782
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis

, , , , &

References

  • Aakko, J., S. Pietilä, R. Toivonen, A. Rokka, K. Mokkala, K. Laitinen, L. Elo, and A. Hänninen. 2020. A carbohydrate-active 23.enzyme (CAZy) profile links successful metabolic specialization of Prevotella to its abundance in gut microbiota. Scientific Reports 10:1–12.
  • Aguilar-Toalá, J. E., R. Garcia-Varela, H. S. Garcia, V. Mata-Haro, A. F. González-Córdova, B. Vallejo-Cordoba, and A. Hernández-Mendoza. 2018. Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology 75:105–14.
  • Albesharat, R., M. A. Ehrmann, M. Korakli, S. Yazaji, and R. F. Vogel. 2011. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Systematic and Applied Microbiology 34:148–55.
  • An, D., S. F. Oh, T. Olszak, J. F. Neves, F. Y. Avci, D. Erturk-Hasdemir, X. Lu, S. Zeissig, R. S. Blumberg, D. L. Kasper. 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123–33.
  • Anani, H., M. T. Alou, A. Fontanini, D. Raoult, J. C. Lagier, and P. E. Fournier. 2020. Taxono-genomics and description of Haloimpatiens massiliensis sp. nov., a new bacterium isolated from the gut of a healthy infant. New Microbes and New Infections 33:100631.
  • Anwar, H., Irfan, S., Hussain, G., Faisal, M. N., Muzaffar, H., Mustafa, I., Mukhtar, I., Malik, S., and Ullah, M. I. (2019). Gut Microbiome: A New Organ System in Body. In Parasitology and Microbiology Research (Pacheco, G. A. B., and Kamboh, A. A., Eds.), IntechOpen, doi: 10.5772/intechopen.89634
  • Bakken, J. S., T. Borody, L. J. Brandt, J. V. Brill, D. C. Demarco, M. A. Franzos, C. Kelly, A. Khoruts, T. Louie, L. P. Martinelli, et al. 2011. Treating Clostridium difficile infection with fecal microbiota transplantation. Clinical Gastroenterology and Hepatology 9:1044–9. doi: 10.1016/j.cgh.2011.08.014
  • Bárcena, C., R. Valdés-Mas, P. Mayoral, C. Garabaya, S. Durand, F. Rodríguez, M. T. Fernández-García, N. Salazar, A. M. Nogacka, N. Garatachea, et al. 2019. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nature Medicine 25:1234–42. doi: 10.1038/s41591-019-0504-5. PMID: 31332389
  • Barrasa, J. I., N. Olmo, M. A. Lizarbe, and J. Turnay. 2013. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicology in Vitro 27:964–77.
  • Berg, G., D.Rybakova, D. Fischer, T. Cernava, M. C. Vergès, T. Charles, X. Chen, L. Cocolin, K. Eversole, G. H. Corral, et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:1–22.
  • Bertelsen, H., H. Andersen, and M. Tvede. 2001. Fermentation of D-tagatose by human intestinal bacteria and dairy lactic acid bacteria. Microbial Ecology in Health and Disease 13:87–95.
  • Bindels, L., P.Porporato, E. Dewulf, J. Verrax, A. M. Neyrinck, J. C. Martin, K. P. Scott, P. Buc Calderon, O. Feron, G. G. Muccioli, et al. 2012. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. British Journal of Cancer 107:1337–44.
  • Bishehsari, F., P. A.Engen, N. Z. Preite, Y. E. Tuncil, A. Naqib, M. Shaikh, M. Rossi, S. Wilber, S. J. Green, B. R. Hamaker, et al. 2018. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes 9 (2):102.
  • Bora, S. A., M. J. Kennett, P. B. Smith, A. D. Patterson, and M. T. Cantorna. 2018. The gut microbiota regulates endocrine vitamin D metabolism through fibroblast growth factor 23. Frontiers in Immunology 9:408.
  • Borody, T. J., and A. Khoruts. 2012. Fecal microbiota transplantation and emerging applications. Nature Reviews Gastroenterology & Hepatology 9:88–96.
  • Bourgin, M., S. Labarthe, A. Kriaa, M. Lhomme, P. Gérard, P. Lesnik, B. Laroche, E. Maguin, and M. Rhimi. 2020. Exploring the bacterial impact on cholesterol cycle: A numerical study. Frontiers in Microbiology 11:1121.
  • Brooks, B., B. A. Firek, C. S. Miller, I. Sharon, B. C. Thomas, R. Baker, Morowitz MJ, J. F. Banfield. 2014. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome 2:1.
  • Brown, A. J., S. M. Goldsworthy, A. A. Barnes, M. M.Eilert, L. Tcheang, D. Daniels, A. I. Muir, M. J. Wigglesworth, I. Kinghorn, N. J. Fraser, N. B. Pike, et al. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry 278:11312–9.
  • Brown, E. M., et al. 2019. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host & Microbe 25:668–80.
  • Canfora, E. E., J. W. Jocken, and E. E. Blaak. 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology 11:577.
  • Canfora, E. E., R. C. R. Meex, K. Venema, et al. 2019. Gut microbial metabolites in obesity, NAFLD and T2DM. Nature Reviews Endrocrinology 15:261–73.
  • Cantarel, B. L., V. Lombard, and B. Henrissat. 2012. Complex carbohydrate utilization by the healthy human microbiome. PloS One 7:e28742.
  • Carding, S., K. Verbeke, D. T. Vipond, B. M. Corfe, and L. J. Owen. 2015. Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease 26:26191.
  • Caussy, C., et al. 2018. Link between gut‐microbiome derived metabolite and shared gene‐effects with hepatic steatosis and fibrosis in NAFLD. Hepatology 68:918–32.
  • Chambers, E. S, et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–54.
  • Charalampopoulos, D., and R. A. Rastall. 2012. Prebiotics in foods. Current Opinion in Biotechnology 23:187–91.
  • Chassard, C., E. Delmas, C. Robert, P. A. Lawson, and A. Bernalier-Donadille. 2012. Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. International Journal of Systematic and Evolutionary Microbiology 62:138–43.
  • Chatterjee, I., et al. 2020. Vitamin D receptor promotes healthy microbial metabolites and microbiome. Scientific Reports 10:1–18.
  • Chen, T., W. Long, C. Zhang, S. Liu, L. Zhao, and B. R. Hamaker. 2017. Fiber-utilizing capacity varies in Prevotella-versus Bacteroides-dominated gut microbiota. Scientific Reports 7:1–7.
  • Chen, J., M. Thomsen, and L. Vitetta. 2019. Interaction of gut microbiota with dysregulation of bile acids in the pathogenesis of non-alcoholic fatty liver disease and potential therapeutic implications of probiotics. Journal of Cellular Biochemistry 120:2713–20.
  • Chiang, J. Y., and J. M. Ferrell. 2020. Up to date on cholesterol 7α-hydroxylase (CYP7A1) in bile acid synthesis. Liver Research 4 (2):47–63.
  • Clavel, T., G. Henderson, W. Engst, J. Doré, and M. Blaut. 2006. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiology Ecology 55:471–8.
  • Clavel, T., R. Lippman, F. Gavini, J. Doré, and M. Blaut. 2007. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Systematic and Applied Microbiology 30:16–26.
  • Costliow, Z. A., and P. H. Degnan. 2017. Thiamine acquisition strategies impact metabolism and competition in the gut microbe Bacteroides thetaiotaomicron. MSystems 2:e00116–17.
  • Craciun, S., and E. P. Balskus. 2012. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proceedings of the National Academy of Sciences 109:21307–12.
  • Crowley, E. K., et al. 2018. Dietary supplementation with a magnesium-rich marine mineral blend enhances the diversity of gastrointestinal microbiota. Marine Drugs 16:216.
  • Dai, Z. L., X. L. Li, P. B. Xi, J. Zhang, G. Wu, and W. Y. Zhu. 2012. Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42:1597–608.
  • Dai, Z. L., J. Zhang, G. Wu, and W. Y. Zhu. 2010. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–15.
  • Dalmasso, G., H. T. T. Nguyen, Y. Yan, L. Charrier-Hisamuddin, S. V. Sitaraman, and D. Merlin. 2008. Butyrate transcriptionally enhances peptide transporter PepT1 expression and activity. PloS One 3:e2476.
  • Dalton, A., C. Mermier, and M. Zuhl. 2019. Exercise influence on the microbiome-gut-brain axis. Gut Microbes 10 (5):555–68. doi: 10.1080/19490976.2018.1562268.
  • Daniel, H., et al. 2014. High-fat diet alters gut microbiota physiology in mice. The ISME Journal 8:295–308.
  • Den Besten, G., et al. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54:2325–40.
  • Diether, N. E., and B. P. Willing. 2019. Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction. Microorganisms 7:19.
  • Duncan, S. H., G. Holtrop, G. E. Lobley, A. G. Calder, C. S. Stewart, and H. J. Flint. 2004. Contribution of acetate to butyrate formation by human faecal bacteria. British Journal of Nutrition 91:915–23.
  • El Kaoutari, A., F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology 11:497–504.
  • Esquivel-Elizondo, S., Z. E. Ilhan, E. I. Garcia-Peña, and R. Krajmalnik-Brown. 2017. Insights into Butyrate Production in a Controlled Fermentation System via Gene Predictions. mSystems 2:e00051–17.
  • Eyssen, H. J., G. G. Parmentier, F. C. Compernolle, G. de Pauw, and M. Piessens-Denef. 1973. Biohydrogenation of sterols by Eubacterium ATCC 21,408—nova species. European Journal of Biochemistry 36:411–21.
  • Ezra-Nevo, G., S. F. Henriques, and C. Ribeiro. 2020. The diet-microbiome tango: How nutrients lead the gut brain axis. Current Opinion in Neurobiology 62:122–32.
  • Fan, P., L. Li, A. Rezaei, S. Eslamfam, D. Che, and X. Ma. 2015. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Current Protein & Peptide Science 16 (7):646–54.
  • Fan, P., P. Liu, P. Song, X. Chen, and X. Ma. 2017. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Scientific Reports 7:43412.
  • Food and Agricultural Organization of the United Nations and World Health Organization. 2002. Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations [online], fftp://ftp.fao.org/es/esn/food/wgreport2.pdf.
  • Frost, G., et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5:1–11.
  • Fusaro, M, et al. 2017. Vitamin K plasma levels determination in human health. Clinical Chemistry and Laboratory Medicine 55:789–99.
  • Fusaro, M., et al. 2011. Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: An important but poorly studied relationship. Journal of Endocrinological Investigation 34:317–23.
  • Gérard, P. 2014. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 3 (1):14–24.
  • Gérard, P., P. Lepercq, M. Leclerc, F. Gavini, P. Raibaud, and C. Juste. 2007. Bacteroides sp. strain D8, the first cholesterol-reducing bacterium isolated from human feces. Applied and Environmental Microbiology 73:5742–9.
  • Gibson, G. R., et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology 14:491.
  • Gilliland, S. E., and M. L. Speck. 1977. Deconjugation of bile acids by intestinal lactobacilli. Applied and Environmental Microbiology 33:15–8.
  • Goodrich, J. K., et al. 2014. Human genetics shape the gut microbiome. Cell 159:789–99.
  • Goodwin, B., et al. 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Molecular Cell 6:517–26.
  • Gowd, V, et al. 2018. Anti-oxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chemistry 269:618–27.
  • Hamer, H. M., D. M. A. E. Jonkers, K. Venema, S. A. L. W. Vanhoutvin, F. J. Troost, and R. J. Brummer. 2008. The role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics 27:104–19.
  • Han, M., C. Wang, P. Liu, D. Li, Y. Li, and X. Ma. 2017. Dietary fiber gap and host gut microbiota. Protein and Peptide Letters 24 (5):388–96.
  • Henriques, S. F., et al. 2020. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nature Communications 11:1–15.
  • Holmes, E., J. V. Li, T. Athanasiou, H. Ashrafian, and J. K. Nicholson. 2011. Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends in Microbiology 19:349–59.
  • Hooper, L., and A. Cassidy. 2006. A review of the health care potential of bioactive compounds. Journal of the Science of Food and Agriculture 86:1805–13.
  • Hylemon, P. B., H. Zhou, W. M. Pandak, S. Ren, G. Gil, and P. Dent. 2009. Bile acids as regulatory molecules. Journal of Lipid Research 50 (8):1509–20.
  • Ibrahim, M., and S. Anishetty. 2012. A meta-metabolome network of carbohydrate metabolism: Interactions between gut microbiota and host. Biochemical and Biophysical Research Communications 428:278–84.
  • Jäger, S., C. Handschin, J. S. Pierre, and B. M. Spiegelman. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences 104:12017–22.
  • Jala, V. R., R. Singh, S. Chandrashekharappa, S. Joshi-Barve, C. McClain, B. Bodduluri, and P. K. Vemula. 2020. Gut microbial metabolites as therapeutics to treat of alcoholic liver disease. The Journal of Immunology 204.
  • Jena, P. K., L. Sheng, H. X. Liu, K. Kalanetra, V. Krishnan, D. Mills, and Y. J. Wan. 2017. Western diet-induced dysbiosis in FXR knockout mice causes persistent hepatic inflammation after antibiotic treatment. The American Journal of Pathology 187 (8):1800–13.
  • Johnson, S. L., R. D. Kirk, N. A. DaSilva, H. Ma, N. P. Seeram, and, M. J. Bertin. 2019. Polyphenol microbial metabolites exhibit gut and blood–brain barrier permeability and protect murine microglia against LPS-induced inflammation. Metabolites 9:78.
  • Karasov, W. H., and H. V. Carey. 2009. Metabolic teamwork between gut microbes and hosts. Microbe 4:323–8.
  • Ke, W., J. A. Saba, C. Yao, et al. 2020. Dietary serine-microbiota interaction enhances chemotherapeutic toxicity without altering drug conversion. Nature Communications 11:2587.
  • Kenny, D. J., et al. 2020. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host & Microbe 28:245–57.
  • Kim, H. J., and S. C. Bae. 2011. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. American Journal of Translational Research 3:166.
  • Kimura, I., et al. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 4:1–12.
  • Kimura, I., D. Inoue, K. Hirano, and G. Tsujimoto. 2014. The SCFA receptor GPR43 and energy metabolism. Frontiers in Endocrinology 5:85.
  • Kirtzalidou, E., P. Pramateftaki, M. Kotsou, and A. Kyriacou. 2011. Screening for lactobacilli with probiotic properties in the infant gut microbiota. Anaerobe 17:440–3.
  • Kong, B., Wang, L., Chiang, J. Y., Zhang, Y., Klaassen, C. D., & Guo, G. L. (2012). Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology (Baltimore, Md.), 56(3), 1034–1043.
  • Kumar, J., K. Rani, and C. Datt. Molecular link between dietary fibre, gut microbiota and health. Molecular Biology Reports. 2020.
  • Kuno, T., M. Hirayama-Kurogi, S. Ito, et al. 2018. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Scientific Reports 8:1253. doi: 10.1038/s41598-018-19545-1.
  • Lamas, B., et al. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nature Medicine 22:598–605.
  • Landete, J. M., J. Arqués, M. Medina, P. Gaya, B. de Las Rivas, and, and R. Muñoz. 2016. Bioactivation of phytoestrogens: Intestinal bacteria and health. Critical Reviews in Food Science and Nutrition 56:1826–43.
  • Le Poul, E., et al. 2003. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. Journal of Biological Chemistry 278:25481–9.
  • LeBlanc, J. G., C. Milani, G. S. De Giori, F. Sesma, D. Van Sinderen, and M. Ventura. 2013. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Current Opinion in Biotechnology 24:160–8.
  • Leonel, A. J., and J. I. Alvarez-Leite. 2012. Butyrate: Implications for intestinal function. Current Opinion in Clinical Nutrition & Metabolic Care 15:474–9.
  • Li, Y. J., et al. 2020. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid–mediated activation of G protein–coupled receptors GPR43 and GPR109A. Journal of the American Society of Nephrology 31:1267–81.
  • Li, Q., H. Chen, M. Zhang, T. Wu, and R. Liu. 2019. Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food & Function 10 (11):7174–87.
  • Lin, J., C. Handschin, and B. M. Spiegelman. 2005. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabolism 1:361–70.
  • Lin, C. C., and M. Wang. 2017. Microbial metabolites regulate host lipid metabolism through NR5A–Hedgehog signalling. Nature Cell Biology 19:550–7.
  • Liu, F., Y. Fu, C. Wei, Y. Chen, S. Ma, and W. Xu. 2014. The expression of GPR109A, NF-kB and IL-1β in peripheral blood leukocytes from patients with type 2 diabetes. Annals of Clinical & Laboratory Science 44:443–8.
  • Ma, N., and X. Ma. 2019. Dietary amino acids and the gut‐microbiome‐immune axis: Physiological metabolism and therapeutic prospects. Comprehensive Reviews in Food Science and Food Safety 18:221–42.
  • Macfarlane, G. T., G. R. Gibson, E. Beatty, and J. H. Cummings. 1992. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiology Ecology 10:81–8.
  • Machiavelli, A., R. T. D. Duarte, M. M. S. Pires, C. R. Zárate-Bladés, and A. R. Pinto. 2019. The impact of in utero HIV exposure on gut microbiota, inflammation, and microbial translocation. Gut Microbes 10 (5):599–614. doi: 10.1080/19490976.2018.1560768.
  • Macia, L., et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications 6:6734.
  • Magnúsdóttir, S., D. Ravcheev, V. de Crécy-Lagard, and, and I. Thiele. 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics 6:148.
  • Marcobal, A., and J. L. Sonnenburg. 2012. Human milk oligosaccharide consumption by intestinal microbiota. Clinical Microbiology and Infection 18:12–5.
  • Mariño, E., J. Richards, K. McLeod, et al. 2017. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology 18:552–62.
  • Martinez-Guryn, K., et al. 2018. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host & Microbe 23:458–69.
  • Mascolo, N., V. M. Rajendran, and H. J. Binder. 1991. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology 101:331–8.
  • Mayneris-Perxachs, J., et al. 2016. Protein-and zinc-deficient diets modulate the murine microbiome and metabolic phenotype. The American Journal of Clinical Nutrition 104:1253–62.
  • Metges, C. C., et al. 1999. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. American Journal of Physiology-Endocrinology and Metabolism 277:597–607.
  • Midtvedt, T. 1974. Microbial bile acid transformation. The American Journal of Clinical Nutrition 27 (11):1341–7.
  • Midtvedt, A. C., and T. Midtvedt. 1993. Conversion of cholesterol to coprostanol by the intestinal microflora during the first two years of human life. Journal of Pediatric Gastroenterology and Nutrition 17:161–8.
  • Mu, C., Y. Yang, Z. Luo, L. Guan, and W. Zhu. 2016. The colonic microbiome and epithelial transcriptome are altered in rats fed a high-protein diet compared with a normal-protein diet. The Journal of Nutrition 146:474–83.
  • Müller, M., et al. 2019. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Scientific Reports 9:1–9.
  • Nicholson, J. K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia, and S. Pettersson. 2012. Host-gut microbiota metabolic interactions. Science 336:1262–7.
  • Nicholson, J. K., and I. D. Wilson. 2003. Understanding 'global' systems biology: Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery 2:668–76.
  • Nøhr, M. K., et al. 2013. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154:3552–64.
  • Okamoto, M, et al. 2013. Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes. Biochemical and Biophysical Research Communications 442:227–33.
  • Onyszkiewicz, M., K. Jaworska, and M. Ufnal. 2020. Short chain fatty acids and methylamines produced by gut microbiota as mediators and markers in the circulatory system. Experimental Biology and Medicine 245:166–75.
  • Patterson, E., et al. 2019. Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome. Scientific Reports 9:1–15.
  • Peirotén, Á., D. Bravo, and J. M. Landete. 2020. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Critical Reviews in Food Science and Nutrition 6:1922–37.
  • Pekmez, C. T., et al. 2020. Breastmilk lipids and oligosaccharides influence branched short‐chain fatty acid concentrations in infants with excessive weight gain. Molecular Nutrition & Food Research 64:1900977.
  • Pérez-Jiménez, J., V. Neveu, F. Vos, and A. Scalbert. 2010. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. European Journal of Clinical Nutrition 64:112–20.
  • Perry, R. J., et al. 2016. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534:213–7.
  • Portune, K. J., M. Beaumont, A. M. Davila, D. Tomé, F. Blachier, and, and Y. Sanz. 2016. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends in Food Science & Technology 57:213–32.
  • Potthoff, M. J., S. A. Kliewer, and D. J. Mangelsdorf. 2012. Endocrine fibroblast growth factors 15/19 and 21: From feast to famine. Genes & Development 26:312–24.
  • Pyryeva, E. A., and A. I. Safronova. 2019. The role of dietary fibers in the nutrition of the population. Voprosy Pitaniia 88 (6):5–11.
  • Quartieri, A., García-Villalba, R. Amaretti, A. Raimondi, S. Leonardi, A. Rossi, M. & Tomàs-Barberàn F. 2016. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Molecular Nutrition & Food Research 60:1590–601.
  • Rahim, M. B., J. Chilloux, L. Martinez-Gili, A. L. Neves, A. Myridakis, N. Gooderham, and M. E. Dumas. 2019. Diet-induced metabolic changes of the human gut microbiome: Importance of short-chain fatty acids, methylamines and indoles. Acta Diabetologica 56:493–500.
  • Rajeev, R., K. K. Adithya, G. S. Kiran, and J. Selvin. 2021. Healthy microbiome: A key to successful and sustainable shrimp aquaculture. Reviews in Aquaculture 13 (1):238–58.
  • Rajilić-Stojanović, M. 2013. Function of the microbiota. Best practice & research. Clinical Gastroenterology 27:5–16.
  • Ríos-Covián, D., P. Ruas-Madiedo, A. Margolles, M. Gueimonde, C. G. de Los Reyes-Gavilán, and N. Salazar. 2016. Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology 7:185.
  • Roberts, A. B., et al. 2018. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nature Medicine 24:1407–17.
  • Rowland, I., et al. 2018. Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition 57:1–24.
  • Said, H. M., and Z. M. Mohammed. 2006. Intestinal absorption of water-soluble vitamins: An update. Current Opinion in Gastroenterology 22:140–6.
  • Sanders, M. E., D. J. Merenstein, G. Reid, et al. 2019. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews Gastroenterology & Hepatology 16:605–16.
  • Sanidad, K. Z., H. Xiao, and G. Zhang. 2019. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health. Gut Microbes 10 (3):434–7. doi: 10.1080/19490976.2018.1546521.
  • Sayin, S. I., et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metabolism 17:225–35.
  • Seekatz, A. M., C. M. Theriot, K. Rao, Y. M. Chang, A. E. Freeman, J. Y. Kao, and V. B. Young. 2018. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe 53:64–73.
  • Sela, D. A., and D. A. Mills. 2010. Nursing our microbiota: Molecular linkages between bifidobacteria and milk oligosaccharides. Trends in Microbiology 18:298–307.
  • Selma, M. V., D. Beltrán, R. García-Villalba, J. C. Espín, and F. A. Tomás-Barberán. 2014. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food & Function 5:1779–84.
  • Sheng, L., P. K. Jena, Y. Hu, H. X. Liu, N. Nagar, K. Kalanetra, S. W. French, S. W. French, D. Mills, and Y. J. Wan. 2017. Hepatic inflammation caused by dysregulated bile acid synthesis is reversible by butyrate supplementation. The Journal of Pathology 243 (4):431–41.
  • Sheng, L., P. K. Jena, H. X. Liu, K. Kalanetra, F. Gonzalez, S. French, V. Krishnan, D. Mills, and Y. J. Wan. 2017. Gender differences in bile acids and microbiota in relationship with gender dissimilarity in steatosis induced by diet and FXR inactivation. Nature Scientific Reports 7 (1):1748.
  • Sherman, P. M., J. C. Ossa, and K. Johnson-Henry. 2009. Unraveling mechanisms of action of probiotics. Nutrition in Clinical Practice 24:10–4.
  • Silva, Y. P., A. Bernardi, and R. L. Frozza. 2020. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology 11:25.
  • Simó, C., and V. García-Cañas. 2020. Dietary bioactive ingredients to modulate the gut microbiota-derived metabolite TMAO. New opportunities for functional food development. Food & Function 11 (8):6745–6776.
  • Singh, R. K., et al. 2017. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine 15:73.
  • Singh, V., et al. 2018. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 175:679–94.
  • Sonnenburg, J. L., et al. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–9.
  • Sonnenburg, E. D., and J. L. Sonnenburg. 2014. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metabolism 20:779–86.
  • Stacchiotti, V., S. Rezzi, M. Eggersdorfer, and F. Galli. 2020. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Critical Reviews in Food Science and Nutrition:1–22. doi: 10.1080/10408398.2020.1793728
  • Steed, A. L., G. P. Christophi, G. E. Kaiko, L. Sun, V. M. Goodwin, U. Jain, … A. C. Boon. 2017. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357:498–502.
  • Strandwitz, P. 2018. Neurotransmitter modulation by the gut microbiota. Brain Research 1693:128–33.
  • Szaleniec, M., A. M. Wojtkiewicz, R. Bernhardt, T. Borowski, and M. Donova. 2018. Bacterial steroid hydroxylases: Enzyme classes, their functions and comparison of their catalytic mechanisms. Applied Microbiology and Biotechnology 102:8153–71.
  • Taggart, A. K., et al. 2005. D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. Journal of Biological Chemistry 280:26649–52.
  • Takebe, K., et al. 2005. Histochemical demonstration of a Na+-coupled transporter for short-chain fatty acids (slc5a8) in the intestine and kidney of the mouse. Biomedical Research 26:213–21.
  • Tanes, C., K. Bittinger, Y. Gao, E. S. Friedman, L. Nessel, U. R. Paladhi, … G. D. Wu. 2021. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host & Microbe 29 (3):394–407.e5.
  • Tang, W. W., D. Y. Li, and S. L. Hazen. 2019. Dietary metabolism, the gut microbiome, and heart failure. Nature Reviews Cardiology 16:137–54.
  • Tazoe, H., Y. Otomo, I. Kaji, R. Tanaka, S. I. Karaki, and A. Kuwahara. 2008. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of Physiology and Pharmacology 59:251–62.
  • Teramae, H., et al. 2010. The cellular expression of SMCT2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract. Biomedical Research 3:239–49.
  • Thangaraju, M., et al. 2009. GPR109A is a G-protein–coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Research 69:2826–32.
  • Thøgersen, R., et al. 2020. Inulin and milk mineral fortification of a pork sausage exhibits distinct effects on the microbiome and biochemical activity in the gut of healthy rats. Food Chemistry 331:127291.
  • Thomas, C. M., et al. 2016. FolC2‐mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. Microbiologyopen 5:802–18.
  • Tolhurst, G., et al. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 61:364–71.
  • Topping, D. L., and P. M. Clifton. 2001. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews 81 (3):1031–1064.
  • Trabelsi, M. S., M. Daoudi, J. Prawitt, S. Ducastel, V. Touche, S. I. Sayin, et al. 2015. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications 6:1–13.
  • Tunaru, S., J. Kero, A. Schaub, C. Wufka, A. Blaukat, K. Pfeffer, and S. Offermanns. 2003. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nature Medicine 9:352–5.
  • Usami, M., et al. 2008. Butyrate and trichostatin A attenuate nuclear factor κB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutrition Research 28:321–8.
  • van Best, N., U. Rolle-Kampczyk, F. G. Schaap, et al. 2020. Bile acids drive the newborn’s gut microbiota maturation. Nature Communications 11:3692.
  • Veiga, P., C. Juste, P. Lepercq, K. Saunier, F. Béguet, and, and P. Gérard. 2005. Correlation between faecal microbial community structure and cholesterol-to-coprostanol conversion in the human gut. FEMS Microbiology Letters 242:81–6.
  • Wallert, M., L. Schmölz, F. Galli, M. Birringer, and S. Lorkowski. 2014. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biology 2:495–503.
  • Wan, Y. Y., and P. K. Jena. 2019. Precision dietary supplementation based on personal gut microbiota. Nature reviews. Gastroenterology & Hepatology 16:204–6.
  • Wang, M., S. Wichienchot, X. He, X. Fu, Q. Huang, and B. Zhang. 2019. In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota. Trends in Food Science & Technology 88:1–9.
  • Ward, J., et al. 2017. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. American journal of physiology. Gastrointestinal and Liver Physiology 312:550–8.
  • Ward, R. E., M. Niñonuevo, D. A. Mills, C. B. Lebrilla, and J. B. German. 2007. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Molecular Nutrition & Food Research 51:1398–405.
  • Watanabe, M., et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–9.
  • Watanabe, Y., F. Nagai, and M. Morotomi. 2012. Characterization of Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Applied and Environmental Microbiology 78:511–8.
  • Wei, M., F. Huang, L. Zhao, Y. Zhang, W. Yang, S. Wang, M. Li, X. Han, K. Ge, C. Qu, et al. 2020. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine 1 (102766):55.
  • Winston, J. A., and C. M. Theriot. 2020. Diversification of host bile acids by members of the gut microbiota. Gut Microbes 11:158–71.
  • Wu, Y., N. Ma, P. Song, et al. 2019. Grape seed proanthocyanidin affects lipid metabolism via changing gut microflora and enhancing propionate production in weaned pigs. Journal of Nutrition 149 (9):1523–32. doi: 10.1093/jn/nxz102.
  • Wu, S., N. Tao, J. B. German, R. Grimm, and C. B. Lebrilla. 2010. Development of an annotated library of neutral human milk oligosaccharides. Journal of Proteome Research 9:4138–51.
  • Wu, H. J., & Wu, E. (2012). The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes, 3(1), 4–14. doi: 10.4161/gmic.193202.
  • Yoshii, K., K. Hosomi, K. Sawane, and J. Kunisawa. 2019. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Frontiers in Nutrition 6:48.
  • Yu, C., F. Wang, C. Jin, X. Huang, and W. L. McKeehan. 2005. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. Journal of Biological Chemistry 280:17707–14.
  • Ze, X., S. H. Duncan, P. Louis, and H. J. Flint. 2012. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal 6:1535–43.
  • Zenewicz, L. A., G. D. Yancopoulos, D. M. Valenzuela, A. J. Murphy, S. Stevens, and R. A. Flavell. 2008. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29:947–57.
  • Zeng, H., S. K. Hamlin, B. D. Safratowich, W. H. Cheng, and L. K. Johnson. 2020. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: Linking dietary fiber to cancer prevention. Nutrition Research 83:63–72.
  • Zhang, X., Z. Ning, J. Mayne, et al. 2020. Widespread protein lysine acetylation in gut microbiome and its alterations in patients with Crohn’s disease. Nature Communications 11:4120.
  • Zhao, J., X. Zhang, H. Liu, M. A. Brown, and S. Qiao. 2019. Dietary protein and gut microbiota composition and function. Current Protein and Peptide Science 20:145–54.
  • Zhu, Y., E. Jameson, M. Crosatti, H. Schäfer, K. Rajakumar, T. D. Bugg, and Y. Chen. 2014. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proceedings of the National Academy of Sciences 111, 4268–73. Thaiss, et al. 2016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.