2,859
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products

, &

References

  • A'Yun, Q., P. Demicheli, L. de Neve, J. Wu, M. Balcaen, A. D. Setiowati, J. C. Martins, M. van Troys, and P. Van der Meeren. 2020. Dry heat induced whey protein–lactose conjugates largely improve the heat stability of o/w emulsions. International Dairy Journal 108:104736. doi: 10.1016/j.idairyj.2020.104736.
  • Al-Hakkak, J., and F. Al-Hakkak. 2010. Functional egg white–pectin conjugates prepared by controlled maillard reaction. Journal of Food Engineering 100 (1):152–9. doi: 10.1016/j.jfoodeng.2010.03.040.
  • Alirezalu, K., P. E. S. Munekata, O. Parniakov, F. J. Barba, J. Witt, S. Toepfl, A. Wiktor, and J. M. Lorenzo. 2020. Pulsed electric field and mild heating for milk processing: A review on recent advances. Journal of the Science of Food and Agriculture 100 (1):16–24. doi: 10.1002/jsfa.9942.
  • Amagliani, L., J. O'Regan, A. L. Kelly, and J. A. O'Mahony. 2017. The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology 64:1–12. doi: 10.1016/j.tifs.2017.01.008.
  • Ames, J. M. 1990. Control of the maillard reaction in food systems. Trends in Food Science & Technology 1:150–4. doi: https://doi.org/10.1016/0924-2244. (90)90113-D. doi: 10.1016/0924-2244(90)90113-D.
  • Ames, J. M. 1992. The maillard reaction. In Biochemistry of food proteins, ed. Hudson, B. J. F, 99–153. USA: Springer.
  • Aoki, T., Y. Hiidome, Y. Sugimoto, H. R. Ibrahim, and Y. Kato. 2001. Modification of ovalbumin with oligogalacturonic acids through the maillard reaction. Food Research International 34 (2-3):127–32. doi: https://doi.org/10.1016/S0963-9969. (00)00140-X. doi: 10.1016/S0963-9969(00)00140-X.
  • Arihara, K., L. Zhou, and M. Ohata. 2017. Bioactive properties of maillard reaction products generated from food protein-derived peptides. In Advances in food and nutrition research, ed. Fidel Toldrá, 161–85. Cambridge: Academic Press.
  • Baier, S., P. Given, K. Kanjanapongkul, and J. Weiss. 2016. Formation of conjugated protein by electrospinning. US Patent US20130264731A1, filed March 14, 2013, and issued June 21, 2016.
  • Bhardwaj, N., and S. C. Kundu. 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 28 (3):325–47. doi: 10.1016/j.biotechadv.2010.01.004.
  • Bhargava, N., R. S. Mor, K. Kumar, and V. S. Sharanagat. 2021. Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry 70:105293. doi: 10.1016/j.ultsonch.2020.105293.
  • Bolumar, T., D. Middendorf, S. Toepfl, and V. Heinz. 2016. Structural changes in foods caused by high-pressure processing. In High pressure processing of food, ed. V. M. Balasubramaniam,G. V. Barbosa-Cánovas, H. L. M. Lelieveld, 509–37. New York: Springer.
  • Bos, C., B. Juillet, H. Fouillet, L. Turlan, S. Daré, C. Luengo, R. N'tounda, R. Benamouzig, N. Gausserès, D. Tomé, et al. 2005. Postprandial metabolic utilization of wheat protein in humans. The American Journal of Clinical Nutrition 81 (1):87–94. doi: 10.1093/ajcn/81.1.87.
  • Capek, I. 2004. Degradation of kinetically-stable o/w emulsions. Advances in Colloid and Interface Science 107 (2-3):125–55. doi: https://doi.org/10.1016/S0001-8686. (03)00115-5. doi: 10.1016/S0001-8686(03)00115-5.
  • Capuano, E., and V. Fogliano. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology 44 (4):793–810. doi: 10.1016/j.lwt.2010.11.002.
  • Chan, R. I. M., H. F. Stich, M. P. Rosin, and W. D. Powrie. 1982. Antimutagenic activity of browning reaction products. Cancer Letters 15 (1):27–33. doi: https://doi.org/10.1016/0304-3835. (82)90072-6. doi: 10.1016/0304-3835(82)90072-6.
  • Chen, H., A. Ji, S. Qiu, Y. Liu, Q. Zhu, and L. Yin. 2018. Covalent conjugation of bovine serum album and sugar beet pectin through maillard reaction/laccase catalysis to improve the emulsifying properties. Food Hydrocolloids 76:173–83. doi: 10.1016/j.foodhyd.2016.12.004.
  • Chen, L., J. Chen, K. Wu, and L. Yu. 2016. Improved low pH emulsification properties of glycated peanut protein isolate by ultrasound maillard reaction. Journal of Agricultural and Food Chemistry 64 (27):5531–8. doi: 10.1021/acs.jafc.6b00989.
  • Chen, W., R. Lv, W. Wang, X. Ma, A. I. Muhammad, M. Guo, X. Ye, and, and D. Liu. 2019. Time effect on structural and functional properties of whey protein isolate-gum acacia conjugates prepared via maillard reaction. Journal of the Science of Food and Agriculture 99 (10):4801–7. doi: 10.1002/jsfa.9735.
  • Cheng, Y., D. Mu, Y. Jiao, Z. Xu, and M. Chen. 2021. Microwave-assisted maillard reaction between rice protein and dextran induces structural changes and functional improvements. Journal of Cereal Science 97:103134. doi: 10.1016/j.jcs.2020.103134.
  • Cheng, Y., W. Tang, Z. Xu, L. Wen, and M. Chen. 2018. Structure and functional properties of rice protein–dextran conjugates prepared by the maillard reaction. International Journal of Food Science & Technology 53 (2):372–80. doi: 10.1111/ijfs.13594.
  • Chevalier, F., J. Chobert, C. Genot, and T. Haertlé. 2001. Scavenging of free radicals, antimicrobial, and cytotoxic activities of the maillard reaction products of beta-lactoglobulin glycated with several sugars. Journal of Agricultural and Food Chemistry 49 (10):5031–8. doi: 10.1021/jf010549x.
  • Cui, Q., A. Zhang, R. Li, X. Wang, L. Sun, and L. Jiang. 2020. Ultrasonic treatment affects emulsifying properties and molecular flexibility of soybean protein isolate-glucose conjugates. Food Bioscience 38:100747. doi: 10.1016/j.fbio.2020.100747.
  • de Boer, J., and H. Aiking. 2011. On the merits of plant-based proteins for global food security: Marrying macro and micro perspectives. Ecological Economics 70 (7):1259–65. doi: 10.1016/j.ecolecon.2011.03.001.
  • de Oliveira, F. C., J. S. R. Coimbra, E. B. de Oliveira, A. D. G. Zuñiga, and E. E. G. Rojas. 2016. Food protein-polysaccharide conjugates obtained via the maillard reaction: A review. Critical Reviews in Food Science and Nutrition 56 (7):1108–25. doi: 10.1080/10408398.2012.755669.
  • Deng, L., Y. Li, F. Feng, and H. Zhang. 2019. Study on wettability, mechanical property and biocompatibility of electrospun gelatin/zein nanofibers cross-linked by glucose. Food Hydrocolloids 87:1–10. doi: 10.1016/j.foodhyd.2018.07.042.
  • Ding, Y., L. Chen, Y. Shi, M. Akhtar, J. Chen, and R. Ettelaie. 2020. Emulsifying and emulsion stabilizsing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocolloids 113:106519. doi: 10.1016/j.foodhyd.2020.106519.
  • Du, Y., S. Shi, Y. Jiang, H. Xiong, M. W. Woo, Q. Zhao, C. Bai, Q. Zhou, and W. Sun. 2013. Physicochemical properties and emulsion stabilization of rice dreg glutelin conjugated with κ-carrageenan through maillard reaction. Journal of the Science of Food and Agriculture 93 (1):125–33. doi: 10.1002/jsfa.5739.
  • Ebert, S., M. Gibis, N. Terjung, and J. Weiss. 2020. Survey of aqueous solubility, appearance, and ph of plant protein powders from carbohydrate and vegetable oil production. LWT 133 (110078):110078. doi: 10.1016/j.lwt.2020.110078.
  • Ettelaie, R., A. Zengin, and H. Lee. 2014. Fragmented proteins as food emulsion stabilizers: A theoretical study. Biopolymers 101 (9):945–58. doi: 10.1002/bip.22487.
  • Fabra, M. J., A. López-Rubio, and J. M. Lagaron. 2016. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocolloids 55:11–8. doi: 10.1016/j.foodhyd.2015.10.026.
  • Foegeding, E. A., and J. P. Davis. 2011. Food protein functionality: A comprehensive approach. Food Hydrocolloids 25 (8):1853–64. doi: 10.1016/j.foodhyd.2011.05.008.
  • Gnutt, D., and S. Ebbinghaus. 2016. The macromolecular crowding effect-from in vitro into the cell. Biological Chemistry 397 (1):37–44. doi: 10.1515/hsz-2015-0161.
  • Guaadaoui, A., S. Benaicha, N. Elmajdoub, M. Bellaoui, and A. Hamal. 2014. What is a bioactive compound? A combined definition for a preliminary consensus. International Journal of Nutrition and Food Sciences 3 (3):174–9. doi: 10.11648/j.ijnfs.20140303.16.
  • Guan, J. J., A. Qiu, X. Liu, Y. Hua, and Y. Ma. 2006. Microwave improvement of soy protein isolate–saccharide graft reactions. Food Chemistry 97 (4):577–85. doi: 10.1016/j.foodchem.2005.05.035.
  • Guan, Y., H. Lin, Z. Han, J. Wang, S. Yu, X. Zeng, Y. Liu, C. Xu, and W. Sun. 2010. Effects of pulsed electric field treatment on a bovine serum albumin–dextran model system, a means of promoting the maillard reaction. Food Chemistry 123 (2):275–80. doi: 10.1016/j.foodchem.2010.04.029.
  • Guan, Y., B. Zhang, S. Yu, X. Wang, X. Xu, J. Wang, Z. Han, P. Zhang, and H. Lin. 2011. Effects of ultrasound on a glycin–glucose model system—A means of promoting maillard reaction. Food and Bioprocess Technology 4 (8):1391–8. doi: 10.1007/s11947-009-0251-6.
  • Guan, Y. G., J. Wang, S. J. Yu, X. A. Zeng, Z. Han, and Y. Y. Liu. 2010. A pulsed electric field procedure for promoting maillard reaction in an asparagine–glucose model system. International Journal of Food Science & Technology 45 (6):1303–9. doi: 10.1111/j.1365-2621.2010.02276.x.
  • Habinshuti, I., X. Chen, J. Yu, O. Mukeshimana, E. Duhoranimana, E. Karangwa, B. Muhoza, M. Zhang, S. Xia, and X. Zhang. 2019. Antimicrobial, antioxidant and sensory properties of maillard reaction products (MRPs) derived from sunflower, soybean and corn meal hydrolysates. LWT 101:694–702. doi: 10.1016/j.lwt.2018.11.083.
  • Han, Z., M. Cai, J. Cheng, and D. Sun. 2018. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science & Technology 75:1–9. doi: 10.1016/j.tifs.2018.02.017.
  • Hauser, C., U. Müller, T. Sauer, K. Augner, and M. Pischetsrieder. 2014. Maillard reaction products as antimicrobial components for packaging films. Food Chemistry 145:608–13. doi: 10.1016/j.foodchem.2013.08.083.
  • He, X., S. Yu, W. Shi, and Y. Feng. 2011. Effect of pulsed electric field treatment on asparagine-fructose model maillard reaction. Food Science (1):78–81.doi: 10.7506/spkx1002-6630-201101019
  • Hemmler, D., and P. Schmitt-Kopplin. 2021. Analytical challenges and strategies to decipher the maillard reaction network. In Comprehensive foodomics, ed. A. Cifuentes, 155–73. Oxford: Elsevier.
  • Higuera-Barraza, O. A., C. L. Del Toro-Sanchez, S. Ruiz-Cruz, and E. Márquez-Ríos. 2016. Effects of high-energy ultrasound on the functional properties of proteins. Ultrasonics Sonochemistry 31:558–62. doi: 10.1016/j.ultsonch.2016.02.007.
  • Hodge, J. E. 1953. Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry 1 (15):928–43. doi: 10.1021/jf60015a004.
  • Hogan, E., A. L. Kelly, and D.-W. Sun. 2005. High pressure processing of foods: An overview. In Emerging technologies for food processing, ed. D.-W. Sun, 3–32. London: Academic Press.
  • IARC (International Agency for Research on Cancer). 1993. Heterocyclic aromatic amines. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. Some Naturally Occuring Substances: Food Items and Constituents. Heterocyclic Aromatic Amines and Mycotoxins 56:165–242.
  • IARC (International Agency for Research on Cancer). 1994. Acrylamide. International Agency for Research on Cancer–IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans: some Industrial Chemicals 60:389–433.
  • IARC (International Agency for Research on Cancer). 1995. Furan. International agency for research on cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 63:393–407.
  • Jaeger, H., A. Janositz, and D. Knorr. 2010. The maillard reaction and its control during food processing. The potential of emerging technologies. Pathologie-biologie 58 (3):207–13. doi: 10.1016/j.patbio.2009.09.016.
  • Jiménez-Castaño, L., M. Villamiel, P. J. Martín-Álvarez, A. Olano, and R. López-Fandiño. 2005. Effect of the dry-heating conditions on the glycosylation of β-lactoglobulin with dextran through the maillard reaction. Food Hydrocolloids 19 (5):831–7. doi: 10.1016/j.foodhyd.2004.10.033.
  • Jin, H., Q. Zhao, H. Feng, Y. Wang, J. Wang, Y. Liu, D. Han, and J. Xu. 2019. Changes on the structural and physicochemical properties of conjugates prepared by the maillard reaction of black bean protein isolates and glucose with ultrasound pretreatment. Polymers 11 (5):848. doi: 10.3390/polym11050848.
  • Jing, H., and S. Nakamura. 2005. Production and use of maillard products as oxidative stress modulators. Journal of Medicinal Food 8 (3):291–8. doi: 10.1089/jmf.2005.8.291.
  • Karaca, A. C., N. Low, and M. Nickerson. 2011. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International 44 (9):2742–50. doi: 10.1016/j.foodres.2011.06.012.
  • Karangwa, E., L. V. Raymond, M. Huang, M. J. Cheserek, K. Hayat, N. D. Savio, M. Amédée, and X. Zhang. 2013. Sensory attributes and antioxidant capacity of maillard reaction products derived from xylose, cysteine and sunflower protein hydrolysate model system. Food Research International 54 (2):1437–47. doi: 10.1016/j.foodres.2013.09.034.
  • Kasran, M., S. W. Cui, and H. D. Goff. 2013. Covalent attachment of fenugreek gum to soy whey protein isolate through natural maillard reaction for improved emulsion stability. Food Hydrocolloids 30 (2):552–8. doi: 10.1016/j.foodhyd.2012.08.004.
  • Kato, A. 2002. Industrial applications of maillard-type protein-polysaccharide conjugates. Food Science and Technology Research 8 (3):193–9. doi: 10.3136/fstr.8.193.
  • Keppler, J. K., K. Schwarz, and A. J. van der Goot. 2020. Covalent modification of food proteins by plant-based ingredients (polyphenols and organosulphur compounds): A commonplace reaction with novel utilization potential. Trends in Food Science & Technology 101:38–49. doi: 10.1016/j.tifs.2020.04.023.
  • Khaneghah, A. M., M. Gavahian, Q. Xia, G. I. Denoya, E. Roselló-Soto, and F. J. Barba. 2020. Effect of pulsed electric field on maillard reaction and hydroxymethylfurfural production. In Pulsed electric fields to obtain healthier and sustainable food for tomorrow, ed. F. J. Barba, O. Parniakov, and A. Wiktor, 129–40. Cambridge: Academic Press.
  • Ko, C., X. Chen, W. Chang, Y. Zeng, R. Lin, X. Zhang, J. S. Wu, and S. Shen. 2018. Effects of maillard reaction products in a glucose-glycine alcoholic solution on antioxidative and antimutagenic activities. Journal of the Science of Food and Agriculture 98 (14):5242–7. doi: 10.1002/jsfa.9062.
  • Kubo, I., H. Muroi, and A. Kubo. 1995. Structural functions of antimicrobial long-chain alcohols and phenols. Bioorganic & Medicinal Chemistry 3 (7):873–80. doi: https://doi.org/10.1016/0968-0896. (95)00081-Q. doi: 10.1016/0968-0896(95)00081-Q.
  • Kutzli, I., D. Beljo, M. Gibis, S. K. Baier, and J. Weiss. 2020. Effect of maltodextrin dextrose equivalent on electrospinnability and glycation reaction of blends with pea protein isolate. Food Biophysics 15 (2):206–15. doi: 10.1007/s11483-019-09619-6.
  • Kutzli, I., D. Griener, M. Gibis, L. Grossmann, S. K. Baier, and J. Weiss. 2020. Improvement of emulsifying behavior of pea proteins as plant-based emulsifiers via maillard-induced glycation in electrospun pea protein-maltodextrin fibers. Food & Function 11 (5):4049–56. doi: 10.1039/d0fo00292e.
  • Kutzli, I., D. Griener, M. Gibis, C. Schmid, C. Dawid, S. K. Baier, T. Hofmann, and J. Weiss. 2020. Influence of maillard reaction conditions on the formation and solubility of pea protein isolate-maltodextrin conjugates in electrospun fibers. Food Hydrocolloids 101:105535. doi: 10.1016/j.foodhyd.2019.105535.
  • Kuznetsova, I. M., K. K. Turoverov, and V. N. Uversky. 2014. What macromolecular crowding can do to a protein. International Journal of Molecular Sciences 15 (12):23090–140. doi: 10.3390/ijms151223090.
  • Lam, A. C. Y., A. Can Karaca, R. T. Tyler, and M. T. Nickerson. 2018. Pea protein isolates: Structure, extraction, and functionality. Food Reviews International 34 (2):126–47. doi: 10.1080/87559129.2016.1242135.
  • Lam, R. S. H., and M. T. Nickerson. 2013. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84. doi: 10.1016/j.foodchem.2013.04.038.
  • Lan, X., P. Liu, S. Xia, C. Jia, D. Mukunzi, X. Zhang, W. Xia, H. Tian, and Z. Xiao. 2010. Temperature effect on the non-volatile compounds of maillard reaction products derived from xylose–soybean peptide system: Further insights into thermal degradation and cross-linking. Food Chemistry 120 (4):967–72. doi: 10.1016/j.foodchem.2009.11.033.
  • Le, T. T., J. W. Holland, B. Bhandari, P. F. Alewood, and H. C. Deeth. 2013. Direct evidence for the role of maillard reaction products in protein cross-linking in milk powder during storage. International Dairy Journal 31 (2):83–91. doi: 10.1016/j.idairyj.2013.02.013.
  • Li, C., X. Huang, Q. Peng, Y. Shan, and F. Xue. 2014. Physicochemical properties of peanut protein isolate-glucomannan conjugates prepared by ultrasonic treatment. Ultrasonics Sonochemistry 21 (5):1722–7. doi: 10.1016/j.ultsonch.2014.03.018.
  • Li, C., J. Pei, X. Xiong, and F. Xue. 2020. Encapsulation of grapefruit essential oil in emulsion-based edible film prepared by plum (pruni domesticae semen) seed protein isolate and gum acacia conjugates. Coatings 10 (8):784. doi: 10.3390/coatings10080784.
  • Li, C., H. Xue, Z. Chen, Q. Ding, and X. Wang. 2014. Comparative studies on the physicochemical properties of peanut protein isolate–polysaccharide conjugates prepared by ultrasonic treatment or classical heating. Food Research International 57:1–7. doi: 10.1016/j.foodres.2013.12.038.
  • Li, H., C.-J. Wu, and S.-J. Yu. 2018. Impact of microwave-assisted heating on the ph value, color, and flavor compounds in glucose-ammonium model system. Food and Bioprocess Technology 11 (6):1248–58. doi: 10.1007/s11947-018-2093-6.
  • Li, K., M. W. Woo, H. Patel, and C. Selomulya. 2017. Enhancing the stability of protein-polysaccharides emulsions via maillard reaction for better oil encapsulation in spray-dried powders by pH adjustment. Food Hydrocolloids 69:121–31. doi: 10.1016/j.foodhyd.2017.01.031.
  • Li, R., Q. Cui, G. Wang, J. Liu, S. Chen, X. Wang, X. Wang, and L. Jiang. 2019. Relationship between surface functional properties and flexibility of soy protein isolate-glucose conjugates. Food Hydrocolloids 95:349–57. doi: 10.1016/j.foodhyd.2019.04.030.
  • Li, Y., F. Lu, C. Luo, Z. Chen, J. Mao, C. Shoemaker, and F. Zhong. 2009. Functional properties of the maillard reaction products of rice protein with sugar. Food Chemistry 117 (1):69–74. doi: 10.1016/j.foodchem.2009.03.078.
  • Li, Y., F. Zhong, W. Ji, W. Yokoyama, C. F. Shoemaker, S. Zhu, and W. Xia. 2013. Functional properties of maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides. Food Hydrocolloids 30 (1):53–60. doi: 10.1016/j.foodhyd.2012.04.013.
  • Lin, Q., M. Li, L. Xiong, L. Qiu, X. Bian, C. Sun, and Q. Sun. 2019. Characterization and antioxidant activity of short linear glucan–lysine nanoparticles prepared by maillard reaction. Food Hydrocolloids 92:86–93. doi: 10.1016/j.foodhyd.2019.01.054.
  • Liu, C., and X. Ma. 2016. Study on the mechanism of microwave modified wheat protein fiber to improve its mechanical properties. Journal of Cereal Science 70:99–107. doi: 10.1016/j.jcs.2016.05.018.
  • Liu, J., Q. Ru, and Y. Ding. 2012. Glycation a promising method for food protein modification: Physicochemical properties and structure, a review. Food Research International 49 (1):170–83. doi: 10.1016/j.foodres.2012.07.034.
  • Liu, P., Y. Li, L. Gao, X. Zhou, P. Ma, and Q. Wang. 2020. Effect of different carbohydrates on the functional properties of black rice glutelin (brg) modified by the maillard reaction. Journal of Cereal Science 93:102979. doi: 10.1016/j.jcs.2020.102979.
  • Liu, X., B. Xia, L.-T. Hu, Z.-J. Ni, K. Thakur, and Z.-J. Wei. 2020. Maillard conjugates and their potential in food and nutritional industries: A review. Food Frontiers 1 (4):382–97. doi: 10.1002/fft2.43.
  • Liu, Y., Y. Zhang, X. Zeng, H. El-Mashad, Z. Pan, and Q. Wang. 2014. Effect of pulsed electric field on microstructure of some amino acid group of soy protein isolates. International Journal of Food Engineering 10 (1):113–20. doi: 10.1515/ijfe-2013-0033.
  • Liu, Y., G. Zhao, M. Zhao, J. Ren, and B. Yang. 2012. Improvement of functional properties of peanut protein isolate by conjugation with dextran through maillard reaction. Food Chemistry 131 (3):901–6. doi: 10.1016/j.foodchem.2011.09.074.
  • Makhlouf-Gafsi, I., F. Krichen, R. B. Mansour, A. Mokni, A. Sila, A. Bougatef, C. Blecker, H. Attia, and S. Besbes. 2018. Ultrafiltration and thermal processing effects on maillard reaction products and biological properties of date palm sap syrups (phoenix dactylifera l.). Food Chemistry 256:397–404. doi: 10.1016/j.foodchem.2018.02.145.
  • Mäkinen, O. E., N. Sozer, D. Ercili-Cura, and K. Poutanen. 2017. Protein from oat: Structure, processes, functionality, and nutrition. In Sustainable protein sources, ed. S. R. Nadathur, J. P. D. Wanasundara, and L. Scanlin, 105–19. San Diego: Academic Press.
  • Malaki Nik, A., S. M. Tosh, L. Woodrow, V. Poysa, and M. Corredig. 2009. Effect of soy protein subunit composition and processing conditions on stability and particle size distribution of soymilk. LWT - Food Science and Technology 42 (7):1245–52. doi: 10.1016/j.lwt.2009.03.001.
  • Mao, L., Q. Pan, Z. Hou, F. Yuan, and Y. Gao. 2018. Development of soy protein isolate-carrageenan conjugates through maillard reaction for the microencapsulation of bifidobacterium longum. Food Hydrocolloids 84:489–97. doi: 10.1016/j.foodhyd.2018.06.037.
  • Martinez-Alvarenga, M. S., E. Y. Martinez-Rodriguez, L. E. Garcia-Amezquita, G. I. Olivas, P. B. Zamudio-Flores, C. H. Acosta-Muniz, and D. R. Sepulveda. 2014. Effect of maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate – maltodextrin conjugates. Food Hydrocolloids 38:110–8. doi: 10.1016/j.foodhyd.2013.11.006.
  • Mendes, A. C., K. Stephansen, and I. S. Chronakis. 2017. Electrospinning of food proteins and polysaccharides. Food Hydrocolloids 68:53–68. doi: 10.1016/j.foodhyd.2016.10.022.
  • Meng, X., T. Li, T. Song, C. Chen, C. Venkitasamy, Z. Pan, and H. Zhang. 2019. Solubility, structural properties, and immunomodulatory activities of rice dreg protein modified with sodium alginate under microwave heating. Food Science & Nutrition 7 (8):2556–64. doi: 10.1002/fsn3.1105.
  • Mohammed, A. A. 2018. Physicochemical properties of glycated chickpea (cicer arietinum l.) protein. Journal of Pure & Applied Sciences 17 (1):200–205.
  • Molina, E., A. Papadopoulou, and D. A. Ledward. 2001. Emulsifying properties of high pressure treated soy protein isolate and 7s and 11s globulins. Food Hydrocolloids 15 (3):263–9. doi: https://doi.org/10.1016/S0268-005X. (01)00023-6. doi: 10.1016/S0268-005X(01)00023-6.
  • Moreno, F. J., E. Molina, A. Olano, and R. López-Fandiño. 2003. High-pressure effects on maillard reaction between glucose and lysine. Journal of Agricultural and Food Chemistry 51 (2):394–400. doi: 10.1021/jf025731s.
  • Mu, L., M. Zhao, B. Yang, H. Zhao, C. Cui, and Q. Zhao. 2010. Effect of ultrasonic treatment on the graft reaction between soy protein isolate and gum acacia and on the physicochemical properties of conjugates. Journal of Agricultural and Food Chemistry 58 (7):4494–9. doi: 10.1021/jf904109d.
  • Muscat, S., J. Pelka, J. Hegele, B. Weigle, G. Münch, and M. Pischetsrieder. 2007. Coffee and maillard products activate NF-kappaB in macrophages via H2O2 production. Molecular Nutrition & Food Research 51 (5):525–35. doi: 10.1002/mnfr.200600254.
  • Nakamura, S., and A. Kato. 2000. Multi‐functional biopolymer prepared by covalent attachment of galactomannan to egg‐white proteins through naturally occurring maillard reaction. Nahrung/Food 44 (3):201–6. doi: https://doi.org/10.1002/1521-3803. (20000501)44:3%3C201::AID-FOOD201%3E3.0.CO;2-S. doi: 10.1002/1521-3803(20000501)44:3<201::AID-FOOD201>3.0.CO;2-S.
  • Nasrollahzadeh, F., M. Varidi, A. Koocheki, and F. Hadizadeh. 2017. Effect of microwave and conventional heating on structural, functional and antioxidant properties of bovine serum albumin-maltodextrin conjugates through maillard reaction. Food Research International 100:289–97. doi: 10.1016/j.foodres.2017.08.030.
  • Niu, L., S. Jiang, L. Pan, and Y. Zhai. 2011. Characteristics and functional properties of wheat germ protein glycated with saccharides through maillard reaction. International Journal of Food Science & Technology 46 (10):2197–203. doi: 10.1111/j.1365-2621.2011.02737.x.
  • Nooshkam, M., and A. Madadlou. 2016a. Maillard conjugation of lactulose with potentially bioactive peptides. Food Chemistry 192:831–6. doi: 10.1016/j.foodchem.2015.07.094.
  • Nooshkam, M., and A. Madadlou. 2016b. Microwave-assisted isomerisation of lactose to lactulose and maillard conjugation of lactulose and lactose with whey proteins and peptides. Food Chemistry 200:1–9. doi: 10.1016/j.foodchem.2015.12.094.
  • Nooshkam, M., M. Varidi, and M. Bashash. 2019. The maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry 275:644–60. doi: 10.1016/j.foodchem.2018.09.083.
  • Nooshkam, M., M. Varidi, and D. K. Verma. 2020. Functional and biological properties of maillard conjugates and their potential application in medical and food: A review. Food Research International (Ottawa, Ont.) 131:109003. doi: 10.1016/j.foodres.2020.109003.
  • Nursten, H. 2005. Introduction. In The maillard reaction: Chemistry, biochemistry and implications, 1–4. London: The Royal Society of Chemistry.
  • O'Sullivan, J., B. Murray, C. Flynn, and I. Norton. 2016. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocolloids 53:141–54. doi: 10.1016/j.foodhyd.2015.02.009.
  • Oliver, C. M., L. D. Melton, and R. A. Stanley. 2006. Creating proteins with novel functionality via the maillard reaction: A review. Critical Reviews in Food Science and Nutrition 46 (4):337–50. doi: 10.1080/10408690590957250.
  • Omura, M. H., A. P. H. de Oliveira, L. S. Soares, J. S. R. Coimbra, F. A. R. de Barros, M. C. T. R. Vidigal, M. C. Baracat-Pereira, and E. B. d Oliveira. 2021. Effects of protein concentration during ultrasonic processing on physicochemical properties and techno-functionality of plant food proteins. Food Hydrocolloids 113:106457. doi: 10.1016/j.foodhyd.2020.106457.
  • Patrignani, M., G. J. Rinaldi, J. Á. Rufián-Henares, and C. E. Lupano. 2019. Antioxidant capacity of maillard reaction products in the digestive tract: An in vitro and in vivo study. Food Chemistry 276:443–50. doi: 10.1016/j.foodchem.2018.10.055.
  • Perrechil, F. A., R. C. Santana, D. B. Lima, M. Z. Polastro, and R. L. Cunha. 2014. Emulsifying properties of maillard conjugates produced from sodium caseinate and locust bean gum. Brazilian Journal of Chemical Engineering 31 (2):429–38. doi: 10.1590/0104-6632.20140312s00002328.
  • Pirestani, S., A. Nasirpour, J. Keramat, S. Desobry, and J. Jasniewski. 2017. Effect of glycosylation with gum arabic by maillard reaction in a liquid system on the emulsifying properties of canola protein isolate. Carbohydrate Polymers 157:1620–7. doi: 10.1016/j.carbpol.2016.11.044.
  • Pirestani, S., A. Nasirpour, J. Keramat, S. Desobry, and J. Jasniewski. 2018. Structural properties of canola protein isolate-gum Arabic Maillard conjugate in an aqueous model system. Food Hydrocolloids 79:228–34. doi: 10.1016/j.foodhyd.2018.01.001.
  • Qinzhu, Z., C. Yan-Ling, S. Dong-Xiao, B. Tian, Y. Yang, and H. Shan. 2018. Process optimization and anti-oxidative activity of peanut meal maillard reaction products. LWT 97:573–80. doi: 10.1016/j.lwt.2018.07.025.
  • Qu, W., X. Zhang, W. Chen, Z. Wang, R. He, and H. Ma. 2018. Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. Ultrasonics Sonochemistry 42:250–9. doi: 10.1016/j.ultsonch.2017.11.021.
  • Rannou, C., D. Laroque, E. Renault, C. Prost, and T. Sérot. 2016. Mitigation strategies of acrylamide, furans, heterocyclic amines and browning during the maillard reaction in foods. Food Research International (Ottawa, Ont.) 90:154–76. doi: 10.1016/j.foodres.2016.10.037.
  • Rebollo-Hernanz, M., B. Fernández-Gómez, M. Herrero, Y. Aguilera, M. A. Martín-Cabrejas, J. Uribarri, and M. D. Del Castillo. 2019. Inhibition of the maillard reaction by phytochemicals composing an aqueous coffee silverskin extract via a mixed mechanism of action. Foods 8 (10):438. doi: 10.3390/foods8100438.
  • Rostamabadi, H., E. Assadpour, H. S. Tabarestani, S. R. Falsafi, and S. M. Jafari. 2020. Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science & Technology 100:190–209. doi: 10.1016/j.tifs.2020.04.012.
  • Rufián-Henares, J. A., and S. P. de la Cueva. 2009. Antimicrobial activity of coffee melanoidins-a study of their metal-chelating properties. Journal of Agricultural and Food Chemistry 57 (2):432–8. doi: 10.1021/jf8027842.
  • Sack, M., A. Hofbauer, R. Fischer, and E. Stoger. 2015. The increasing value of plant-made proteins. Current Opinion in Biotechnology 32:163–70. doi: 10.1016/j.copbio.2014.12.008.
  • Santos-Sánchez, N. F., R. Salas-Coronado, C. Villanueva-Cañongo, and B. Hernández-Carlos. 2019. Antioxidant compounds and their antioxidant mechanism. In Antioxidants, ed E. Shalaby. London: IntechOpen.
  • Schmitt, C., C. Bovay, and P. Frossard. 2005. Kinetics of formation and functional properties of conjugates prepared by dry-state incubation of beta-lactoglobulin/acacia gum electrostatic complexes. Journal of Agricultural and Food Chemistry 53 (23):9089–99. doi: 10.1021/jf051630t.
  • Schwarzenbolz, U., H. Klostermeyer, and T. Henle. 2000. Maillard-type reactions under high hydrostatic pressure: Formation of pentosidine. European Food Research and Technology 211 (3):208–10. doi: 10.1007/s002170050025.
  • Sedaghat Doost, A., M. Nikbakht Nasrabadi, S. A. H. Goli, M. van Troys, P. Dubruel, N. De Neve, and P. Van der Meeren. 2020. Maillard conjugation of whey protein isolate with water-soluble fraction of almond gum or flaxseed mucilage by dry heat treatment. Food Research International (Ottawa, Ont.) 128:108779. doi: 10.1016/j.foodres.2019.108779.
  • Shen, Y., X. Tang, and Y. Li. 2021. Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chem 339:127823. doi: 10.1016/j.foodchem.2020.127823.
  • Sheng, L., G. Tang, Q. Wang, J. Zou, M. Ma, and X. Huang. 2020. Molecular characteristics and foaming properties of ovalbumin-pullulan conjugates through the maillard reaction. Food Hydrocolloids 100:105384. doi: 10.1016/j.foodhyd.2019.105384.
  • Siimon, K., H. Siimon, and M. Järvekülg. 2015. Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose. Journal of Materials Science: Materials in Medicine 26 (1):37. doi: 10.1007/s10856-014-5375-1.
  • Sikorski, Z. E. 2001. Functional properties of proteins in food systems. In Chemical and functional properties of food proteins, 113–35. Oxfordshire, UK: CRC Press.
  • Song, Y., E. E. Babiker, M. Usui, A. Saito, and A. Kato. 2002. Emulsifying properties and bactericidal action of chitosan–lysozyme conjugates. Food Research International 35 (5):459–66. doi: https://doi.org/10.1016/S0963-9969. (01)00144-2. doi: 10.1016/S0963-9969(01)00144-2.
  • Song, Y., S. Yang, and J. Li. 2020. Effect of maillard reaction conditions on the solubility and molecular properties of wheat gluten-maltose conjugates. Food Science & Nutrition 8 (11):5898–906. doi: 10.1002/fsn3.1869.
  • Sun-Waterhouse, D., M. Zhao, and G. I. N. Waterhouse. 2014. Protein modification during ingredient preparation and food processing: Approaches to improve food processability and nutrition. Food and Bioprocess Technology 7 (7):1853–93. doi: 10.1007/s11947-014-1326-6.
  • Sun, J., Y. Mu, O. Mohammed, S. Dong, and B. Xu. 2020. Effects of single-mode microwave heating and dextran conjugation on the structure and functionality of ovalbumin–dextran conjugates. Food Research International 137:109468. doi: 10.1016/j.foodres.2020.109468.
  • Sun, T., Y. Qin, J. Xie, H. Xu, J. Gan, J. Wu, X. Bian, X. Li, Z. Xiong, and B. Xue. 2019. Effect of maillard reaction on rheological, physicochemical and functional properties of oat β-glucan. Food Hydrocolloids 89:90–4. doi: 10.1016/j.foodhyd.2018.10.029.
  • Sun, T., H. Xu, H. Zhang, H. Ding, S. Cui, J. Xie, B. Xue, and X. Hua. 2018. Maillard reaction of oat β-glucan and the rheological property of its amino acid/peptide conjugates. Food Hydrocolloids 76:30–4. doi: 10.1016/j.foodhyd.2017.07.025.
  • Sun, W., S. Yu, X. Zeng, X. Yang, and X. Jia. 2011. Properties of whey protein isolate–dextran conjugate prepared using pulsed electric field. Food Research International 44 (4):1052–8. doi: 10.1016/j.foodres.2011.03.020.
  • Tamaoka, T., N. Itoh, and R. Hayashi. 1991. High pressure effect on maillard reaction. Agricultural and Biological Chemistry 55 (8):2071–4. doi: 10.1080/00021369.1991.10870919.
  • Tamnak, S., H. Mirhosseini, C. P. Tan, H. M. Ghazali, and K. Muhammad. 2016. Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocolloids 56:405–16. doi: 10.1016/j.foodhyd.2015.12.033.
  • Usui, M., H. Tamura, K. Nakamura, T. Ogawa, M. Muroshita, H. Azakami, S. Kanuma, and A. Kato. 2004. Enhanced bactericidal action and masking of allergen structure of soy protein by attachment of chitosan through maillard-type protein-polysaccharide conjugation. Die Nahrung 48 (1):69–72. doi: 10.1002/food.200300423.
  • Van Boekel, M. 2001. Kinetic aspects of the maillard reaction: A critical review. Nahrung/Food 45 (3):150–9. doi: https://doi.org/10.1002/1521-3803. (20010601)45:3%3C150::AID-FOOD150%3E3.0.CO;2-9. doi: 10.1002/1521-3803(20010601)45:3<150::AID-FOOD150>3.0.CO;2-9.
  • Van Boekel, M., and C. Brands. 1998. Heating of sugar-casein solutions: Isomerization and maillard reactions. In The maillard reaction in foods and medicine, eds J. O'Brien, H. E. Nursten, J. Crabbe, and J. F. Ames, 154–9. Amsterdam: Elsevier.
  • Vhangani, L. N., and J. Van Wyk. 2013. Antioxidant activity of maillard reaction products (MRPs) derived from fructose–lysine and ribose–lysine model systems. Food Chemistry 137 (1-4):92–8. doi: 10.1016/j.foodchem.2012.09.030.
  • Vieira, A. J., F. P. Beserra, M. C. Souza, B. M. Totti, and A. L. Rozza. 2018. Limonene: Aroma of innovation in health and disease. Chemico-Biological Interactions 283:97–106. doi: 10.1016/j.cbi.2018.02.007.
  • Wang, J., Y. Guan, S. Yu, X. Zeng, Y. Liu, S. Yuan, and R. Xu. 2011. Study on the maillard reaction enhanced by pulsed electric field in a glycin–glucose model system. Food and Bioprocess Technology 4 (3):469–74. doi: 10.1007/s11947-010-0340-6.
  • Wang, L., X. Sun, G. Huang, and J. Xiao. 2018. Conjugation of soybean protein isolate with xylose/fructose through wet-heating maillard reaction. Journal of Food Measurement and Characterization 12 (4):2718–24. doi: 10.1007/s11694-018-9889-y.
  • Wang, L., M. Wu, and H. Liu. 2017. Emulsifying and physicochemical properties of soy hull hemicelluloses-soy protein isolate conjugates. Carbohydrate Polymers 163:181–90. doi: 10.1016/j.carbpol.2017.01.069.
  • Wang, W., C. Li, Z. Bin, Q. Huang, L. You, C. Chen, X. Fu, and R. H. Liu. 2020. Physicochemical properties and bioactivity of whey protein isolate-inulin conjugates obtained by maillard reaction. International Journal of Biological Macromolecules 150:326–35. doi: 10.1016/j.ijbiomac.2020.02.086.
  • Wang, Y., J. Gan, Y. Li, S. Nirasawa, and Y. Cheng. 2019. Conformation and emulsifying properties of deamidated wheat gluten-maltodextrin/citrus pectin conjugates and their abilities to stabilize β-carotene emulsions. Food Hydrocolloids 87:129–41. doi: 10.1016/j.foodhyd.2018.07.050.
  • Wang, Z., F. Han, X. Sui, B. Qi, Y. Yang, H. Zhang, R. Wang, Y. Li, and L. Jiang. 2016. Effect of ultrasound treatment on the wet heating maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates. Journal of the Science of Food and Agriculture 96 (5):1532–40. doi: 10.1002/jsfa.7255.
  • Wang, Z., J. Wang, S. Guo, S. Ma, and S. Yu. 2013. Kinetic modeling of maillard reaction system subjected to pulsed electric field. Innovative Food Science & Emerging Technologies 20:121–5. doi: 10.1016/j.ifset.2013.06.007.
  • Wei, C., Z. Ni, K. Thakur, A. Liao, F. Hu, J. Huang, and Z. Wei. 2019. Acute, genetic and sub-chronic toxicities of flaxseed derived maillard reaction products. Food and Chemical Toxicology: Toxicology 131:110580. doi: 10.1016/j.fct.2019.110580.
  • Wei, C., Z. Ni, K. Thakur, A. Liao, J. Huang, and Z. Wei. 2019. Color and flavor of flaxseed protein hydrolysates maillard reaction products: Effect of cysteine, initial ph, and thermal treatment. International Journal of Food Properties 22 (1):84–99. doi: 10.1080/10942912.2019.1573830.
  • Wei, C., K. Thakur, D. Liu, J. Zhang, and Z. Wei. 2018. Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products. Food Chemistry 263:186–93. doi: 10.1016/j.foodchem.2018.04.120.
  • Wei, Q., T. Liu, and D. Sun. 2018. Advanced glycation end-products (AGEs) in foods and their detecting techniques and methods: A review. Trends in Food Science & Technology 82:32–45. doi: 10.1016/j.tifs.2018.09.020.
  • Wen, C., J. Zhang, W. Qin, J. Gu, H. Zhang, Y. Duan, and H. Ma. 2020. Structure and functional properties of soy protein isolate-lentinan conjugates obtained in maillard reaction by slit divergent ultrasonic assisted wet heating and the stability of oil-in-water emulsions. Food Chemistry 331:127374. doi: 10.1016/j.foodchem.2020.127374.
  • Wen, C., J. Zhang, H. Yao, J. Zhou, Y. Duan, H. Zhang, and H. Ma. 2019. Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. Ultrasonics Sonochemistry 53:83–98. doi: 10.1016/j.ultsonch.2018.12.036.
  • Wen, C., J. Zhang, H. Zhang, Y. Duan, and H. Ma. 2020. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in Food Science & Technology 105:308–22. doi: 10.1016/j.tifs.2020.09.019.
  • Wong, B. T., L. Day, and M. A. Augustin. 2011. Deamidated wheat protein–dextran maillard conjugates: Effect of size and location of polysaccharide conjugated on steric stabilization of emulsions at acidic ph. Food Hydrocolloids 25 (6):1424–32. doi: 10.1016/j.foodhyd.2011.01.017.
  • Wu, H., Z. Wang, C. Han, Z. Peng, and Y. Chen. 2010. Factors affecting the maillard reaction. Modern Food Science and Technology 26 (5):441–4.
  • Xiang, B. Y., M. O. Ngadi, L. A. Ochoa-Martinez, and M. V. Simpson. 2011. Pulsed electric field-induced structural modification of whey protein isolate. Food and Bioprocess Technology 4 (8):1341–8. doi: 10.1007/s11947-009-0266-z.
  • Xu, Q., X. Liao, X. Hu, Z. Liang, and Y. Zhang. 2011. Effects of high-voltage pulsed electric field on maillard reaction. Science and Technology of Food Industry 32 (11):98–100.
  • Xu, W., and X.-H. Zhao. 2019. Structure and property changes of the soy protein isolate glycated with maltose in an ionic liquid through the maillard reaction. Food & Function 10 (4):1948–57. doi: 10.1039/c9fo00096h.
  • Xue, F., C. Li, X. Zhu, L. Wang, and S. Pan. 2013. Comparative studies on the physicochemical properties of soy protein isolate-maltodextrin and soy protein isolate-gum acacia conjugate prepared through maillard reaction. Food Research International 51 (2):490–5. doi: 10.1016/j.foodres.2013.01.012.
  • Xue, F., Z. Wu, J. Tong, J. Zheng, and C. Li. 2017. Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates. Bioscience, Biotechnology, and Biochemistry 81 (10):1891–8. doi: 10.1080/09168451.2017.1361805.
  • Yen, G., and P. Hsieh. 2005. Mechanism of antimutagenic effect of maillard reaction products prepared from xylose and lysine. In Maillard reactions in chemistry, food and health, ed. T. P. Labuza, G. A. Reineccius, V. M. Monnier, J. O'Brien and J. W. Baynes, 341–6. Cambridge: Woodhead Publishing.
  • Yen, G. C., L. C. Tsai, and J. D. Lii. 1992. Antimutagenic effect of maillard browning products obtained from amino acids and sugars. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 30 (2):127–32. doi: https://doi.org/10.1016/0278-6915. (92)90147-D. doi: 10.1016/0278-6915(92)90147-D.
  • Yu, H., Y. Seow, P. K. C. Ong, and W. Zhou. 2016. Generating maillard reaction products in a model system of D-glucose and L-serine by continuous high-intensity ultrasonic processing. Innovative Food Science & Emerging Technologies 36:260–8. doi: 10.1016/j.ifset.2016.07.011.
  • Yu, H., Y. Seow, P. K. C. Ong, and W. Zhou. 2017. Effects of high-intensity ultrasound on maillard reaction in a model system of d-xylose and l-lysine. Ultrasonics Sonochemistry 34:154–63. doi: 10.1016/j.ultsonch.2016.05.034.
  • Yu, H., Y. Seow, P. K. C. Ong, and W. Zhou. 2018. Kinetic study of high-intensity ultrasound-assisted maillard reaction in a model system of d-glucose and glycine. Food Chemistry 269:628–37. doi: 10.1016/j.foodchem.2018.07.053.
  • Yu, H., Y. Seow, P. K. C. Ong, and W. Zhou. 2019. Effects of ultrasonic processing and oil type on maillard reaction of d-glucose and l-alanine in oil-in-water systems. Food and Bioprocess Technology 12 (2):325–37. doi: 10.1007/s11947-018-2213-3.
  • Yu, H., Q. Zhong, Y. Liu, Y. Guo, Y. Xie, W. Zhou, and W. Yao. 2020. Recent advances of ultrasound-assisted maillard reaction. Ultrasonics Sonochemistry 64:104844. doi: 10.1016/j.ultsonch.2019.104844.
  • Zeng, F., Q. Gao, Z. Han, X. Zeng, and S. Yu. 2016. Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chemistry 194:1313–9. doi: 10.1016/j.foodchem.2015.08.104.
  • Zeng, X., W. Bai, X. Zhu, and H. Dong. 2017. Browning intensity and taste change analysis of chicken protein–sugar maillard reaction system with antioxidants and different drying processes. Journal of Food Processing and Preservation 41 (2):e13117. doi: 10.1111/jfpp.13117.
  • Zha, F., S. Dong, J. Rao, and B. Chen. 2019a. Pea protein isolate-gum Arabic Maillard conjugates improves physical and oxidative stability of oil-in-water emulsions. Food Chemistry 285:130–8. doi: 10.1016/j.foodchem.2019.01.151.
  • Zha, F., S. Dong, J. Rao, and B. Chen. 2019b. The structural modification of pea protein concentrate with gum arabic by controlled maillard reaction enhances its functional properties and flavor attributes. Food Hydrocolloids 92:30–40. doi: 10.1016/j.foodhyd.2019.01.046.
  • Zha, F., Z. Yang, J. Rao, and B. Chen. 2019. Gum arabic-mediated synthesis of glyco-pea protein hydrolysate via maillard reaction improves solubility, flavor profile, and functionality of plant protein. Journal of Agricultural and Food Chemistry 67 (36):10195–206. doi: 10.1021/acs.jafc.9b04099.
  • Zhang, B., Y. J. Chi, and B. Li. 2014. Effect of ultrasound treatment on the wet heating maillard reaction between β-conglycinin and maltodextrin and on the emulsifying properties of conjugates. European Food Research and Technology 238 (1):129–38. doi: 10.1007/s00217-013-2082-y.
  • Zhang, B., X. Guo, K. Zhu, W. Peng, and H. Zhou. 2015. Improvement of emulsifying properties of oat protein isolate-dextran conjugates by glycation. Carbohydrate Polymers 127:168–75. doi: 10.1016/j.carbpol.2015.03.072.
  • Zhang, J., N. Wu, X. Yang, X. He, and L. Wang. 2012. Improvement of emulsifying properties of maillard reaction products from β-conglycinin and dextran using controlled enzymatic hydrolysis. Food Hydrocolloids 28 (2):301–12. doi: 10.1016/j.foodhyd.2012.01.006.
  • Zhang, J., N. Wu, T. Lan, and X. Yang. 2014. Improvement in emulsifying properties of soy protein isolate by conjugation with maltodextrin using high-temperature, short-time dry-heating maillard reaction. International Journal of Food Science & Technology 49 (2):460–7. doi: 10.1111/ijfs.12323.
  • Zhang, S., L. Sun, H. Ju, Z. Bao, X. Zeng, and S. Lin. 2021. Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International (Ottawa, Ont.) 139:109914. doi: 10.1016/j.foodres.2020.109914.
  • Zhang, X., X. Li, L. Liu, L. Wang, A. F. Massounga Bora, and L. Du. 2020. Covalent conjugation of whey protein isolate hydrolysates and galactose through maillard reaction to improve the functional properties and antioxidant activity. International Dairy Journal 102:104584. doi: 10.1016/j.idairyj.2019.104584.
  • Zhang, X., J. Qi, K. Li, S. Yin, J. Wang, J. Zhu, and X. Yang. 2012. Characterization of soy β-conglycinin–dextran conjugate prepared by maillard reaction in crowded liquid system. Food Research International 49 (2):648–54. doi: 10.1016/j.foodres.2012.09.001.
  • Zhang, Z., J. Xiao, Y. Mou, and G. Huang. 2018. Effect of ultrasonication of soybean protein on its maillard reaction with xylose and emulsifying property of the resultant products. Shipin Kexue/Food Science 39 (24):41–7.
  • Zhao, C., L. Zhou, J. Liu, Y. Zhang, Y. Chen, and F. Wu. 2016. Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar maillard reaction products. Journal of Food Science and Technology 53 (5):2342–51. doi: 10.1007/s13197-016-2206-z.
  • Zhong, L., N. Ma, Y. Wu, L. Zhao, G. Ma, F. Pei, and Q. Hu. 2019. Characterization and functional evaluation of oat protein isolate-pleurotus ostreatus β-glucan conjugates formed via maillard reaction. Food Hydrocolloids 87:459–69. doi: 10.1016/j.foodhyd.2018.08.034.
  • Zhu, D., S. Damodaran, and J. A. Lucey. 2008. Formation of whey protein isolate (WPI)-dextran conjugates in aqueous solutions. Journal of Agricultural and Food Chemistry 56 (16):7113–8. doi: 10.1021/jf800909w.
  • Zhuo, X., J. R. Qi, S. W. Yin, X. Q. Yang, J. H. Zhu, and L. X. Huang. 2013. Formation of soy protein isolate-dextran conjugates by moderate Maillard reaction in macromolecular crowding conditions. Journal of the Science of Food and Agriculture 93 (2):316–23. doi: 10.1002/jsfa.5760.
  • Žilić, S., B. A. Mogol, G. Akıllıoğlu, A. Serpen, N. Delić, and V. Gökmen. 2014. Effects of extrusion, infrared and microwave processing on maillard reaction products and phenolic compounds in soybean. Journal of the Science of Food and Agriculture 94 (1):45–51. doi: 10.1002/jsfa.6210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.