328
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Targeting microRNAs by curcumin: implication for cancer therapy

, , &

References

  • Achkar, N. P., D. A. Cambiagno, and P. A. Manavella. 2016. miRNA biogenesis: A dynamic pathway. Trends in Plant Science 21 (12):1034–44. doi: 10.1016/j.tplants.2016.09.003.
  • Agarwal, A., A. Kasinathan, R. Ganesan, A. Balasubramanian, J. Bhaskaran, S. Suresh, R. Srinivasan, K. B. Aravind, and N. Sivalingam. 2018. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutrition Research 51:67–81. doi: 10.1016/j.nutres.2017.12.011.
  • Ahmad, A., A. Sayed, K. R. Ginnebaugh, V. Sharma, A. Suri, A. Saraph, S. Padhye, and F. H. Sarkar. 2015. Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog. American Journal of Translational Research 7 (2):298–308.
  • Ali, S., A. Ahmad, S. Banerjee, S. Padhye, K. Dominiak, J. M. Schaffert, Z. Wang, P. A. Philip, and F. H. Sarkar. 2010. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Research 70 (9):3606–17. doi: 10.1158/0008-5472.CAN-09-4598.
  • Asangani, I. A., S. A. K. Rasheed, D. A. Nikolova, J. H. Leupold, N. H. Colburn, S. Post, and H. Allgayer. 2008. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27 (15):2128–36. doi: 10.1038/sj.onc.1210856.
  • Banyard, J., and D. R. Bielenberg. 2015. The role of EMT and MET in cancer dissemination. Connective Tissue Research 56 (5):403–13. doi: 10.3109/03008207.2015.1060970.
  • Bartel, D. P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116 (2):281–97. doi: 10.1016/S0092-8674(04)00045-5.
  • Bautista-Sánchez, D., C. Arriaga-Canon, A. Pedroza-Torres, I. A. De La Rosa-Velázquez, R. González-Barrios, L. Contreras-Espinosa, R. Montiel-Manríquez, C. Castro-Hernández, V. Fragoso-Ontiveros, R. M. Álvarez-Gómez, et al. 2020. The promising role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Molecular therapy - Nucleic Acids 20:409–20. doi: 10.1016/j.omtn.2020.03.003.
  • Bohnsack, M. T., K. Czaplinski, and D. Gorlich. 2004. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10 (2):185–91. doi: 10.1261/rna.5167604.
  • Carotenuto, F., M. Albertini, D. Coletti, A. Vilmercati, L. Campanella, Z. Darzynkiewicz, and L. Teodori. 2016. How diet intervention via modulation of DNA damage response through microRNAs may have an effect on cancer prevention and aging, an in silico study. International Journal of Molecular Sciences 17 (5):752. doi: 10.3390/ijms17050752.
  • Chen, L., C. Z. Zhan, T. Wang, H. You, and R. Yao. 2020. Curcumin inhibits the proliferation, migration, invasion, and apoptosis of diffuse large B-cell lymphoma cell line by regulating MiR-21/VHL axis. Yonsei Medical Journal 61 (1):20–9. doi: 10.3349/ymj.2020.61.1.20.
  • Chen, P., J. Li, H. G. Jiang, T. Lan, and Y. C. Chen. 2015. Curcumin reverses cisplatin resistance in cisplatin-resistant lung caner cells by inhibiting FA/BRCA pathway. Tumor Biology 36 (5):3591–9. doi: 10.1007/s13277-014-2996-4.
  • Chendrimada, T. P., R. I. Gregory, E. Kumaraswamy, J. Norman, N. Cooch, K. Nishikura, and R. Shiekhattar. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436 (7051):740–4. doi: 10.1038/nature03868.
  • Choi, K., J. Kim, S. Y. Müller, M. Oh, C. Underwood, I. Henderson, and I. Lee. 2016. Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex. Plant Physiology 171 (2):1128–43.
  • Choudhuri, S. 2010. Small noncoding RNAs: Biogenesis, function, and emerging significance in toxicology. Journal of Biochemical and Molecular Toxicology 24 (3):195–216. doi: 10.1002/jbt.20325.
  • Ciccia, A., and S. J. Elledge. 2010. The DNA damage response: Making it safe to play with knives. Molecular Cell 40 (2):179–204. doi: 10.1016/j.molcel.2010.09.019.
  • Coker-Gurkan, A., D. Bulut, R. Genc, E. D. Arisan, P. Obakan-Yerlikaya, and N. Palavan-Unsal. 2019. Curcumin prevented human autocrine growth hormone (GH) signaling mediated NF-κB activation and miR-183-96-182 cluster stimulated epithelial mesenchymal transition in T47D breast cancer cells. Molecular Biology Reports 46 (1):355–69. doi: 10.1007/s11033-018-4479-y.
  • Dahmke, I. N., C. Backes, J. Rudzitis-Auth, M. W. Laschke, P. Leidinger, M. D. Menger, E. Meese, and U. Mahlknecht. 2013. Curcumin intake affects miRNA signature in murine melanoma with mmu-miR-205-5p most significantly altered. PloS One 8 (12):e81122. doi: 10.1371/journal.pone.0081122.
  • Denli, A. M., B. B. Tops, R. H. Plasterk, R. F. Ketting, and G. J. Hannon. 2004. Processing of primary microRNAs by the microprocessor complex. Nature 432 (7014):231–5. doi: 10.1038/nature03049.
  • Du, M., S. Liu, D. Gu, Q. Wang, L. Zhu, M. Kang, D. Shi, H. Chu, N. Tong, J. Chen, et al. 2014. Clinical potential role of circulating microRNAs in early diagnosis of colorectal cancer patients. Carcinogenesis 35 (12):2723–30. doi: 10.1093/carcin/bgu189.
  • Fareh, M., K. H. Yeom, A. C. Haagsma, S. Chauhan, I. Heo, and C. Joo. 2016. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nature Communications 7 (1):13694. doi: 10.1038/ncomms13694.
  • Faridounnia, M., G. E. Folkers, and R. Boelens. 2018. Function and interactions of ERCC1-XPF in DNA damage response. Molecules 23 (12):3205. doi: 10.3390/molecules23123205.
  • Gallardo, M., U. Kemmerling, F. Aguayo, T. C. Bleak, J. P. Muñoz, and G. M. Calaf. 2020. Curcumin rescues breast cells from epithelial-mesenchymal transition and invasion induced by anti-miR-34a. International Journal of Oncology 56 (2):480–93.
  • Gao, W., J. Y. Chan, and T. S. Wong. 2014. Curcumin exerts inhibitory effects on undifferentiated nasopharyngeal carcinoma by inhibiting the expression of miR-125a-5p. Clinical Science 127 (9):571–9. doi: 10.1042/CS20140010.
  • Ghosh, S., S. Banerjee, and P. C. Sil. 2015. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food and Chemical Toxicology 83:111–24. doi: 10.1016/j.fct.2015.05.022.
  • Giganti, M. G., I. Tresoldi, R. Sorge, G. Melchiorri, T. Triossi, L. Masuelli, P. Lido, L. Albonici, C. Foti, A. Modesti, et al. 2016. Physical exercise modulates the level of serum MMP-2 and MMP-9 in patients with breast cancer. Oncology Letters 12 (3):2119–26. doi: 10.3892/ol.2016.4887.
  • Giordano, A., and G. Tommonaro. 2019. Curcumin and cancer. Nutrients 11 (10) doi: 10.3390/nu11102376.
  • Guney Eskiler, G., E. Sahin, A. Deveci Ozkan, O. T. Cilingir Kaya, and S. Kaleli. 2020. Curcumin induces DNA damage by mediating homologous recombination mechanism in triple negative breast cancer. Nutrition and Cancer 72 (6):1057–66. doi: 10.1080/01635581.2019.1670216.
  • Ha, M., and V. N. Kim. 2014. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 15 (8):509–24. doi: 10.1038/nrm3838.
  • Hajheidari, M., S. Farrona, B. Huettel, Z. Koncz, and C. Koncz. 2012. CDKF; 1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. The Plant Cell 24 (4):1626–42. doi: 10.1105/tpc.112.096834.
  • Hammond, S. M. 2015. An overview of microRNAs. Advanced Drug Delivery Reviews 87:3–14. doi: 10.1016/j.addr.2015.05.001.
  • Han, J., Y. Lee, K. H. Yeom, Y. K. Kim, H. Jin, and V. N. Kim. 2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development 18 (24):3016–27. doi: 10.1101/gad.1262504.
  • Han, W., H. Yin, H. Ma, Y. Wang, D. Kong, and Z. Fan. 2020. Curcumin regulates ERCC1 expression and enhances oxaliplatin sensitivity in resistant colorectal cancer cells through its effects on miR-409-3p. Evidence-Based Complementary and Alternative Medicine 2020:1–16. doi: 10.1155/2020/8394574.
  • Hanahan, D., and R. A. Weinberg. 2000. The hallmarks of cancer. Cell 100 (1):57–70. doi: 10.1016/S0092-8674(00)81683-9.
  • Hanahan, D., and R. A. Weinberg. 2011. Hallmarks of cancer: The next generation. Cell 144 (5):646–74. doi: 10.1016/j.cell.2011.02.013.
  • Huang, G.-L., J. Sun, Y. Lu, Y. Liu, H. Cao, H. Zhang, and G. A. Calin. 2019. MiR-200 family and cancer: From a meta-analysis view. Molecular Aspects of Medicine 70:57–71. doi: 10.1016/j.mam.2019.09.005.
  • Huntzinger, E., and E. Izaurralde. 2011. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nature Reviews Genetics 12 (2):99–110. doi: 10.1038/nrg2936.
  • Iwasaki, S., M. Kobayashi, M. Yoda, Y. Sakaguchi, S. Katsuma, T. Suzuki, and Y. Tomari. 2010. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Molecular Cell 39 (2):292–9. doi: 10.1016/j.molcel.2010.05.015.
  • Jin, H., F. Qiao, Y. Wang, Y. Xu, and Y. Shang. 2015. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncology Reports 34 (5):2782–9. doi: 10.3892/or.2015.4258.
  • Khan, K., D. Cunningham, C. Peckitt, S. Barton, D. Tait, M. Hawkins, D. Watkins, N. Starling, S. Rao, R. Begum, et al. 2016. miR-21 expression and clinical outcome in locally advanced pancreatic cancer: Exploratory analysis of the pancreatic cancer Erbitux, radiotherapy and UFT (PERU) trial. Oncotarget 7 (11):12672–81. doi: 10.18632/oncotarget.7208.
  • Kleiner, D. E., and W. G. Stetler-Stevenson. 1999. Matrix metalloproteinases and metastasis. Cancer Chemotherapy and Pharmacology 43 (7):S42–S51. doi: 10.1007/s002800051097.
  • Kobayashi, H., and Y. Tomari. 2016. RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochimica et Biophysica Acta (BBA) 1859 (1):71–81. doi: 10.1016/j.bbagrm.2015.08.007.
  • Kosaka, N., H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya. 2010. Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological Chemistry 285 (23):17442–52. doi: 10.1074/jbc.M110.107821.
  • Krol, J., I. Loedige, and W. Filipowicz. 2010. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics 11 (9):597–610. doi: 10.1038/nrg2843.
  • Kronski, E., M. E. Fiori, O. Barbieri, S. Astigiano, V. Mirisola, P. H. Killian, A. Bruno, A. Pagani, F. Rovera, U. Pfeffer, et al. 2014. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and -2. Molecular Oncology 8 (3):581–95. doi: 10.1016/j.molonc.2014.01.005.
  • Lee, A. Y.-L., C.-C. Fan, Y.-A. Chen, C.-W. Cheng, Y.-J. Sung, C.-P. Hsu, and T.-Y. Kao. 2015. Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway. Integrative Cancer Therapies 14 (5):484–90. doi: 10.1177/1534735415588930.
  • Lee, Y., C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Rådmark, S. Kim, et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425 (6956):415–9. doi: 10.1038/nature01957.
  • Li, B., C. Shi, B. Li, J. M. Zhao, and L. Wang. 2018. The effects of curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway. Journal of Cellular Biochemistry 119 (4):3091–8. doi: 10.1002/jcb.26449.
  • Li, J., H. Wei, Y. Liu, Q. Li, H. Guo, Y. Guo, and Z. Chang. 2020. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evidence-Based Complementary and Alternative Medicine 2020:1–13. doi: 10.1155/2020/2892917.
  • Li, N., S. Wen, G. Chen, and S. Wang. 2020. Antiproliferative potential of piperine and curcumin in drug-resistant human leukemia cancer cells are mediated via autophagy and apoptosis induction, S-phase cell cycle arrest and inhibition of cell invasion and migration. Journal of BUON 25 (1):401–6.
  • Li, W., W. Yang, Y. Liu, S. Chen, S. Chin, X. Qi, Y. Zhao, H. Liu, J. Wang, X. Mei, et al. 2017. MicroRNA-378 enhances inhibitory effect of curcumin on glioblastoma. Oncotarget 8 (43):73938–46. doi: 10.18632/oncotarget.17881.
  • Li, Y., W. Sun, N. Han, Y. Zou, and D. Yin. 2018. Curcumin inhibits proliferation, migration, invasion and promotes apoptosis of retinoblastoma cell lines through modulation of miR-99a and JAK/STAT pathway. BMC Cancer 18 (1):1230. doi: 10.1186/s12885-018-5130-y.
  • Liu, W., M. Huang, Q. Zou, and W. Lin. 2018. Curcumin suppresses gastric cancer biological activity by regulation of miRNA-21: An in vitro study. International Journal of Clinical and Experimental Pathology 11 (12):5820–9.
  • Liu, W.-L., J.-M. Chang, I.-W. Chong, Y.-L. Hung, Y.-H. Chen, W.-T. Huang, H.-F. Kuo, C.-C. Hsieh, and P.-L. Liu. 2017. Curcumin inhibits LIN-28A through the activation of miRNA-98 in the lung cancer cell line A549. Molecules 22 (6):929. doi: 10.3390/molecules22060929.
  • Lu, Y., J. Wang, L. Liu, L. Yu, N. Zhao, X. Zhou, and X. Lu. 2017. Curcumin increases the sensitivity of Paclitaxel-resistant NSCLC cells to Paclitaxel through microRNA-30c-mediated MTA1 reduction. Tumor Biology 39 (4):101042831769835. 1010428317698353. doi: 10.1177/1010428317698353.
  • Ma, J., B. Fang, F. Zeng, H. Pang, J. Zhang, Y. Shi, X. Wu, L. Cheng, C. Ma, J. Xia, et al. 2014. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicology Letters 231 (1):82–91. doi: 10.1016/j.toxlet.2014.09.014.
  • Madni, A., A. Batool, S. Noreen, I. Maqbool, F. Rehman, P. M. Kashif, N. Tahir, and A. Raza. 2017. Novel nanoparticulate systems for lung cancer therapy: An updated review. Journal of Drug Targeting 25 (6):499–512. doi: 10.1080/1061186X.2017.1289540.
  • Menon, V. P., and A. R. Sudheer. 2007. Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology 595:105–25.
  • Mollaei, H., R. Safaralizadeh, and Z. Rostami. 2019. MicroRNA replacement therapy in cancer. Journal of Cellular Physiology 234 (8):12369–84. doi: 10.1002/jcp.28058.
  • Monteleone, F., S. Taverna, R. Alessandro, and S. Fontana. 2018. SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affecting the activity of miR-22/IPO7/HIF-1α axis. Journal of Experimental & Clinical Cancer Research 37 (1):170. doi: 10.1186/s13046-018-0843-y.
  • Mou, S., Z. Zhou, Y. He, F. Liu, and L. Gong. 2017. Curcumin inhibits cell proliferation and promotes apoptosis of laryngeal cancer cells through Bcl-2 and PI3K/Akt, and by upregulating miR-15a. Oncology Letters 14 (4):4937–42. doi: 10.3892/ol.2017.6739.
  • Mudduluru, G., J. N. George-William, S. Muppala, I. A. Asangani, R. Kumarswamy, L. D. Nelson, and H. Allgayer. 2011. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Bioscience Reports 31 (3):185–97. doi: 10.1042/BSR20100065.
  • Noratto, G. D., I. Jutooru, S. Safe, G. Angel-Morales, and S. U. Mertens-Talcott. 2013. The drug resistance suppression induced by curcuminoids in colon cancer SW-480 cells is mediated by reactive oxygen species-induced disruption of the microRNA-27a-ZBTB10-Sp axis. Molecular Nutrition & Food Research 57 (9):1638–48. doi: 10.1002/mnfr.201200609.
  • O’Connor, M. J. 2015. Targeting the DNA damage response in cancer. Molecular Cell 60 (4):547–60. doi: 10.1016/j.molcel.2015.10.040.
  • Ogiwara, H., A. Ui, B. Shiotani, L. Zou, A. Yasui, and T. Kohno. 2013. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor. Carcinogenesis 34 (11):2486–97. doi: 10.1093/carcin/bgt240.
  • Pan, Y., Y. Sun, Z. Liu, and C. Zhang. 2020. MiR-192-5p upregulation mediates the suppression of curcumin in human NSCLC cell proliferation, migration and invasion by targeting c-Myc and inactivating the Wnt/β-catenin signaling pathway. Molecular Medicine Reports 22 (2):1594–604. doi: 10.3892/mmr.2020.11213.
  • Park, S.-H., M.-A. Seong, and H.-Y. Lee. 2016. p38 MAPK-induced MDM2 degradation confers paclitaxel resistance through p53-mediated regulation of EGFR in human lung cancer cells. Oncotarget 7 (7):8184–99. doi: 10.18632/oncotarget.6945.
  • Park, W., A. R. Amin, Z. G. Chen, and D. M. Shin. 2013. New perspectives of curcumin in cancer prevention. Cancer Prevention Research 6 (5):387–400. doi: 10.1158/1940-6207.CAPR-12-0410.
  • Pivari, F., A. Mingione, C. Brasacchio, and L. Soldati. 2019. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients 11 (8):1837. doi: 10.3390/nu11081837.
  • Raffoul, J. J., A. R. Heydari, and G. G. Hillman. 2012. DNA repair and cancer therapy: Targeting APE1/Ref-1 using dietary agents. Journal of Oncology 2012:1–11. doi: 10.1155/2012/370481.
  • Sadoughi, F., J. Hallajzadeh, Z. Asemi, M. A. Mansournia, F. Alemi, and B. Yousefi. 2021. Signaling pathways involved in cell cycle arrest during the DNA breaks. DNA Repair 98:103047. doi: 10.1016/j.dnarep.2021.103047.
  • Sadoughi, F., L. Mirsafaei, P. M. Dana, J. Hallajzadeh, Z. Asemi, M. A. Mansournia, M. Montazer, M. Hosseinpour, and B. Yousefi. 2021. The role of DNA damage response in chemo- and radio-resistance of cancer cells: Can DDR inhibitors sole the problem? DNA Repair 101:103074. doi: 10.1016/j.dnarep.2021.103074.
  • Sahebkar, A. 2013. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? BioFactors 39 (2):197–208. doi: 10.1002/biof.1062.
  • Sahu, R. P., S. Batra, and S. K. Srivastava. 2009. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. British Journal of Cancer 100 (9):1425–33. doi: 10.1038/sj.bjc.6605039.
  • Saini, S., S. Arora, S. Majid, V. Shahryari, Y. Chen, G. Deng, S. Yamamura, K. Ueno, and R. Dahiya. 2011. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prevention Research 4 (10):1698–709. doi: 10.1158/1940-6207.CAPR-11-0267.
  • Schabath, M. B., and M. L. Cote. 2019. Cancer progress and priorities: Lung cancer. Cancer Epidemiology Biomarkers & Prevention 28 (10):1563–79. doi: 10.1158/1055-9965.EPI-19-0221.
  • Schwertheim, S., F. Wein, K. Lennartz, K. Worm, K. W. Schmid, and S. Y. Sheu-Grabellus. 2017. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells. Journal of Cancer Research and Clinical Oncology 143 (7):1143–54. doi: 10.1007/s00432-017-2380-z.
  • Srinivas, U. S., B. W. Q. Tan, B. A. Vellayappan, and A. D. Jeyasekharan. 2019. ROS and the DNA damage response in cancer. Redox Biology 25:101084. doi: 10.1016/j.redox.2018.101084.
  • Sun, C., S. Zhang, C. Liu, and X. Liu. 2019. Curcumin promoted miR-34a expression and suppressed proliferation of gastric cancer cells. Cancer Biotherapy and Radiopharmaceuticals 34 (10):634–41. doi: 10.1089/cbr.2019.2874.
  • Sun, Q., W. Zhang, Y. Guo, Z. Li, X. Chen, Y. Wang, Y. Du, W. Zang, and G. Zhao. 2016. Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer. Tumor Biology 37 (10):13177–84. doi: 10.1007/s13277-016-5221-9.
  • Sun, Z., T. Guo, Y. Liu, Q. Liu, and Y. Fang. 2015. The roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary microRNAs. PLoS Genetics 11 (10):e1005598. doi: 10.1371/journal.pgen.1005598.
  • Talmadge, J. E., and I. J. Fidler. 2010. AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Research 70 (14):5649–69. doi: 10.1158/0008-5472.CAN-10-1040.
  • Tan, X., G. Kim, D. Lee, J. Oh, M. Kim, C. Piao, J. Lee, M. S. Lee, J. H. Jeong, M. Lee, et al. 2018. A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomaterials Science 6 (2):407–17. doi: 10.1039/C7BM01088E.
  • Toden, S., Y. Okugawa, T. Jascur, D. Wodarz, N. L. Komarova, C. Buhrmann, M. Shakibaei, C. R. Boland, and A. Goel. 2015. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36 (3):355–67. doi: 10.1093/carcin/bgv006.
  • Unlu, A., E. Nayir, M. Dogukan Kalenderoglu, O. Kirca, and M. Ozdogan. 2016. Curcumin (Turmeric) and cancer. Journal of BUON 21 (5):1050–60.
  • Vishnoi, A., and S. Rani. 2017. MiRNA biogenesis and regulation of diseases: An overview. Methods in Molecular Biology (Clifton, NJ) 1509:1–10.
  • Voortman, J., A. Goto, J. Mendiboure, J. J. Sohn, A. J. Schetter, M. Saito, A. Dunant, T. C. Pham, I. Petrini, A. Lee, et al. 2010. MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Research 70 (21):8288–98. doi: 10.1158/0008-5472.CAN-10-1348.
  • Wang, K., S.-L. Tan, Q. Lu, R. Xu, J. Cao, S.-Q. Wu, Y.-H. Wang, X.-K. Zhao, and Z.-H. Zhong. 2018. Curcumin suppresses microRNA-7641-mediated regulation of p16 expression in bladder cancer. The American Journal of Chinese Medicine 46 (06):1357–68. doi: 10.1142/S0192415X18500714.
  • Wang, L., X. Song, L. Gu, X. Li, S. Cao, C. Chu, X. Cui, X. Chen, and X. Cao. 2013. NOT2 proteins promote polymerase II–dependent transcription and interact with multiple microRNA biogenesis factors in Arabidopsis. The Plant Cell 25 (2):715–27. doi: 10.1105/tpc.112.105882.
  • Wang, X., Y. Hang, J. Liu, Y. Hou, N. Wang, and M. Wang. 2017. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncology Letters 13 (6):4825–31. doi: 10.3892/ol.2017.6053.
  • Wei, J. W., K. Huang, C. Yang, and C. S. Kang. 2017. as regulators in epigenetics (Review). Oncology Reports 37 (1):3–9. doi: 10.3892/or.2016.5236.
  • White, N. M., E. Fatoohi, M. Metias, K. Jung, C. Stephan, and G. M. Yousef. 2011. Metastamirs: A stepping stone towards improved cancer management. Nature Reviews Clinical Oncology 8 (2):75–84. doi: 10.1038/nrclinonc.2010.173.
  • Wu, H., Q. Liu, T. Cai, Y. D. Chen, and Z. F. Wang. 2015. Induction of microRNA-146a is involved in curcumin-mediated enhancement of temozolomide cytotoxicity against human glioblastoma. Molecular Medicine Reports 12 (4):5461–6. doi: 10.3892/mmr.2015.4087.
  • Xiao, H., Q. Xiao, K. Zhang, X. Zuo, and U. K. Shrestha. 2010. Reversal of multidrug resistance by curcumin through FA/BRCA pathway in multiple myeloma cell line MOLP-2/R. Annals of Hematology 89 (4):399–404. doi: 10.1007/s00277-009-0831-6.
  • Yang, C. H., J. Yue, M. Sims, and L. M. Pfeffer. 2013. The curcumin analog EF24 targets NF-κB and miRNA-21, and has potent anticancer activity in vitro and in vivo. PloS One 8 (8):e71130. doi: 10.1371/journal.pone.0071130.
  • Yang, J., Y. Cao, J. Sun, and Y. Zhang. 2010. Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells. Medical Oncology 27 (4):1114–18. doi: 10.1007/s12032-009-9344-3.
  • Yang, Y. 2015. Cancer immunotherapy: Harnessing the immune system to battle cancer. Journal of Clinical Investigation 125 (9):3335–7. doi: 10.1172/JCI83871.
  • Ye, M., J. Zhang, J. Zhang, Q. Miao, L. Yao, and J. Zhang. 2015. Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Letters 357 (1):196–205. doi: 10.1016/j.canlet.2014.11.028.
  • Yin, S., W. Du, F. Wang, B. Han, Y. Cui, D. Yang, H. Chen, D. Liu, X. Liu, X. Zhai, et al. 2018. MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway. Cancer Biology & Therapy 19 (4):260–70. doi: 10.1080/15384047.2016.1250981.
  • Yu, D., F. An, X. He, and X. Cao. 2015. Curcumin inhibits the proliferation and invasion of human osteosarcoma cell line MG-63 by regulating miR-138. International Journal of Clinical and Experimental Pathology 8 (11):14946–52.
  • Zhang, H., W. Xu, B. Li, K. Zhang, Y. Wu, H. Xu, J. Wang, J. Zhang, R. Fan, J. Wei, et al. 2015. Curcumin promotes cell cycle arrest and inhibits survival of human renal cancer cells by negative modulation of the PI3K/AKT signaling pathway. Cell Biochemistry and Biophysics 73 (3):681–6. doi: 10.1007/s12013-015-0694-5.
  • Zhang, J., J. Liu, X. Xu, and L. Li. 2017. Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemotherapy and Pharmacology 79 (3):479–87. doi: 10.1007/s00280-017-3238-4.
  • Zhang, J., L. Ma, D. Shi, Z. Zhang, C. Yao, X. Zhao, Q. Xu, P. Wen, and L. He. 2018. Prognostic significance of miR-21 and PDCD4 in patients with stage II esophageal carcinoma after surgical resection. Journal of Cellular Biochemistry 119 (6):4783–91. doi: 10.1002/jcb.26672.
  • Zhang, J., T. Zhang, X. Ti, J. Shi, C. Wu, X. Ren, and H. Yin. 2010. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochemical and Biophysical Research Communications 399 (1):1–6. doi: 10.1016/j.bbrc.2010.07.013.
  • Zhang, J., Y. Du, C. Wu, X. Ren, X. Ti, J. Shi, F. Zhao, and H. Yin. 2010. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186* signaling pathway. Oncology Reports 24 (5):1217–23. doi: 10.3892/or_00000975.
  • Zhang, L., G. Yang, R. Zhang, L. Dong, H. Chen, J. Bo, W. Xue, and Y. Huang. 2018. Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells. International Journal of Oncology 53 (2):515–26. doi: 10.3892/ijo.2018.4423.
  • Zhang, S., M. Xie, G. Ren, and B. Yu. 2013. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proceedings of the National Academy of Sciences 110 (43):17588–93. doi: 10.1073/pnas.1310644110.
  • Zhang, S., Y. Liu, and B. Yu. 2014. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genetics 10 (12):e1004841. doi: 10.1371/journal.pgen.1004841.
  • Zhang, W., W. Bai, and W. Zhang. 2014. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non-small cell lung cancer A549 cells. Clinical and Translational Oncology 16 (8):708–13. doi: 10.1007/s12094-013-1135-9.
  • Zhao, Q., J. Guan, Y. Qin, P. Ren, Z. Zhang, J. Lv, S. Sun, C. Zhang, and W. Mao. 2018. Curcumin sensitizes lymphoma cells to DNA damage agents through regulating Rad51-dependent homologous recombination. Biomedicine & Pharmacotherapy 97:115–19. doi: 10.1016/j.biopha.2017.09.078.
  • Zhao, S. F., X. Zhang, X. J. Zhang, X. Q. Shi, Z. J. Yu, and Q. C. Kan. 2014. Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pacific Journal of Cancer Prevention 15 (8):3363–8. doi: 10.7314/APJCP.2014.15.8.3363.
  • Zhou, C., C. Hu, B. Wang, S. Fan, and W. Jin. 2020. Curcumin suppresses cell proliferation, migration, and invasion through modulating miR-21-5p/SOX6 axis in hepatocellular carcinoma. Cancer Biotherapy and Radiopharmaceuticals.
  • Zhou, L., Y. Lu, J.-S. Liu, S.-Z. Long, H.-L. Liu, J. Zhang, and T. Zhang. 2020. The role of miR-21/RECK in the inhibition of osteosarcoma by curcumin. Molecular and Cellular Probes 51:101534. doi: 10.1016/j.mcp.2020.101534.
  • Zhou, S., J. Li, H. Xu, S. Zhang, X. Chen, W. Chen, S. Yang, S. Zhong, J. Zhao, J. Tang, et al. 2017. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene 622:1–12. doi: 10.1016/j.gene.2017.04.026.
  • Zhou, S. S., J. P. Jin, J. Q. Wang, Z. G. Zhang, J. H. Freedman, Y. Zheng, and L. Cui. 2018. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacologica Sinica 39 (7):1073–84. doi: 10.1038/aps.2018.30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.