hidalgo, and M. M. A. Lopez. 1996. Carotenoid biosynthesis in wild type and mutant strains of Mucor circinelloides. Biochimica et Biophysica Acta (BBA) - General Subjects 1289 (2):203–8. doi: 10.1016/0304-4165(95)00169-7.
  • Frengova, G., E. Simova, and D. Beshkova. 2004. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Applied Biochemistry and Biotechnology 112 (3):133–41. doi: 10.1385/ABAB:112:3:133.
  • Galasso, C., C. Corinaldesi, and C. Sansone. 2017. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 6 (4):96. doi: 10.3390/antiox6040096.
  • Galaup, P., N. Sutthiwong, M. ‐N. Leclercq‐Perlat, A. Valla, Y. Caro, M. Fouillaud, F. Guérard, and L. Dufossé. 2015. First isolation of Brevibacterium sp. pigments in the rind of an industrial red-smear-ripened soft cheese. International Journal of Dairy Technology 68 (1):144–7. doi: 10.1111/1471-0307.12211.
  • Gao, J., C. Fang, Y. Lin, F. Nie, H. Ji, and S. Liu. 2020. Enhanced extraction of astaxanthin using aqueous biphasic systems composed of ionic liquids and potassiumphosphate. Food Chemistry 309:125672. doi: 10.1016/j.foodchem.2019.125672.
  • Gervasi, T., A. Santini, P. Daliu, A. Z. M. Salem, C. Gervasi, V. Pellizzeri, L. Barrega, P. De Pasquale, G. Dugo, and N. Cicero. 2020. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low-cost substrate. Agroforestry Systems 94 (4):1229–34. doi: 10.1007/s10457-018-00344-6.
  • Ghilardi, C., P. Sanmartin Negrete, A. A. Carelli, and V. Borroni. 2020. Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresources and Bioprocessing 7 (1):52. doi: 10.1186/s40643-020-00341-7.
  • Gminsights. 2021. Accessed January 21, 2021. https://www.gminsights.com/industry-analysis/astaxanthin-market.
  • Gmoser, R., J. A. Ferreira, P. R. Lennartsson, and M. J. Taherzadeh. 2017. Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biology and Biotechnology 4:4. doi: 10.1186/s40694-017-0033-2.
  • Gong, M., and A. Bassi. 2016. Carotenoids from microalgae: A review of recent developments. Biotechnology Advances 34 (8):1396–412. doi: 10.1016/j.biotechadv.2016.10.005.
  • Gul, K., A. Tak, A. K. Singh, P. Singh, B. Yousuf, and A. A. Wani. 2015. Chemistry, encapsulation, and health benefits of β-carotene- A review. Cogent Food & Agriculture 1 (1):1018696. doi: 10.1080/23311932.2015.1018696.
  • Guo, C., L. Zhao, F. Wang, J. Lu, Z. Ding, and G. Shi. 2017. β-carotene from yeasts enhances laccase production of Pleurotus eryngii var. ferulae in co-culture. Frontiers in Microbiology 8:1101. doi: 10.339/fmicb.2017.01101.
  • Harith, Z. T., D. Charalampopoulos, and A. Chatzifragkou. 2019. Rapeseed meal hydrolysate as substrate for microbial astaxanthin production. Biochemical Engineering Journal 151:107330. doi: 10.1016/j.bej.2019.107330.
  • Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresource Technology 55 (3):207–14. doi: 10.1016/0960-8524(95)00002-X.
  • Henríquez, V., C. Escobar, J. Galarza, and J. Gimpel. 2016. Carotenoids in microalgae. In Carotenoids in nature. Subcellular biochemistry, eds C. Stange, vol 79, 219–37. Cham: Springer. doi: 10.1007/978-3-319-39126-7_8.
  • Hernández-Almanza, A., J. Montañez, G. Martínez, A. Aguilar-Jiménez, J. C. Contreras-Esquivel, and C. N. Aguilar. 2016. Lycopene: Progress in microbial production. Trends in Food Science & Technology 56:142–8. doi: 10.1016/j.tifs.2016.08.013.
  • Ip, P. F., K. H. Wong, and F. Chen. 2004. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochemistry 39 (11):1761–6. doi: 10.1016/j.procbio.2003.08.003.
  • Jinsong, Y., T. Haisheng, and Y. Rui. 2011. Astaxanthin production by Phaffia rhodozyma fermentation of cassava residues substrate. Advanced Materials Research 233:2962–9. www.scientific.net/AMR.233-235.2962.
  • Kaur, P., G. Gargi, and J. Ashay. 2019. Bio-utilization of fruits and vegetables waste to produce β-carotene in solid-state fermentation: Characterization and antioxidant activity. Process Biochemistry 76:155–64. doi: 10.1016/j.procbio.2018.10.007.
  • Keceli, T. M., Z. Erginkaya, E. Turkkan, and U. Kaya. 2013. Antioxidant and antibacterial effects of carotenoids extracted from Rhodotorula glutinis strains. Asian Journal of Chemistry 25 (1):42–6. doi: 10.14233/ajchem.2013.12377.
  • Khodaiyan, F., S. H. Razavi, and S. M. Mousavi. 2008. Optimization of canthaxanthin production by Dietzia natronolimnaea HS-1 from cheese whey using statistical experimental methods. Biochemical Engineering Journal 40 (3):415–22. doi: 10.1016/j.bej.2008.01.016.
  • Kirti, K., S. Amita, S. Priti, A. Mukesh Kumar, and S. Jyoti. 2014. Colorful world of microbes: Carotenoids and their applications. Advances in Biology 2014:1–13. doi: 10.1155/2014/837891.
  • Kot, A. M., S. Błażejak, I. Gientka, M. Kieliszek, and J. Bryś. 2018. Torulene and torularhodin: “New” fungal carotenoids for industry? Microbial Cell Factories 17 (1):49. doi: 10.1186/s12934-018-0893-z.
  • Kot, A. M., S. Błażejak, M. Kieliszek, I. Gientka, and J. Bryś. 2019. Simultaneous production of lipids and carotenoids by the red yeast Rhodotorula from waste glycerol fraction and potato wastewater. Applied Biochemistry and Biotechnology 189 (2):589–607. doi: 10.1007/s12010-019-03023-z.
  • Langi, P., S. Kiokias, T. Varzakas, and C. Proestos. 2018. Carotenoids: From plants to food and feed industries. In Microbial carotenoids. Methods in molecular biology, eds C. Barreiro, J. L. Barredo, vol 1852, 57–71. New York, NY: Humana Press. doi: 10.1007/978-1-4939-8742-9_3.
  • Liang, X., C. Ma, X. Yan, X. Liu, and F. Liu. 2019. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene. Trends in Food Science & Technology 93:185–96. doi: 10.1016/j.tifs.2019.08.019.
  • Lian, X., L. Liu, S. Dong, H. Wu, J. Zhao, and Y. Han. 2015. Two new monascus red pigments produced by Shandong Zhonghui Food Company in China. European Food Research and Technology 240 (4):719–24. doi: 10.1007/s00217-014-2376-8.
  • Liao, K.-S., C.-L. Wei, J.-C. Chen, H.-Y. Zheng, W.-C. Chen, C.-H. Wu, T.-J. Wang, Y.-S. Peng, P.-Y. Chang, and Y.-W. Lin. 2016. Astaxanthin enhances pemetrexed-induced cytotoxicity by downregulation of thymidylate synthase expression in human lung cancer cells. Regulatory Toxicology and Pharmacology : RTP 81:353–61. doi: 10.1016/j.yrtph.2016.09.031.
  • Li, H., K. W. Fan, and F. Chen. 2006. Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. Journal of Separation Science 29 (5):699–703. doi: 10.1002/jssc.200500365.
  • Ligia, A. C. C., Y. F. K. Karen, and G. K. Susan. 2017. Microbial production of carotenoids A review. African Journal of Biotechnology 16 (4):139–46. doi: 10.5897/AJB2016.15763.
  • Li, L., Z. Liu, H. Jiang, and X. Mao. 2020. Biotechnological production of lycopene by microorganisms. Applied Microbiology and Biotechnology 104 (24):10307–24. doi: 10.1007/s00253-020-10967-4.
  • Lim, K. C., F. M. Yusoff, M. Shariff, and M. S. Kamarudin. 2018. Astaxanthin as feed supplement in aquatic animals. Reviews in Aquaculture 10 (3):738–73. doi: 10.1111/raq.12200.
  • Lin, Y.-J., J.-J. Chang, H.-Y. Lin, C. Thia, Y.-Y. Kao, C.-C. Huang, and W.-H. Li. 2017. Metabolic engineering a yeast to produce astaxanthin. Bioresource Technology 245 (Pt A):899–905. doi: 10.1016/j.biortech.2017.07.116.
  • Lin, J. H., D. J. Lee, and J. S. Chang. 2015. Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology 184:421–8. doi: 10.1016/j.biortech.2014.09.099.
  • Li, J., D. Zhu, J. Niu, S. Shen, and G. Wang. 2011. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances 29 (6):568–74. doi: 10.1016/j.biotechadv.2011.04.001.
  • M&M. 2021. Accessed January 21, 2021. https://www.marketsandmarkets.com/Market-Reports/lycopene-market104131737
  • Mahmood, W. M. A. W., C. Theodoropoulos, and M. G. Miquel. 2017. Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green Chemistry 19 (23):5723–33. doi: 10.1039/C7GC02735D.
  • Manowattana, A., C. Techapun, and P. Seesuriyachan. 2015. Beta-carotene production by Sporobolomyces pararoseus TISTR5213 using crude glycerol as sole carbon substrate. Chiang Mai Journal of Science 42:17–33.
  • Mantzouridou, F., E. Naziri, and M. Z. Tsimidou. 2008. Industrial glycerol as a supplementary carbon source in the production of beta-carotene by Blakeslea trispora. Journal of Agricultural and Food Chemistry 56 (8):2668–75. doi: 10.1021/jf703667d.
  • Maoka, T. 2011. Carotenoids in marine animals. Marine Drugs 9 (2):278–93. doi: 10.3390/md9020278.
  • Mata-Gómez, L. C., J. C. Montañez, A. Méndez-Zavala, and C. N. Aguilar. 2014. Biotechnological production of carotenoids by yeasts: An overview. Microbial Cell Factories 13:12. doi: 10.1186/1475-2859-13-12.
  • Maury, J., M. A. Asadollahi, and K. Møller. 2005. Microbial isoprenoid production: An example of green chemistry through metabolic engineering. In Biotechnology for the future. Advances in biochemical engineering/biotechnology, eds J. Nielsen, vol 100, 19–51. Berlin, Heidelberg: Springer. doi: 10.1007/b136410.
  • MDF. 2021. Accessed January 21, 2021. https://www.marketdataforecast.com/market-reports/beta-carotene-market-3816/
  • Monte, J., C. Ribeiro, C. Parreira, L. Costa, L. Brive, S. Casal, C. Brazinha, and J. G. Crespo. 2020. Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol. Bioresource Technology 297:122509. doi: 10.1016/j.biortech.2019.122509.
  • Mussagy, C. U., A. A. C. Guimarães, L. V. F. Rocha, J. Winterburn, V. d C. Santos-Ebinuma, and J. F. B. Pereira. 2021. Improvement of carotenoids production from Rhodotorula glutinis CCT-2186. Biochemical Engineering Journal 165:107827. doi: 10.1016/j.bej.2020.107827.
  • Mussagy, C. U., D. Remonatto, A. V. Paula, R. D. Herculano, V. C. Santos-Ebinuma, J. A. P. Coutinho, and J. F. B. Pereira. 2021. Selective recovery and purification of carotenoids and fatty acids from Rhodotorula glutinis using mixtures of biosolvents. Separation and Purification Technology 266:118548. doi: 10.1016/j.seppur.2021.118548.
  • Mussagy, C. U., V. C. Santos-Ebinuma, M. Gonzalez-Miquel, J. A. P. Coutinho, and J. F. B. Pereira. 2019. Protic ionic liquids as cell-disrupting agents for the recovery of intracellular carotenoids from yeast Rhodotorula glutinis CCT-2186. ACS Sustainable Chemistry & Engineering 7 (19):16765–76. doi: 10.1021/acssuschemeng.9b04247.
  • Mussagy, C. U., V. C. Santos-Ebinuma, K. A. Kurnia, A. C. R. V. Dias, P. Carvalho, J. A. P. Coutinho, and J. F. B. Pereira. 2020. Integrative platform for the selective recovery of intracellular carotenoids and lipids from Rhodotorula glutinis CCT-2186 yeast using mixtures of bio-based solvents. Green Chemistry 22 (23):8478–94. doi: 10.1039/D0GC02992K.
  • Mussagy, C. U., J. Winterburn, V. C. Santos-Ebinuma, and J. F. B. Pereira. 2019. Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology 103 (3):1095–114. doi: 10.1007/s00253-018-9557-5.
  • Nagarajan, J., C. Galanakis, and R. Ramanan. 2017. Carotenoids. Nutraceutical and Functional Food Components 8:259–96. doi: 10.1016/B978-0-12-805257-0.00008-9.
  • Nanou, K., and T. Roukas. 2016. Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresource Technology 203:198–203. doi: 10.1016/j.biortech.2015.12.053.
  • Naxa. 2021. Accessed January 21, 2021. https://www.astaxanthin.org/verification/naxa-verified-products/
  • Novoveská, L., M. E. Ross, M. S. Stanley, R. Pradelles, V. Wasiolek, and J.-F. Sassi. 2019. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs 17 (11):640. doi: 10.3390/md17110640.
  • Obruca, S., P. Benesova, D. Kucera, S. Petrik, and I. Marova. 2015. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnology 32 (6):569–74. doi: 10.1016/j.nbt.2015.02.008.
  • Oilgae. 2021. Accessed January 21, 2021. http://www.oilgae.com/non_fuel_products/astaxanthin.html.
  • Panis, G., and J. R. Carreon. 2016. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research 18:175–90. doi: 10.1016/j.algal.2016.06.007.
  • Papadaki, E., and F. T. Mantzouridou. 2021. Natural β-Carotene production by Blakeslea trispora cultivated in spanish-style green olive processing wastewaters. Foods 10 (2):327. doi: 10.3390/foods10020327.
  • Patthawaro, S., K. Lomthaisong, and C. Saejung. 2020. Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and Its Carotenoid Composition. Waste and Biomass Valorization 11 (6):2375–86. doi: 10.1007/s12649-018-00571-z.
  • Petrik, S., S. Obruča, P. Benešová, and I. Márová. 2014. Bioconversion of spent coffee grounds into carotenoids and other valuable metabolites by selected red yeast strains. Biochemical Engineering Journal 90:307–15. doi: 10.1016/j.bej.2014.06.025.
  • Raja, R., S. Hemaiswarya, and R. Rengasamy. 2007. Exploitation of Dunaliella for beta-carotene production. Applied Microbiology and Biotechnology 74 (3):517–23. doi: 10.1007/s00253-006-0777-8.
  • Ram, S., M. Mitra, F. Shah, S. R. Tirkey, and S. Mishra. 2020. Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. Journal of Functional Foods 67:103867. doi: 10.1016/j.jff.2020.103867.
  • Ravaghi, M., S. H. Razavi, S. M. Mousavi, C. Sinico, and A. M. Fadda. 2016. Stabilization of natural canthaxanthin produced by Dietzia natronolimnaea HS-1 by encapsulation in niosomes. LWT 73:498–504. doi: 10.1016/j.lwt.2016.06.027.
  • Rodriguez-Concepcion, M., J. Avalos, M. L. Bonet, A. Boronat, L. Gomez-Gomez, D. Hornero-Mendez, M. C. Limon, A. J. Meléndez-Martínez, B. Olmedilla-Alonso, A. Palou, et al. 2018. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research 70:62–93. doi: 10.1016/j.plipres.2018.04.004.
  • Rohmer, M., M. Knani, P. Simonin, B. Sutter, and H. Sahm. 1993. Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopentenyl diphosphate. Biochemical Journal 295 (2):517–24. doi: 10.1042/bj2950517.
  • Suarez Ruiz, C. A., D. P. Emmery, R. H. Wijffels, M. H. Eppink, and C. van den Berg. 2018. Selective and mild fractionation of microalgal proteins and pigments using aqueous two-phase systems. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire : 1986) 93 (9):2774–83. doi: 10.1002/jctb.5711.
  • Suarez Ruiz, C. A., M. Martins, J. A. P. Coutinho, R. H. Wijffels, M. H. M. Eppink, C. v d Berg, and S. P. M. Ventura. 2020. Neochloris oleoabundans biorefinery: Integration of cell disruption and purification steps using aqueous biphasic systems-based in surface-active ionic liquids. Chemical Engineering Journal 399:125683. doi: 10.1016/j.cej.2020.125683.
  • Saini, R. K., and Y. S. Keum. 2017. Progress in microbial carotenoids production. Indian Journal of Microbiology 57 (1):129–30. doi: 10.1007/s12088-016-0637-x.
  • Saini, R. K., and Y. S. Keum. 2018. Carotenoid extraction methods: A review of recent developments. Food Chemistry 240:90–103. doi: 10.1016/j.foodchem.2017.07.099.
  • Saini, R. K., and Y. S. Keum. 2019. Microbial platforms to produce commercially vital carotenoids at industrial scale: An updated review of critical issues. Journal of Industrial Microbiology & Biotechnology 46 (5):657–74. doi: 10.1007/s10295-018-2104-7.
  • Schmidt-Dannert, C., P. C. Lee, and B. N. Mijts. 2006. Creating carotenoid diversity in E. coli cells using combinatorial and directed evolution strategies. Phytochemistry Reviews 5 (1):67–74. doi: 10.1007/s11101-005-5465-2.
  • Sen, T., C. J. Barrow, and S. K. Deshmukh. 2019. Microbial pigments in the food industry-challenges and the way forward. Frontiers in Nutrition 6:7. doi: 10.3389/fnut.2019.00007.
  • Sevgili, A., and O. Erkmen. 2019. Improved lycopene production from different substrates by mated fermentation of Blakeslea trispora. Foods 8 (4):120. doi: 10.3390/foods8040120.
  • Sharma, R., and G. Ghoshal. 2020. Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnology Reports 25:e00407. doi: 10.1016/j.btre.2019.e00407.
  • Spolaore, P., C. C. Joannis, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101 (2):87–96. doi: 10.1263/jbb.101.87.
  • Sujak, A. 2009. Interactions between canthaxanthin and lipid membranes-possible mechanisms of canthaxanthin toxicity. Cellular & Molecular Biology Letters 14 (3):395–410. doi: 10.2478/s11658-009-0010-8.
  • Szotkowski, M., D. Byrtusova, A. Haronikova, M. Vysoka, M. Rapta, V. Shapaval, and I. Marova. 2019. Study of metabolic adaptation of red yeasts to waste animal fat substrate. Microorganisms 7 (11):578. doi: 10.3390/microorganisms7110578.
  • Taskin, M., and S. Erdal. 2011. Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate. Journal of the Science of Food and Agriculture 91 (8):1440–5. doi: 10.1002/jsfa.4329.
  • Tinoi, J., N. Rakariyatham, and R. L. Deming. 2006. Utilization of mustard waste isolates for improved production of astaxanthin by Xanthophyllomyces dendrorhous. Journal of Industrial Microbiology & Biotechnology 33 (4):309–14. doi: 10.1007/s10295-005-0054-3.
  • Toti, E., C.-Y O. Chen, M. Palmery, D. Villaño Valencia, and I. Peluso. 2018. Non-provitamin a and provitamin a carotenoids as immunomodulators: Recommended dietary allowance, therapeutic index, or personalized nutrition? Oxidative Medicine and Cellular Longevity 2018:4637861. doi: 10.1155/2018/4637861.
  • Yara-Varón, E., A. S. Fabiano-Tixier, M. Balcells, R. Canela-Garayoa, A. Bily, and F. Chemat. 2016. Is it possible to substitute hexane with green solvents for extraction of carotenoids? A theoretical versus experimental solubility study. RSC Advances 6 (33):27750–9. doi: 10.1039/C6RA03016E.
  • Ventura, S. P. M., F. A. E Silva, M. V. Quental, D. Mondal, M. G. Freire, and J. A. P. Coutinho. 2017. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: Past, present, and future trends. Chemical Reviews 117 (10):6984–7052. doi: 10.1021/acs.chemrev.6b00550.
  • Vieira, F. A., R. J. R. Guilherme, M. C. Neves, A. Rego, M. H. Abreu, J. A. P. Coutinho, and S. P. M. Ventura. 2018. Recovery of carotenoids from brown seaweeds using aqueous solutions of surface-active ionic liquids and anionic surfactants. Separation and Purification Technology 196:300–8. doi: 10.1016/j.seppur.2017.05.006.
  • Visioli, F., and C. Artaria. 2017. Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food & Function 8 (1):39–63. doi: 10.1039/C6FO01721E.
  • Wayama, M., S. Ota, H. Matsuura, N. Nango, A. Hirata, and S. Kawano. 2013. Three-Dimensional Ultrastructural Study of Oil and Astaxanthin Accumulation during Encystment in the Green Alga Haematococcus pluvialis. PLoS One 8 (1):e53618. doi: 10.1371/journal.pone.0053618.
  • Withers, S. T., and J. D. Keasling. 2007. Biosynthesis and engineering of isoprenoid small molecules. Applied Microbiology and Biotechnology 73 (5):980–90. doi: 10.1007/s00253-006-0593-1.
  • Xie, W., X. Lv, L. Ye, P. Zhou, and H. Yu. 2015. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering 30:69–78. doi: 10.1016/j.ymben.2015.04.009.
  • Zhang, C. 2018. Biosynthesis of carotenoids and apocarotenoids by microorganisms and their industrial potential. In Progress in carotenoid research. doi: 10.5772/intechopen.79061.
  • Zhang, C., X. Chen, N. D. Lindley, and H. P. Too. 2018. A “plug-n-play” modular metabolic system for the production of apocarotenoids. Biotechnology and Bioengineering 115 (1):174–83. doi: 10.1002/bit.26462.
  • Zhang, J., S. Zhang, J. Bi, J. Gu, Y. Deng, and C. Liu. 2017. Astaxanthin pretreatment attenuates acetaminophen-induced liver injury in mice. International Immunopharmacology 45:26–33. doi: 10.1016/j.intimp.2017.01.028.
  • Zoz, L. J. C., Carvalho, V. T. Soccol, T. C. Casagrande, and L. Cardoso. 2015. Torularhodin and torulene: Bioproduction, properties and prospective applications in food and cosmetics - A review. Brazilian Archives of Biology and Technology 58 (2):278–88. doi: 10.1590/S1516-8913201400152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.