3,838
Views
9
CrossRef citations to date
0
Altmetric
Reviews

3D food printing: Applications of plant-based materials in extrusion-based food printing

, , , , , , , , , , , & show all

References

  • Anukiruthika, T., J. A. Moses, and C. Anandharamakrishnan. 2020. 3D printing of egg yolk and white with rice flour blends. Journal of Food Engineering 265:109691. doi: 10.1016/j.jfoodeng.2019.109691.
  • Azam, R. S., M. Zhang, B. Bhandari, and C. H. Yang. 2018. Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate. Food Biophysics 13 (3):250–62. doi: 10.1007/s11483-018-9531-x.
  • Chen, H., F. Xie, L. Chen, and B. Zheng. 2019. Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. Journal of Food Engineering 244:150–8. doi: 10.1016/j.jfoodeng.2018.09.011.
  • Chen, J. W., T. H. Mu, D. Goffin, C. Blecker, G. Richard, A. Richel, and E. Haubruge. 2019. Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. Journal of Food Engineering 261:76–86. doi: 10.1016/j.jfoodeng.2019.03.016.
  • Cohen, D. L., J. I. Lipton, and M. Cutler. 2009. Hydrocolloid printing: A novel platform for customized food production. In Proceeding of Solid Freeform Fabrication Symposium, Austin, TX, 807–18.
  • Dankar, I., A. Haddarah, F. E. L. Omar, F. Sepulcre, and M. Pujola. 2018. 3D printing technology: The new era for food customization and elaboration. Trends in Food Science & Technology 75:231–42. doi: 10.1016/j.tifs.2018.03.018.
  • Dankar, I., A. Haddarah, F. Sepulcre, and M. Pujola. 2019. Assessing mechanical and rheological properties of potato puree: Effect of different ingredient combinations and cooking methods on the feasibility of 3D printing. Foods 9 (1):21. doi: 10.3390/foods9010021.
  • Dankar, I., M. Pujola, F. E. Omar, F. Sepulcre, and A. Haddarah. 2018. Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and Bioprocess Technology 11 (11):2021–31. doi: 10.1007/s11947-018-2159-5.
  • Derossi, A., R. Caporizzi, D. Azzollini, and C. Severini. 2018. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering 220:65–75. doi: 10.1016/j.jfoodeng.2017.05.015.
  • Diañez, I., C. Gallegos, E. Brito-de la Fuente, I. Martínez, C. Valencia, M. C. Sánchez, M. J. Diaz, and J. M. Franco. 2019. 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids. 87:321–30. doi: 10.1016/j.foodhyd.2018.08.010.
  • Dick, A., B. Bhandari, and S. Prakash. 2019. 3D printing of meat. Meat Science 153:35–44. doi: 10.1016/j.meatsci.2019.03.005.
  • Fan, H. Z., M. Zhang, Z. B. Liu, and Y. F. Ye. 2020. Effect of microwave-salt synergetic pre-treatment on the 3D printing performance of SPI-strawberry ink system. LWT 122:109004. doi: 10.1016/j.lwt.2019.109004.
  • Feng, C., Q. Wang, H. Li, Q. Zhou, and W. Meng. 2018. Effects of pea protein on the properties of potato starch-based 3D printing materials. International Journal of Food Engineering 14 (3): 20170297. doi: 10.1515/ijfe-2017-0297.
  • Feng, C., M. Zhang, and B. Bhandari. 2019. Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review. Critical Reviews in Food Science and Nutrition 59 (19):3074–81. doi: 10.1080/10408398.2018.1481823.
  • Feng, C. Y., M. Zhang, B. Bhandari, and Y. F. Ye. 2020. Use of potato processing by-product: Effects on the 3D printing characteristics of the yam and the texture of air-fried yam snacks. LWT 125:109265. doi: 10.1016/j.lwt.2020.109265.
  • García-Segovia, P., V. García-Alcaraz, S. Balasch-Parisi, and J. Martínez-Monzó. 2020. 3D printing of gels based on xanthan/konjac gums. Innovative Food Science & Emerging Technologies 64:102343. doi: 10.1016/j.ifset.2020.102343.
  • Ghazal, A. M. F., M. Zhang, and Z. B. Liu. 2019. Spontaneous color change of 3D printed healthy food product over time after printing as a novel application for 4D food printing. Food and Bioprocess Technology 12 (10):1627–45. doi: 10.1007/s11947-019-02327-6.
  • Gholamipour-Shirazi, A., I. T. Norton, and T. Mills. 2019. Designing hydrocolloid based food-ink formulations for extrusion 3D printing. Food Hydrocolloids 95:161–7. doi: 10.1016/j.foodhyd.2019.04.011.
  • Godoi, F. C., S. Prakash, and B. R. Bhandari. 2016. 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering 179:44–54. doi: 10.1016/j.jfoodeng.2016.01.025.
  • Hao, L., Y. Li, P. Gong, and W. Xiong. 2019. Material, process and business development for 3D chocolate printing. In Fundamentals of 3D food printing and applications, edited by F. C. Godoi, B. R. Bhandari, S. Prakash, and M. Zhang, 207–55. London: Academic Press.
  • Hao, L., S. Mellor, O. Seaman, J. Henderson, N. Sewell, and M. Sloan. 2010. Material characterisation and process development for chocolate additive layer manufacturing. Virtual and Physical Prototyping 5 (2):57–64. doi: 10.1080/17452751003753212.
  • Hao, L., O. Seaman, S. Mellor, J. Henderson, N. Sewell, and M. Sloan. 2009. Extrusion behavior of chocolate for additive layer manufacturing. Innovative Developments in Design and Manufacturing: Advanced Research in Virtual and Rapid Prototyping, Proceedings, 245–50. Leiria, Portugal.
  • He, C., M. Zhang, and Z. Fang. 2020. 3D printing of food: Pretreatment and post-treatment of materials. Critical Reviews in Food Science and Nutrition 60 (14):2379–92. doi: 10.1080/10408398.2019.1641065.
  • He, C., M. Zhang, and C. F. Guo. 2020. 4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innovative Food Science & Emerging Technologies 59:102250. doi: 10.1016/j.ifset.2019.102250.
  • Holland, S., T. Foster, W. MacNaughtan, and C. Tuck. 2018. Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering 220:12–9. doi: 10.1016/j.jfoodeng.2017.06.008.
  • Huang, M. S., M. Zhang, and B. Bhandari. 2019. Assessing the 3D printing precision and texture properties of brown rice induced by infill levels and printing variables. Food and Bioprocess Technology 12 (7):1185–96. doi: 10.1007/s11947-019-02287-x.
  • Huang, M. S., M. Zhang, B. Bhandari, and Y. P. Liu. 2020. Improving the three-dimensional printability of taro paste by the addition of additives. Journal of Food Process Engineering 43 (5): e13090. doi: 10.1111/jfpe.13090.
  • Jiang, H., L. Zheng, Y. Zou, Z. Tong, S. Han, and S. Wang. 2019. 3D food printing: Main components selection by considering rheological properties. Critical Reviews in Food Science and Nutrition 59 (14):2335–47. doi: 10.1080/10408398.2018.1514363.
  • Karyappa, R., and M. Hashimoto. 2019. Chocolate-based ink three-dimensional printing (Ci3DP). Scientific Reports 9 (1): 1–11. doi: 10.1038/s41598-019-50583-5.
  • Kim, H. W., I. J. Lee, S. M. Park, J. H. Lee, N. Minh-Hiep, and H. J. Park. 2019. Effect of hydrocolloid addition on dimensional stability in post-processing of 3D printable cookie dough. LWT 101:69–75. doi: 10.1016/j.lwt.2018.11.019.
  • Kim, H. W., J. H. Lee, S. M. Park, M. H. Lee, I. W. Lee, H. S. Doh, and H. J. Park. 2018. Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing. Journal of Food Science 83 (12):2923–32. doi: 10.1111/1750-3841.14391.
  • Lanaro, M., D. P. Forrestal, S. Scheurer, D. J. Slinger, S. Liao, S. K. Powell, and M. A. Woodruff. 2017. 3D printing complex chocolate objects: Platform design, optimization and evaluation. Journal of Food Engineering 215:13–22. doi: 10.1016/j.jfoodeng.2017.06.029.
  • Le Tohic, C., J. J. O’Sullivan, K. P. Drapala, V. Chartrin, T. Chan, A. P. Morrison, J. P. Kerry, and A. L. Kelly. 2018. Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering 220:56–64. doi: 10.1016/j.jfoodeng.2017.02.003.
  • Lee, J. H., D. J. Won, H. W. Kim, and H. J. Park. 2019. Effect of particle size on 3D printing performance of the food-ink system with cellular food materials. Journal of Food Engineering 256:1–8. doi: 10.1016/j.jfoodeng.2019.03.014.
  • Li, D. N., B. Li, Y. Ma, X. Y. Sun, Y. Lin, and X. J. Meng. 2017. Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. Journal of Food Composition and Analysis 62:84–93. doi: 10.1016/j.jfca.2017.03.006.
  • Lille, M., A. Nurmela, E. Nordlund, S. Metsa-Kortelainen, and N. Sozer. 2018. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering 220:20–7. doi: 10.1016/j.jfoodeng.2017.04.034.
  • Lipton, J., D. Arnold, F. Nigl, N. Lopez, D. L. Cohen, N. Noren, and H. Lipson. 2010. Multi-material food printing with complex internal structure suitable for conventional post-processing. Annual International Solid Freeform Fabrication Symposium 21st, 809–815. Austin, TX.
  • Lipton, J. I., M. Cutler, F. Nigl, D. Cohen, and H. Lipson. 2015. Additive manufacturing for the food industry. Trends in Food Science & Technology 43 (1):114–23. doi: 10.1016/j.tifs.2015.02.004.
  • Liu, Y., T. Tang, S. Duan, Z. Qin, C. Li, Z. Zhang, A. Liu, D. Wu, H. Chen, G. Han, et al. 2020. Effects of sodium alginate and rice variety on the physicochemical characteristics and 3D printing feasibility of rice paste. LWT 127:109360. doi: 10.1016/j.lwt.2020.109360.
  • Liu, Y. W., X. Liang, A. Saeed, W. J. Lan, and W. Qin. 2019. Properties of 3D printed dough and optimization of printing parameters. Innovative Food Science & Emerging Technologies 54:9–18. doi: 10.1016/j.ifset.2019.03.008.
  • Liu, Z., B. Bhandari, S. Prakash, and M. Zhang. 2018. Creation of internal structure of mashed potato construct by 3D printing and its textural properties. Food Research International 111:534–43. doi: 10.1016/j.foodres.2018.05.075.
  • Liu, Z., B. Bhandari, and M. Zhang. 2020. Incorporation of probiotics (Bifidobacterium animalis subsp. Lactis) into 3D printed mashed potatoes: Effects of variables on the viability. Food Research International 128:108795. doi: 10.1016/j.foodres.2019.108795.
  • Liu, Z., M. Zhang, and B. Bhandari. 2018. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes. International Journal of Biological Macromolecules 117:1179–87. doi: 10.1016/j.ijbiomac.2018.06.048.
  • Liu, Z., M. Zhang, and C. H. Yang. 2018. Dual extrusion 3D printing of mashed potatoes/strawberry juice gel. LWT 96:589–96. doi: 10.1016/j.lwt.2018.06.014.
  • Liu, Z. B., B. Bhandari, S. Prakash, S. Mantihal, and M. Zhang. 2019. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids 87:413–24. doi: 10.1016/j.foodhyd.2018.08.026.
  • Liu, Z. B., A. Dick, S. Prakash, B. Bhandari, and M. Zhang. 2020. Texture modification of 3D printed air-fried potato snack by varying its internal structure with the potential to reduce oil content. Food and Bioprocess Technology 13 (3):564–76. doi: 10.1007/s11947-020-02408-x.
  • Liu, Z. B., M. Zhang, B. Bhandari, and Y. C. Wang. 2017. 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology 69:83–94. doi: 10.1016/j.tifs.2017.08.018.
  • Liu, Z. B., M. Zhang, B. Bhandari, and C. H. Yang. 2018. Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering 220:76–82. doi: 10.1016/j.jfoodeng.2017.04.017.
  • Liu, Z. P., H. Chen, B. Zheng, F. W. Xie, and L. Chen. 2020. Understanding the structure and rheological properties of potato starch induced by hot-extrusion 3D printing. Food Hydrocolloids 105:105812. doi: 10.1016/j.foodhyd.2020.105812.
  • Maniglia, B. C., D. C. Lima, M. D. Matta Junior, P. Le-Bail, A. Le-Bail, and P. E. D. Augusto. 2019. Hydrogels based on ozonated cassava starch: Effect of ozone processing and gelatinization conditions on enhancing 3D-printing applications. International Journal of Biological Macromolecules 138:1087–97. doi: 10.1016/j.ijbiomac.2019.07.124.
  • Maniglia, B. C., D. C. Lima, M. D. Matta Junior, P. Le-Bail, A. Le-Bail, and P. E. D. Augusto. 2020. Preparation of cassava starch hydrogels for application in 3D printing using dry heating treatment (DHT): A prospective study on the effects of DHT and gelatinization conditions. Food Research International 128:108803. doi: 10.1016/j.foodres.2019.108803.
  • Mantihal, S., S. Prakash, and B. Bhandari. 2019a. Textural modification of 3D printed dark chocolate by varying internal infill structure. Food Research International 121:648–57. doi: 10.1016/j.foodres.2018.12.034.
  • Mantihal, S., S. Prakash, and B. Bhandari. 2019b. Texture-modified 3D printed dark chocolate: Sensory evaluation and consumer perception study. Journal of Texture Studies 50 (5):386–99. doi: 10.1111/jtxs.12472.
  • Mantihal, S., S. Prakash, F. C. Godoi, and B. Bhandari. 2017. Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling. Innovative Food Science & Emerging Technologies 44:21–9. doi: 10.1016/j.ifset.2017.09.012.
  • Mantihal, S., S. Prakash, F. C. Godoi, and B. Bhandari. 2019. Effect of additives on thermal, rheological and tribological properties of 3D printed dark chocolate. Food Research International 119:161–9. doi: 10.1016/j.foodres.2019.01.056.
  • Marangoni, A. G., and S. E. McGauley. 2003. Relationship between crystallization behavior and structure in cocoa butter. Crystal Growth & Design 3 (1):95–108. doi: 10.1021/cg025580l.
  • Miao, S. D., N. Castro, M. Nowicki, L. Xia, H. T. Cui, X. Zhou, W. Zhu, S. J. Lee, K. Sarkar, G. Vozzi, et al. 2017. 4D printing of polymeric materials for tissue and organ regeneration. Materials Today 20 (10):577–91. doi: 10.1016/j.mattod.2017.06.005.
  • Nachal, N., J. A. Moses, P. Karthik, and C. Anandharamakrishnan. 2019. Applications of 3D printing in food processing. Food Engineering Reviews 11 (3):123–41. doi: 10.1007/s12393-019-09199-8.
  • Ngo, T. D., A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui. 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering 143:172–96. doi: 10.1016/j.compositesb.2018.02.012.
  • Park, S. M., H. W. Kim, and H. J. Park. 2020. Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production. Journal of Food Engineering 271:109781. doi: 10.1016/j.jfoodeng.2019.109781.
  • Perez, B., H. Nykvist, A. F. Brogger, M. B. Larsen, and M. F. Falkeborg. 2019. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chemistry 287:249–57. doi: 10.1016/j.foodchem.2019.02.090.
  • Periard, D., N. Schaal, M. Schaal, E. Malone, and H. Lipson. 2007. Printing food. In Proceedings of the 18th Solid Freeform Fabrication Symposium, Austin, TX, 564–74.
  • Phuhongsung, P., M. Zhang, and B. Bhandari. 2020. 4D printing of products based on soy protein isolate via microwave heating for flavor development. Food Research International 137:109605. doi: 10.1016/j.foodres.2020.109605.
  • Phuhongsung, P., M. Zhang, and S. Devahastin. 2020. Influence of surface pH on color, texture and flavor of 3D printed composite mixture of soy protein isolate, pumpkin, and beetroot. Food and Bioprocess Technology 13 (9):1600–10. doi: 10.1007/s11947-020-02497-8.
  • Portanguen, S., P. Tournayre, J. Sicard, T. Astruc, and P. S. Mirade. 2019. Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science & Technology 86:188–98. doi: 10.1016/j.tifs.2019.02.023.
  • Satija, A., and F. B. Hu. 2018. Plant-based diets and cardiovascular health. Trends in Cardiovascular Medicine 28 (7):437–41. doi: 10.1016/j.tcm.2018.02.004.
  • Severini, C., D. Azzollini, M. Albenzio, and A. Derossi. 2018. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International 106:666–76. doi: 10.1016/j.foodres.2018.01.034.
  • Severini, C., A. Derossi, and D. Azzollini. 2016. Variables affecting the printability of foods: Preliminary tests on cereal-based products. Innovative Food Science & Emerging Technologies 38:281–91. doi: 10.1016/j.ifset.2016.10.001.
  • Severini, C., A. Derossi, I. Ricci, R. Caporizzi, and A. Fiore. 2018. Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering 220:89–100. doi: 10.1016/j.jfoodeng.2017.08.025.
  • Shin, D. G., T. H. Kim, and D. E. Kim. 2017. Review of 4D printing materials and their properties. International Journal of Precision Engineering and Manufacturing-Green Technology 4 (3):349–57. doi: 10.1007/s40684-017-0040-z.
  • Southerland, D., P. Walters, and D. Huson. 2011. Edible 3D printing. In NIP & Digital Fabrication Conference, Society for Imaging Science and Technology, 819–822. Minneapolis, Minnesota.
  • Sun, J., Z. Peng, W. B. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu. 2015. A review on 3D printing for customized food fabrication. Procedia Manufacturing 1:308–19. doi: 10.1016/j.promfg.2015.09.057.
  • Sun, J., W. B. Zhou, L. K. Yan, D. J. Huang, and L. Y. Lin. 2018. Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering 220:1–11. doi: 10.1016/j.jfoodeng.2017.02.028.
  • Vancauwenberghe, V., M. A. Delele, J. Vanbiervliet, W. Aregawi, P. Verboven, J. Lammertyn, and B. Nicolai. 2018. Model-based design and validation of food texture of 3D printed pectin-based food simulants. Journal of Food Engineering 231:72–82. doi: 10.1016/j.jfoodeng.2018.03.010.
  • Vancauwenberghe, V., L. Katalagarianakis, Z. Wang, M. Meerts, M. Hertog, P. Verboven, P. Moldenaers, M. E. Hendrickx, J. Lammertyn, and B. Nicolai. 2017. Pectin based food-ink formulations for 3-D printing of customizable porous food simulants. Innovative Food Science & Emerging Technologies 42:138–50. doi: 10.1016/j.ifset.2017.06.011.
  • Vancauwenberghe, V., V. B. M. Mbong, E. Vanstreels, P. Verboven, J. Lammertyn, and B. Nicolai. 2019. 3D printing of plant tissue for innovative food manufacturing: Encapsulation of alive plant cells into pectin based bio-ink. Journal of Food Engineering 263:454–64. doi: 10.1016/j.jfoodeng.2017.12.003.
  • Vancauwenberghe, V., P. Verboven, J. Lammertyn, and B. Nicolai. 2018. Development of a coaxial extrusion deposition for 3D printing of customizable pectin-based food simulant. Journal of Food Engineering 225:42–52. doi: 10.1016/j.jfoodeng.2018.01.008.
  • Vieira, M. V., S. M. Oliveira, I. R. Amado, L. H. Fasolin, A. A. Vicente, L. M. Pastrana, and P. Fucinos. 2020. 3D printed functional cookies fortified with Arthrospira platensis: Evaluation of its antioxidant potential and physical-chemical characterization. Food Hydrocolloids 107:105893. doi: 10.1016/j.foodhyd.2020.105893.
  • Voon, S. L., J. An, G. Wong, Y. Zhang, and C. K. Chua. 2019. 3D food printing: A categorised review of inks and their development. Virtual and Physical Prototyping 14 (3):203–18. doi: 10.1080/17452759.2019.1603508.
  • Wang, L., M. Zhang, B. Bhandari, and C. H. Yang. 2018. Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering 220:101–8. doi: 10.1016/j.jfoodeng.2017.02.029.
  • Warner, E. L., I. T. Norton, and T. B. Mills. 2019. Comparing the viscoelastic properties of gelatin and different concentrations of kappa-carrageenan mixtures for additive manufacturing applications. Journal of Food Engineering 246:58–66. doi: 10.1016/j.jfoodeng.2018.10.033.
  • Xu, K., M. Zhang, and B. Bhandari. 2020. Effect of novel ultrasonic- microwave combined pretreatment on the quality of 3D printed wheat starch-papaya system. Food Biophysics 15 (2):249–60. doi: 10.1007/s11483-019-09615-w.
  • Yang, F., M. Zhang, Z. X. Fang, and Y. P. Liu. 2019. Impact of processing parameters and post-treatment on the shape accuracy of 3D-printed baking dough. International Journal of Food Science & Technology 54 (1):68–74. doi: 10.1111/ijfs.13904.
  • Yang, F., M. Zhang, and Y. Liu. 2019. Effect of post-treatment microwave vacuum drying on the quality of 3D-printed mango juice gel. Drying Technology 37 (14):1757–65. doi: 10.1080/07373937.2018.1536884.
  • Yang, F., M. Zhang, S. Prakash, and Y. P. Liu. 2018. Physical properties of 3D printed baking dough as affected by different compositions. Innovative Food Science & Emerging Technologies 49:202–10. doi: 10.1016/j.ifset.2018.01.001.
  • Yang, F. L., C. F. Guo, M. Zhang, B. Bhandari, and Y. P. Liu. 2019. Improving 3D printing process of lemon juice gel based on fluid flow numerical simulation. LWT 102:89–99. doi: 10.1016/j.lwt.2018.12.031.
  • Yang, F. L., M. Zhang, B. Bhandari, and Y. P. Liu. 2018. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT 87:67–76. doi: 10.1016/j.lwt.2017.08.054.
  • Zawada, B., G. Ukpai, M. J. Powell-Palm, and B. Rubinsky. 2018. Multi-layer cryolithography for additive manufacturing. Progress in Additive Manufacturing 3 (4):245–55. doi: 10.1007/s40964-018-0045-3.
  • Zhang, L., Y. Lou, and M. A. I. Schutyser. 2018. 3D printing of cereal-based food structures containing probiotics. Food Structure 18:14–22. doi: 10.1016/j.foostr.2018.10.002.
  • Zhao, L., M. Zhang, B. Chitrakar, and B. Adhikari. 2020. Recent advances in functional 3D printing of foods: A review of functions of ingredients and internal structures. Critical Reviews in Food Science and Nutrition, 1–15. doi: 10.1080/10408398.2020.1799327.
  • Zhu, S. C., M. A. Stieger, A. J. van der Goot, and M. A. I. Schutyser. 2019. Extrusion-based 3D printing of food pastes: Correlating rheological properties with printing behaviour. Innovative Food Science & Emerging Technologies 58:102214. doi: 10.1016/j.ifset.2019.102214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.