2,743
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Microwave applications in the food industry: an overview of recent developments

ORCID Icon, ORCID Icon, &

References

  • Abrar, M. 2017. Optimization of Pb(II) adsorption onto australian pine cones-based activated carbon by pulsed microwave heating activation. Iranian Journal of Chemistry and Chemical Engineering 36 (5):115–27.
  • Afolabi, H. K., S. K. A. Mudalip, and O. R. Alara. 2018. Microwave-assisted extraction and characterization of fatty acid from eel fish (Monopterus albus). Beni-Suef University Journal of Basic and Applied Sciences 7 (4):465–70. doi: 10.1016/j.bjbas.2018.04.003.
  • Akar, G., and I. Barutçu Mazı. 2019. Color change, ascorbic acid degradation kinetics, and rehydration behavior of kiwifruit as affected by different drying methods. Journal of Food Process Engineering 42 (3):e13011–16. doi: 10.1111/jfpe.13011.
  • Al-Ali, M., and R. Parthasarathy. 2020. Influence of microwave drying and conventional drying methods on the mechanical properties of naproxen sodium drug tablets. Particuology 53:30–40. doi: 10.1016/j.partic.2020.01.006.
  • Al-Ali, M., K. I. Salih, and A. Alsamarrae. 2020. Microwave heating temperatures and pharmaceutical powder characteristics. Materials Today: Proceedings 20:583–7. doi: 10.1016/j.matpr.2019.09.193.
  • Alslaibi, T. M., I. Abustan, M. A. Ahmad, and A. A. Foul. 2013. A review: Production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of Chemical Technology & Biotechnology 88 (7):1183–90. doi: 10.1002/jctb.04028.
  • Aniszewska, M., W. Zychowicz, and A. Gendek. 2020. The effectiveness of short-term microwave irradiation on the process of seed extraction from scots pine cones (Pinus sylvestris L.). iForest - Biogeosciences and Forestry 13 (1):73–9. doi: 10.3832/ifor3089-012.
  • Arrutia, F., M. Adam, M. Á. Calvo-Carrascal, Y. Mao, and E. Binner. 2020. Development of a continuous-flow system for microwave-assisted extraction of pectin-derived oligosaccharides from food waste. Chemical Engineering Journal 395:125056. doi: 10.1016/j.cej.2020.125056.
  • Auksornsri, T., J. Tang, Z. Tang, H. Lin, and S. Songsermpong. 2018. Dielectric properties of rice model food systems relevant to microwave sterilization process. Innovative Food Science & Emerging Technologies 45:98–105. doi: 10.1016/j.ifset.2017.09.002.
  • Bai, Y., G. Saren, and W. Huo. 2015. Response surface methodology (RSM) in evaluation of the vitamin C concentrations in microwave treated milk. Journal of Food Science and Technology 52 (7):4647–51. doi: 10.1007/s13197-014-1505-5.
  • Balasubramanian, S., J. D. Allen, A. Kanitkar, and D. Boldor. 2011. Oil extraction from Scenedesmus obliquus using a continuous microwave system – Design, optimization, and quality characterization. Bioresource Technology 102 (3):3396–403. doi: 10.1016/j.biortech.2010.09.119.
  • Balboni, B. M., B. Ozarska, J. N. Garcia, and G. Torgovnikov. 2018. Microwave treatment of Eucalyptus macrorhyncha timber for reducing drying defects and its impact on physical and mechanical wood properties. European Journal of Wood and Wood Products 76 (3):861–70. doi: 10.1007/s00107-017-1260-1.
  • Barbosa-Cánovas, G. V., I. Medina-Meza, K. Candoğan, and D. Bermúdez-Aguirre. 2014. Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Science 98 (3):420–34. doi: 10.1016/j.meatsci.2014.06.027.
  • Bálint, E., Tajti, Á. and Keglevich, G. 2019. Application of the microwave technique in continuous flow processing of organophosphorus chemical reactions. Materials 12 (5). doi: 10.3390/ma12050788
  • Begum, A., P. Borah, and P. Chowdhury. 2016. Microwave (MW) promoted high yield expedient synthesis of steryl ferulates – A class of novel biologically active compounds: A comparative study of their antioxidant activity with that of naturally occurring c-oryzanol. Steroids 107:37–44. doi: 10.1016/j.steroids.2015.12.017.
  • Bhatt, S., S. Suthar, D. Mistry, and N. Ghetiya. 2020. Experimental study on effect of susceptor and separator materials on microwave melting of lead metal. Materials Today: Proceedings 26:3000–2. doi: 10.1016/j.matpr.2020.02.622.
  • Brody, A. L. 2012. The coming wave of microwave sterilization and pasteurization. Food Technology 66 (3):78–80.
  • Budarin, V. L., P. S. Shuttleworth, M. De Bruyn, T. J. Farmer, M. J. Gronnow, L. Pfaltzgraff, D. J. Macquarrie, and J. H. Clark. 2015. The potential of microwave technology for the recovery, synthesis and manufacturing of chemicals from bio-wastes. Catalysis Today 239:80–9. doi: 10.1016/j.cattod.2013.11.058.
  • Cai, L., Y. Dai, and M. Cao. 2020. The effects of magnetic nanoparticles combined with microwave or far infrared thawing on the freshness and safety of red seabream (Pagrus major) fillets. Lwt 128:109456. doi: 10.1016/j.lwt.2020.109456.
  • Cai, L., J. Wan, X. Li, and J. Li. 2020. Effects of different thawing methods on physicochemical properties and structure of largemouth bass (Micropterus salmoides). Journal of Food Science 85 (3):582–91. doi: 10.1111/1750-3841.15029.
  • Cao, M., A. Cao, J. Wang, L. Cai, J. Regenstein, Y. Ruan, and X. Li. 2018. Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream (Pagrus Major) fillets. Food Chemistry 266:498–507. doi: 10.1016/j.foodchem.2018.06.057.
  • Chemat, F., N. Rombaut, A. Meullemiestre, M. Turk, S. Perino, A. S. Fabiano-Tixier, and M. Abert-Vian. 2017. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies 41:357–77. doi: 10.1016/j.ifset.2017.04.016.
  • Chen, F., S. Liu, Z. Zhao, W. Gao, Y. Ma, X. Wang, S. Yan, and D. Luo. 2020. Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and its chemical composition and biological activity. Industrial Crops and Products 143:111908. doi: 10.1016/j.indcrop.2019.111908.
  • Chen, S., J. Xu, G. Chen, Q. Hu, and L. Zhao. 2018. Influence of microwave blanching on arsenic speciation and bioaccessibility in Lentinus edodes. Analytical Letters 51 (13):2141–55. doi: 10.1080/00032719.2017.1405011.
  • Chen, W., J. Tang, X. Shi, N. Ye, Z. Yue, and X. Lin. 2020. Synthesis and formation mechanism of high-purity Ti3AlC2 powders by microwave sintering. International Journal of Applied Ceramic Technology 17 (2):778–89. doi: 10.1111/ijac.13452.
  • Chenni, M., D. El Abed, S. Neggaz, N. Rakotomanomana, X. Fernandez, and F. Chemat. 2020. Solvent free microwave extraction followed by encapsulation of O. basilicum L. essential oil for insecticide purpose. Journal of Stored Products Research 86:101575. doi: 10.1016/j.jspr.2020.101575.
  • Ciriminna, R., C. Danzì, G. Timpanaro, M. Locatelli, D. Carnaroglio, A. Fidalgo, A. Scurria, G. Avellone, L. M. Ilharco, and M. Pagliaro. 2017. Valued bioproducts from waste Opuntia ficus-indica peel via microwave-assisted hydrodiffusion and hydrodistillation. Preprints 1:1–14. doi: 10.20944/preprints201710.0145.v1.
  • Damilos, S., A. N. P. Radhakrishnan, G. Dimitrakis, J. Tang, and A. Gavriilidis. 2019. Experimental and computational investigation of heat transfer in a microwave-assisted flow system. Chemical Engineering and Processing - Process Intensification 142:107537. doi: 10.1016/j.cep.2019.107537.
  • Das, P., S. Khan, M. AbdulQuadir, M. Thaher, M. Waqas, A. Easa, E. S. M. Attia, and H. Al-Jabri. 2020. Energy recovery and nutrients recycling from municipal sewage sludge. Science of the Total Environment 715:136775. doi: 10.1016/j.scitotenv.2020.136775.
  • De La Vega-Miranda, B., N. A. Santiesteban-López, A. López-Malo, and M. E. Sosa-Morales. 2012. Inactivation of Salmonella Typhimurium in fresh vegetables using water-assisted microwave heating. Food Control 26 (1):19–22. doi: 10.1016/j.foodcont.2012.01.002.
  • Dehghannya, J., P. Farshad, and M. Khakbaz Heshmati. 2018. Three-stage hybrid osmotic–intermittent microwave–convective drying of apple at low temperature and short time. Drying Technology 36 (16):1982–2005. doi: 10.1080/07373937.2018.1432642.
  • Djilas, S., J. Canadanovic-Brunet, and G. Cetkovic. 2009. By-products of fruits processing as a source of phytochemicals. Chemical Industry and Chemical Engineering Quarterly 15 (4):191–202. doi: 10.2298/CICEQ0904191D.
  • Dorantes-Alvarez, L., A. Ortiz-Moreno, R. Guzmán-Gerónimo, and L. Parada-Dorantes. 2017. Microwave-assisted blanching. In The microwave processing of foods, 2nd ed., 179–99. Sawston, UK: Woodhead Publishing. doi: 10.1016/B978-0-08-100528-6.00009-7.
  • Doymaz, I., A. S. Kipcak, and S. Piskin. 2016. Microwave drying of green bean slices: Drying kinetics and physical quality. Czech Journal of Food Sciences 33 (4):367–76. doi: 10.17221/566/2014-CJFS.
  • Drinić, Z., D. Pljevljakušić, J. Živković, D. Bigović, and K. Šavikin. 2020. Microwave-assisted extraction of O. vulgare L. spp. hirtum essential oil: Comparison with conventional hydro-distillation. Food and Bioproducts Processing 120 (2006):158–65. doi: 10.1016/j.fbp.2020.01.011.
  • Ekezie, F. C., D. Sun, Z. Han, and J. Cheng. 2017. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends in Food Science and Technology 67:58–69. doi: 10.1016/j.tifs.2017.05.014.
  • Erchiqui, F., H. Kaddami, F. Slaoui-Hasnaoui, and A. Koubaa. 2020. 3D finite element enthalpy method for analysis of phytosanitary treatment of wood by microwave. European Journal of Wood and Wood Products 78 (3):577–91. doi: 10.1007/s00107-020-01534-9.
  • Erdogdu, F., O. Altin, O. Karatas, and H. Topcam. 2019. Innovative dielectric applications (microwave and radio frequency) for seafood thawing. In Innovative technologies in seafood processing, 175–89. Boca Raton, FL: CRC Press.
  • Fan, X., X. Lv, L. Meng, M. Ai, C. Li, F. Teng, and Z. Feng. 2020. Effect of microwave sterilization on maturation time and quality of low-salt sufu. Food Science & Nutrition 8 (1):584–93. doi: 10.1002/fsn3.1346.
  • Federal Communications Commision. 2018. Office of Engineering and Technology Policy and Rules Division. Japanese Society for Food Science and Technology.
  • Filly, A., X. Fernandez, M. Minuti, F. Visinoni, G. Cravotto, and F. Chemat. 2014. Solvent-free microwave extraction of essential oil from aromatic herbs : From laboratory to pilot and industrial scale. Food Chemistry 150:193–8. doi: 10.1016/j.foodchem.2013.10.139.
  • Fiorini, D., S. Scortichini, G. Bonacucina, N. G. Greco, E. Mazzara, R. Petrelli, J. Torresi, M. Filippo, and M. Cespi. 2020. Cannabidiol-enriched hemp essential oil obtained by an optimized microwave-assisted extraction using a central composite design. Industrial Crops and Products 154 (May):112688. doi: 10.1016/j.indcrop.2020.112688.
  • Golmakani, M., and K. Rezaei. 2008. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chemistry 109 (4):925–30. doi: 10.1016/j.foodchem.2007.12.084.
  • González-Monroy, A. D., G. Rodríguez-Hernández, C. Ozuna, and M. E. Sosa-Morales. 2018. Microwave-assisted pasteurization of beverages (tamarind and green) and their quality during refrigerated storage. Innovative Food Science & Emerging Technologies 49:51–7. doi: 10.1016/j.ifset.2018.07.016.
  • Guo, Q., D.-W. Sun, J.-H. Cheng, and Z. Han. 2017. Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology 67:236–47. doi: 10.1016/j.tifs.2017.07.007.
  • Hassanein, H. D., A. E. N. G. El-Gendy, I. A. Saleh, S. F. Hendawy, M. M. Elmissiry, and E. A. Omer. 2020. Profiling of essential oil chemical composition of some Lamiaceae species extracted using conventional and microwave-assisted hydrodistillation extraction methods via chemometrics tools. Flavour and Fragrance Journal 35 (3):329–40. doi: 10.1002/ffj.3566.
  • Heng, P. W. S., Z. H. Loh, C. V. Liew, and C. C. Lee. 2010. Dielectric properties of pharmaceutical materials relevant to microwave processing: Effects of field frequency, material density, and moisture content. Wiley InterScience 99 (2):941–57. doi: 10.1002/jps.
  • Hernandez-Gomez, E.-S., J.-L. Olvera-Cervantes, M.-E. Sosa-Morales, B. Corona-Vazquez, A. Corona-Chavez, M.-C. Lujan-Hidalgo, and T.-K. Kataria. 2021. Dielectric properties of Mexican sauces for microwave-assisted pasteurization process. Journal of Food Science 86 (1):112–9. doi: 10.1111/1750-3841.15555.
  • Holzwarth, M., S. Korhummel, R. Carle, and D. R. Kammerer. 2012. Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria×ananassa Duch.). Food Research International 48 (1):241–8. doi: 10.1016/j.foodres.2012.04.004.
  • Hong, Y.-K., F. Liu, Z. Tang, P. D. Pedrow, S. S. Sablani, R. Yang, and J. Tang. 2021. A simplified approach to assist process development for microwave assisted pasteurization of packaged food products. Innovative Food Science & Emerging Technologies 68:102628. doi: 10.1016/j.ifset.2021.102628.
  • Horuz, E., H. J. Jaafar, and M. Maskan. 2017. Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology 35 (7):849–59. doi: 10.1080/07373937.2016.1222538.
  • Hyldgaard, M., T. Mygind, and R. L. Meyer. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3:1–24. doi: 10.3389/fmicb.2012.00012.
  • Idris, F. N., M. M. Nadzir, and S. R. Abd Shukor. 2020. Optimization of solvent-free microwave extraction of Centella asiatica using Taguchi method. Journal of Environmental Chemical Engineering 8 (3):103766. doi: 10.1016/j.jece.2020.103766.
  • Inanoglu, S., G. V. Barbosa-Cánovas, J. Patel, M. J. Zhu, S. S. Sablani, F. Liu, Z. Tang, and J. Tang. 2021. Impact of high-pressure and microwave-assisted thermal pasteurization on inactivation of Listeria innocua and quality attributes of green beans. Journal of Food Engineering 288:110162. doi: 10.1016/j.jfoodeng.2020.110162.
  • Irfan, M., P. S. Suprajaa, R. Praveen, and B. M. Reddy. 2021. Microwave-assisted one-step synthesis of nanohydroxyapetite from fish bones and mussel shells. Materials Letters 282:128685. doi: 10.1016/j.matlet.2020.128685.
  • Isabel, I. R. G., A. Lilia, and S. Ulf. 2018. Enhancing the retention of -carotene and vitamin C in dried mango using alternative blanching processes. African Journal of Food Science 12 (7):165–74. doi: 10.5897/AJFS2017.1645.
  • Joardder, M. U. H., C. Kumar, and M. A. Karim. 2017. Multiphase transfer model for intermittent microwave-convective drying of food: Considering shrinkage and pore evolution. International Journal of Multiphase Flow 95:101–19. doi: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Joyner (Melito), H. S., K. E. Jones, and B. A. Rasco. 2016. Microwave pasteurization of cooked pasta: Effect of process parameters on texture and quality for heat-and-eat and ready-to-eat meals. Journal of Food Science 81 (6):E1447–E1456. doi: 10.1111/1750-3841.13334.
  • Ju, J., Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food. Critical Reviews in Food Science and Nutrition 59 (20):3281–92. doi: 10.1080/10408398.2018.1488159.
  • Junqueira, J. R. d. J., J. L. G. Corrêa, and D. B. Ernesto. 2017. Microwave, convective, and intermittent microwave–convective drying of pulsed vacuum osmodehydrated pumpkin slices. Journal of Food Processing and Preservation 41 (6):e13250. doi: 10.1111/jfpp.13250.
  • Kannan, S., Y. Gariepy, and G. S. V. Raghavan. 2017. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Management 65:159–68. doi: 10.1016/j.wasman.2017.04.016.
  • Kapcsándi, V., M. Cserpán, and E. Hanczné Lakatos. 2020. Impact assessment of microwave treatment of raw cow’s milk on its microbiological properties. Analecta Technica Szegedinensia 14 (2):69–76. doi: 10.14232/analecta.2020.2.69-76.
  • Khan, M. I. H., Z. Welsh, Y. Gu, M. A. Karim, and B. Bhandari. 2020. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying. International Journal of Heat and Mass Transfer 153:119668. doi: 10.1016/j.ijheatmasstransfer.2020.119668.
  • Kiss, Z., Erika, B., and Keglevich, G. 2016. Chapter 2: Microwave-assisted syntheses in organic chemistry. Milestones in Microwave Chemistry. doi: 10.1007/978-3-319-30632-2.
  • Kohari, Y., S. Yamashita, T. Y. Chiou, Y. Shimotori, N. Ohtsu, Y. Nagata, and M. Murata. 2020. Hydrodistillation by Solvent-Free Microwave Extraction of Fresh Japanese Peppermint (Mentha arvensis L.). Journal of Essential Oil Bearing Plants 23 (1):77–84. doi: 10.1080/0972060X.2020.1726825.
  • Koskiniemi, C. B., V. D. Truong, R. F. McFeeters, and J. Simunovic. 2013. Quality evaluation of packaged acidified vegetables subjected to continuous microwave pasteurization. LWT - Food Science and Technology 54 (1):157–64. doi: 10.1016/j.lwt.2013.04.016.
  • Kostas, E. T., G. Durán-Jiménez, B. J. Shepherd, W. Meredith, L. A. Stevens, O. S. A. Williams, G. J. Lye, and J. P. Robinson. 2020. Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chemical Engineering Journal 387:123404. doi: 10.1016/j.cej.2019.123404.
  • Kumar, A., and P. M. Pandey. 2021. Statistical modelling of mechanical properties and bio-corrosion behaviour of Mg3Zn1Ca15Nb fabricated using microwave sintering. Journal of Alloys and Compounds 854:156211. doi: 10.1016/j.jallcom.2020.156211.
  • Kumar, C., M. U. H. Joardder, T. W. Farrell, and M. A. Karim. 2016. Multiphase porous media model for intermittent microwave convective drying (IMCD) of food. International Journal of Thermal Sciences 104:304–14. doi: 10.1016/j.ijthermalsci.2016.01.018.
  • Kumar, C., M. U. H. Joardder, T. W. Farrell, G. J. Millar, and M. A. Karim. 2016. Mathematical model for intermittent microwave convective drying of food materials. Drying Technology 34 (8):962–73. doi: 10.1080/07373937.2015.1087408.
  • Kumar, C., and M. A. Karim. 2019. Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition 59 (3):379–94. doi: 10.1080/10408398.2017.1373269.
  • Lee, J.-S., J.-W. Han, M. Jung, K.-W. Lee, and M.-S. Chung. 2020. Effects of Thawing and Frying Methods on the Formation of Acrylamide and Polycyclic Aromatic. Foods 9 (5):573. doi: 10.3390/foods9050573.
  • Li, B., B. M. Kimatu, F. Pei, S. Chen, X. Feng, Q. Hu, and L. Zhao. 2017. Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching. International Journal of Food Properties 20 (sup3):S2532–S42. doi: 10.1080/10942912.2017.1373667.
  • Li, X., S. Wang, Y. Xu, W. Yao, K. Xia, and G. Lu. 2020. Effect of microwave irradiation on dynamic mode-Ι fracture parameters of Barre granite. Engineering Fracture Mechanics 224:106748. doi: 10.1016/j.engfracmech.2019.106748.
  • Lin, J., R. Ma, J. Luo, S. Sun, C. Cui, L. Fang, and H. Huang. 2020. Microwave pyrolysis of food waste for high-quality syngas production: Positive effects of a CO2 reaction atmosphere and insights into the intrinsic reaction mechanisms. Energy Conversion and Management 206 (3688):112490. doi: 10.1016/j.enconman.2020.112490.
  • Lin, K. H., N. Lai, J. Y. Zeng, and H. L. Chiang. 2020. Microwave-pyrolysis treatment of biosludge from a chemical industrial wastewater treatment plant for exploring product characteristics and potential energy recovery. Energy 199:117446. doi: 10.1016/j.energy.2020.117446.
  • Liu, L.,. C. Lv, X. Meng, G. Xin, and B. Li. 2020. Effects of different thawing methods on flavor compounds and sensory characteristics of raspberry. Flavour and Fragrance Journal 35 (5):478–91. doi: 10.1002/ffj.3580.
  • Liu, Y., T. Chen, B. Gao, R. Meng, P. Zhou, G. Chen, Y. Zhan, W. Lu, and H. Wang. 2020. Comparison between hydrogen-rich biogas production from conventional pyrolysis and microwave pyrolysis of sewage sludge: Is microwave pyrolysis always better in the whole temperature range? International Journal of Hydrogen Energy. doi: 10.1016/j.ijhydene.2020.05.165.
  • Liu, Z., X. Yang, Y. Wang, and S. Luo. 2019. Engineering properties and microwave heating induced ice-melting performance of asphalt mixture with activated carbon powder filler. Construction and Building Materials 197:50–62. doi: 10.1016/j.conbuildmat.2018.11.094.
  • Low, K. L., A. Idris, and N. Mohd Yusof. 2020. Novel protocol optimized for microalgae lutein used as food additives. Food Chemistry 307:125631. doi: 10.1016/j.foodchem.2019.125631.
  • Lu, G. M., X. T. Feng, Y. H. Li, and X. Zhang. 2019. The microwave-induced fracturing of hard rock. Rock Mechanics and Rock Engineering 52 (9):3017–32. doi: 10.1007/s00603-019-01790-z.
  • Luo, Y., T. Liao, X. Yu, J. Li, L. Zhang, and Y. Xi. 2020. Dielectric properties and microwave heating behavior of neutral leaching residues from zinc metallurgy in the microwave field. Green Processing and Synthesis 9 (1):97–106. doi: 10.1515/gps-2020-0011.
  • Lv, H. F., X. X. Ma, B. Zhang, X. F. Chen, X. M. Liu, C. H. Fang, and B. H. Fei. 2019. Microwave-vacuum drying of round bamboo: A study of the physical properties. Construction and Building Materials 211:44–51. doi: 10.1016/j.conbuildmat.2019.03.221.
  • Ma, W., Duan, S., Tan, D., Cheng, Z., Meng, F. and Yang, L. 2015. Journal of Environmental Chemical Engineering Reuse of concentrated cellulose wastewater: Microwave-assisted synthesis of organic fertilizer with water-retaining property. Biochemical Pharmacology, 1–5. doi: 10.1016/j.jece.2015.06.019.
  • Mahato, N., K. Sharma, R. Koteswararao, M. Sinha, E. R. Baral, and M. H. Cho. 2019. Citrus essential oils: Extraction, authentication and application in food preservation. Critical Reviews in Food Science and Nutrition 59 (4):611–25. doi: 10.1080/10408398.2017.1384716.
  • Mahindra, A., N. Patel, N. Bagra, and R. Jain. 2014. Solvent-free peptide synthesis assisted by microwave irradiation : environmentally benign synthesis of bioactive peptides. Royal Society of Chemistry Advances 4 (6):3065–9. doi: 10.1039/C3RA46643D.
  • Marszałek, K., Ł. Woźniak, S. Skąpska, and M. Mitek. 2016. A comparative study of the quality of strawberry purée preserved by continuous microwave heating and conventional thermal pasteurization during long-term cold storage. Food and Bioprocess Technology 9 (7):1100–12. doi: 10.1007/s11947-016-1698-x.
  • Martins, C. P. C., R. N. Cavalcanti, T. S. F. Cardozo, S. M. Couto, J. T. Guimarães, C. F. Balthazar, R. S. Rocha, T. C. Pimentel, M. Q. Freitas, R. S. L. Raices, et al. 2021. Effects of microwave heating on the chemical composition and bioactivity of orange juice-milk beverages. Food Chemistry 345:128746–9. doi: 10.1016/j.foodchem.2020.128746.
  • McLean, D., L. Meers, J. Ralph, J. S. Owen, and A. Small. 2017. Development of a microwave energy delivery system for reversible stunning of cattle. Research in Veterinary Science 112:13–7. doi: 10.1016/j.rvsc.2016.12.010.
  • Mendes-Oliveira, G., A. J. Deering, M. F. San Martin-Gonzalez, and O. H. Campanella. 2020. Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium at 80–90 °C. Food Microbiology 87:103382. doi: 10.1016/j.fm.2019.103382.
  • Menéndez, J. A., A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E. G. Calvo, and J. M. Bermúdez. 2010. Microwave heating processes involving carbon materials. Fuel Processing Technology 91 (1):1–8. doi: 10.1016/j.fuproc.2009.08.021.
  • Morales-de la Peña, M.,. J. Welti-Chanes, and O. Martín-Belloso. 2019. Novel technologies to improve food safety and quality. Current Opinion in Food Science 30:1–7. doi: 10.1016/j.cofs.2018.10.009.
  • Ouertani, S., A. Koubaa, S. Azzouz, R. Bahar, L. Hassini, and A. Belghith. 2018. Microwave drying kinetics of jack pine wood: Determination of phytosanitary efficacy, energy consumption, and mechanical properties. European Journal of Wood and Wood Products 76 (4):1101–11. doi: 10.1007/s00107-018-1316-x.
  • Ozogul, Y., Y. Ucar, F. Takadaş, M. Durmus, A. R. Köşker, and A. Polat. 2018. Comparision of green and conventional extraction methods on lipid yield and fatty acid profiles of fish species. European Journal of Lipid Science and Technology 120 (12):1800107. doi: 10.1002/ejlt.201800107.
  • Paengkanya, S., S. Soponronnarit, and A. Nathakaranakule. 2015. Application of microwaves for drying of durian chips. Food and Bioproducts Processing 96:1–11. doi: 10.1016/j.fbp.2015.06.001.
  • Patel, J., A. Parhi, S. Al-Ghamdi, C. R. Sonar, D. S. Mattinson, J. Tang, T. Yang, and S. S. Sablani. 2020. Stability of vitamin C, color, and garlic aroma of garlic mashed potatoes in polymer packages processed with microwave-assisted thermal sterilization technology. Journal of Food Science 85 (9):2843–51. doi: 10.1111/1750-3841.15366.
  • Peng, J., J. Tang, Y. Jiao, S. G. Bohnet, and D. M. Barrett. 2013. Dielectric properties of tomatoes assisting in the development of microwave pasteurization and sterilization processes. LWT - Food Science and Technology 54 (2):367–76. doi: 10.1016/j.lwt.2013.07.006.
  • Peng, J., J. Tang, D. Luan, F. Liu, Z. Tang, F. Li, and W. Zhang. 2017. Microwave pasteurization of pre-packaged carrots. Journal of Food Engineering 202:56–64. doi: 10.1016/j.jfoodeng.2017.01.003.
  • Pham, N. D., M. I. H. Khan, and M. A. Karim. 2020. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chemistry 325:126932. doi: 10.1016/j.foodchem.2020.126932.
  • Pham, N. D., C. Kumar, M. U. H. Joardder, M. I. H. Khan, W. Martens, and M. A. Karim. 2016. Effect of Different Power Ratio Mode of Intermittent Microwave Convective Drying on Quality Attributes of Kiwi Fruit Slices. International Drying Symposium, 2016-08-07 - 2016-08-10, Japan, (August), 7–10.
  • Phinney, D. M., J. C. Frelka, A. Wickramasinghe, and D. R. Heldman. 2017. Effect of Freezing Rate and Microwave Thawing on Texture and Microstructural Properties of Potato (Solanum tuberosum). Journal of Food Science 82 (4):933–8. doi: 10.1111/1750-3841.13690.
  • Polat, A., Y. Özogul, E. Kuley, F. Özogul, G. Özyurt, and A. Şimşek. 2013. Tocopherol content of commercial fish species as affected by microwave cooking. Journal of Food Biochemistry 37 (4):381–7. doi: 10.1111/j.1745-4514.2011.00635.x.
  • Qu, Z., Z. Tang, F. Liu, S. S. Sablani, C. F. Ross, S. Sankaran, and J. Tang. 2021. Quality of green beans (Phaseolus vulgaris L.) influenced by microwave and hot water pasteurization. Food Control 124:107936. doi: 10.1016/j.foodcont.2021.107936.
  • Radivojac, A., O. Bera, D. Micić, S. Đurović, Z. Zeković, S. Blagojević, and B. Pavlić. 2020. Conventional versus microwave-assisted hydrodistillation of sage herbal dust: Kinetics modeling and physico-chemical properties of essential oil. Food and Bioproducts Processing 123:90–101. doi: 10.1016/j.fbp.2020.06.015.
  • Rahimi, M. A., R. Omar, S. Ethaib, M. K. Siti Mazlina, D. R. Awang Biak, and R. Nor Aisyah. 2017. Microwave-assisted extraction of lipid from fish waste. IOP Conference Series: Materials Science and Engineering 206 (1):012096. doi: 10.1088/1757-899X/206/1/012096.
  • Rahmani, Z., F. Khodaiyan, M. Kazemi, and A. Sharifan. 2020. Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. International Journal of Biological Macromolecules 147:1107–15. doi: 10.1016/j.ijbiomac.2019.10.079.
  • Rani, R. U., S. A. Kumar, S. Kaliappan, I. Yeom, and J. R. Banu. 2013. Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge. Waste Management 33 (5):1119–27. doi: 10.1016/j.wasman.2013.01.016.
  • Rao, J., B. Chen, and D. J. McClements. 2019. Improving the Efficacy of Essential Oils as Antimicrobials in Foods: Mechanisms of Action. Annual Review of Food Science and Technology 10 (1):365–87. doi: 10.1146/annurev-food-032818-121727.
  • Ravindran, R., and A. K. Jaiswal. 2016. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities. Bioresource Technology 199:92–102. doi: 10.1016/j.biortech.2015.07.106.
  • Ravindran, R., and A. K. Jaiswal. 2019. Wholesomeness and safety aspects of irradiated foods. Food Chemistry 285:363–8. doi: 10.1016/j.foodchem.2019.02.002.
  • Ray, S. G., and Ghangrekar, M. M. 2015. Bioresource Technology Enhancing organic matter removal , biopolymer recovery and electricity generation from distillery wastewater by combining fungal fermentation and microbial fuel cell. Bioresource Technology, 176:8–14. doi: 10.1016/j.biortech.2014.10.158
  • Rivadeneira, J. P., T. Wu, Q. Ybanez, A. A. Dorado, V. P. Migo, F. R. P. Nayve, and K. A. T. Castillo-Israel. 2020. Microwave-assisted extraction of pectin from “Saba” banana peel waste: Optimization, characterization, and rheology study. International Journal of Food Science 2020:1–9. doi: 10.1155/2020/8879425.
  • Roohi, R., and S. M. B. Hashemi. 2020. Experimental, heat transfer and microbial inactivation modeling of microwave pasteurization of carrot slices as an efficient and clean process. Food and Bioproducts Processing 121:113–22. doi: 10.1016/j.fbp.2020.01.015.
  • Sabzezari, B., S. M. J. Koleini, S. Ghassa, B. Shahbazi, and S. C. Chelgani. 2019. Microwave-leaching of copper smelting dust for Cu and Zn extraction. Materials 12 (11):1822–18. doi: 10.3390/ma12111822.
  • Sahoo, D., and N. Remya. 2020. Influence of operating parameters on the microwave pyrolysis of rice husk: Biochar yield, energy yield, and property of biochar. Biomass Conversion and Biorefinery. doi: 10.1007/s13399-020-00914-8.
  • Sajadinia, H., D. Ghazanfari, K. Naghavii, H. Naghavi, and B. Tahamipur. 2021. A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize (Zea mays L.). Heliyon 7 (3):e06094. doi: 10.1016/j.heliyon.2021.e06094.
  • Santini, A., G. C. Tenore, and E. Novellino. 2017. Nutraceuticals: A paradigm of proactive medicine. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 96:53–61. doi: 10.1016/j.ejps.2016.09.003.
  • Shebl, A., A. A. Hassan, D. M. Salama, M. E. Abd El-Aziz, and M. S. A. Abd Elwahed. 2020. Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon 6 (3):e03596. doi: 10.1016/j.heliyon.2020.e03596.
  • Shirkole, S. S., R. Jayabalan, and P. P. Sutar. 2020. Dry sterilization of paprika (Capsicum annuum L.) by short time intensive microwave-infrared radiation: Part I – Establishment of process using glass transition, sorption, and quality degradation kinetic parameters. Innovative Food Science & Emerging Technologies 62:102345. doi: 10.1016/j.ifset.2020.102345.
  • Singh, R., A. Kumar, and Y. C. Sharma. 2020. Evaluation of various lipid extraction techniques for microalgae and their effect on biochemical components. Waste and Biomass Valorization 11 (6):2603–12. doi: 10.1007/s12649-019-00601-4.
  • Singh, S.,. D. Gupta, V. Jain, and A. K. Sharma. 2015. Microwave processing of materials and applications in manufacturing industries: A Review. Materials and Manufacturing Processes 30 (1):1–41. doi: 10.1080/10426914.2014.952028.
  • Singh, V., H. C. Phuleria, and M. K. Chandel. 2020. Estimation of energy recovery potential of sewage sludge in India: Waste to watt approach. Journal of Cleaner Production 276:122538. doi: 10.1016/j.jclepro.2020.122538.
  • Small, A., J. Lea, D. Niemeyer, J. Hughes, D. McLean, J. McLean, and J. Ralph. 2019. Development of a microwave stunning system for cattle 2: Preliminary observations on behavioural responses and EEG. Research in Veterinary Science 122:72–80. doi: 10.1016/j.rvsc.2018.11.010.
  • Small, A., D. McLean, H. Keates, J. S. Owen, and J. Ralph. 2013. Preliminary investigations into the use of microwave energy for reversible stunning of sheep. Animal Welfare 22 (2):291–6. doi: 10.7120/09627286.22.2.291.
  • Solà, R., O. B. Sutcli, C. E. Banks, and B. Maciá. 2017. Ball mill and microwave assisted synthetic routes to Fluoxetine. Sustainable Chemistry and Pharmacy 5:14–21. doi: 10.1016/j.scp.2016.11.003.
  • Szadzińska, J., and D. Mierzwa. 2018. Intermittent – Microwave and convective drying of parsley. IDS’2018 – 21st International Drying Symposium, 11–14. doi: 10.4995/IDS2018.2018.7348.
  • Tang, H., X. Shu, W. Huang, Y. Miao, M. Shi, S. Chen, B. Li, F. Luo, Y. Xie, D. Shao, et al. 2021. Rapid solidification of Sr-contaminated soil by consecutive microwave sintering: Mechanism and stability evaluation. Journal of Hazardous Materials 407:124761. doi: 10.1016/j.jhazmat.2020.124761.
  • Tang, J. 2015. Unlocking potentials of microwaves for food safety and quality. Journal of Food Science 80 (8):E1776–93. doi: 10.1111/1750-3841.12959.
  • Thostenson, E. T., and Chou, T.-W. 1999. Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing 30 (9):1055–1071. doi: 10.1016/S1359-835X(99)00020-2
  • Ulusoy, Ş., D. Üçok Alakavuk, S. Mol, and S. Coşansu. 2019. Effect of microwave cooking on foodborne pathogens in fish. Journal of Food Processing and Preservation 43 (8):1–6. doi: 10.1111/jfpp.14045.
  • Wang, H., W. Ren, G. Li, H. Wen, C. Wang, J. Chen, Y. Zhao, G. Chen, and X. Kai. 2021. Microstructure and properties of FeCoNi1.5CrCu/2024Al composites prepared by microwave sintering. Materials Science and Engineering: A 801:140406. doi: 10.1016/j.msea.2020.140406.
  • Wang, Q., S. Li, X. Han, Y. Ni, D. Zhao, and J. Hao. 2019. Quality evaluation and drying kinetics of shitake mushrooms dried by hot air, infrared and intermittent microwave–assisted drying methods. Lwt 107:236–42. doi: 10.1016/j.lwt.2019.03.020.
  • Wang, R., M. Zhang, and A. S. Mujumdar. 2010. Effect of food ingredient on microwave freeze drying of instant vegetable soup. LWT - Food Science and Technology 43 (7):1144–50. doi: 10.1016/j.lwt.2010.03.007.
  • Wang, X., Z. Liu, Y. Tang, J. Chen, D. Wang, and Z. Mao. 2021. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries. Journal of Power Sources 481:228924. doi: 10.1016/j.jpowsour.2020.228924.
  • Wang, X., H. Yu, R. Xing, and P. Li. 2017. Characterization, preparation, and purification of marine bioactive peptides. BioMed Research International 2017:1–16. doi: 10.1155/2017/9746720.
  • Wongkaew, M., S. R. Sommano, T. Tangpao, P. Rachtanapun, and K. Jantanasakulwong. 2020. Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried chinese sausage. Foods 9 (4):450–17. doi: 10.3390/foods9040450.
  • Wray, D., and H. S. Ramaswamy. 2015. Novel concepts in microwave drying of foods. Drying Technology 33 (7):769–41. doi: 10.1080/07373937.2014.985793.
  • Xanthakis, E., E. Gogou, P. Taoukis, and L. Ahrné. 2018. Effect of microwave assisted blanching on the ascorbic acid oxidase inactivation and vitamin C degradation in frozen mangoes. Innovative Food Science & Emerging Technologies 48:248–57. doi: 10.1016/j.ifset.2018.06.012.
  • Xia, X.,. B. Kong, J. Liu, X. Diao, and Q. Liu. 2012. Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle. LWT - Food Science and Technology 46 (1):280–6. doi: 10.1016/j.lwt.2011.09.018.
  • Xu, B., J. Chen, J. Yuan, S. R. Azam, and M. Zhang. 2020. Effect of different thawing methods on the efficiency and quality attributes of frozen red radish. Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.10953.
  • Yang, S., S. Jeong, and S. Lee. 2020. Elucidation of rheological properties and baking performance of frozen doughs under different thawing conditions. Journal of Food Engineering 284:110084. doi: 10.1016/j.jfoodeng.2020.110084.
  • Yingngam, B., A. Brantner, M. Treichler, N. Brugger, A. Navabhatra, and P. Nakonrat. 2021. Optimization of the eco-friendly solvent-free microwave extraction of Limnophila aromatica essential oil. Industrial Crops and Products 165:113443. doi: 10.1016/j.indcrop.2021.113443.
  • Zeid, A., I. K. Karabagias, M. Nassif, and M. G. Kontominas. 2019. Preparation and evaluation of antioxidant packaging films made of polylactic acid containing thyme, rosemary, and oregano essential oils. Journal of Food Processing and Preservation 43 (10):1–11. doi: 10.1111/jfpp.14102.
  • Zeinali, T., A. Jamshidi, S. Khanzadi, and M. Azizzadeh. 2015. The effect of short-time microwave exposures on Listeria monocytogenes inoculated onto chicken meat portions. Veterinary Research Forum.  : An International Quarterly Journal 6 (2):173–6.
  • Zghaibi, N., R. Omar, S. M. M. Kamal, D. R. A. Biak, and R. Harun. 2020. Kinetics study of microwave-assisted brine extraction of lipid from the microalgae Nannochloropsis sp. Molecules 25 (4):784. doi: 10.3390/molecules25040784.
  • Zhang, F., P.-X. Lin, P.-X. Xia, H.-M. Di, J.-Q. Zhang, Z.-H. Wang, Z.-Q. Li, S.-Y. Huang, H.-X. Li, and B. Sun. 2021. The effect of different thawing methods on the health-promoting compounds and antioxidant capacity in frozen baby mustard. RSC Advances 11 (17):9856–64. doi: 10.1039/D1RA00610J.
  • Zhang, K., Z. Ding, M. Mo, W. Duan, Y. Bi, and F. Kong. 2020. Essential oils from sugarcane molasses: Chemical composition, optimization of microwave-assisted hydrodistillation by response surface methodology and evaluation of its antioxidant and antibacterial activities. Industrial Crops and Products 156:112875. doi: 10.1016/j.indcrop.2020.112875.
  • Zhang, W.-G. 2016. Aqueous extraction and nutraceuticals content of oil using industrial enzymes from microwave puffing-pretreated Camellia oleifera Seed Powder. Food Science and Technology Research 22 (1):31–8. doi: 10.3136/fstr.22.31.
  • Zhao, Q. H., X. B. Zhao, Y. L. Zheng, J. C. Li, L. He, and C. J. Zou. 2020. Microwave fracturing of water-bearing sandstones: Heating characteristics and bursting. International Journal of Rock Mechanics and Mining Sciences 136:104495. doi: 10.1016/j.ijrmms.2020.104495.
  • Zheng, Y., Z. Ma, X. Zhao, and L. He. 2020. Experimental investigation on the thermal, mechanical and cracking behaviours of three igneous rocks under microwave treatment. Rock Mechanics and Rock Engineering 53 (8):3657–71. doi: 10.1007/s00603-020-02135-x.
  • Zhu, M. M., Z. Y. Peng, S. Lu, H. J. He, Z. L. Kang, H. J. Ma, S.-M. Zhao, and Z. R. Wang. 2019. Physicochemical properties and protein denaturation of pork longissimus dorsi muscle subjected to six microwave-based thawing methods. Foods 9 (1):26. doi: 10.3390/foods9010026.
  • Zhu, X. H., Y. X. Yang, and Z. H. Duan. 2018. Research progress on the effect of microwave sterilization on agricultural products quality. IOP Conference Series: Earth and Environmental Science 113 (1):012096. doi: 10.1088/1755-1315/113/1/012096.
  • Zin, M. M., C. B. Anucha, and B. Szilvia. 2020. Recovery of phytochemicals via electromagnetic irradiation (microwave-assisted-extraction): Betalain and phenolic compounds in perspective. Foods 9 (7):918. doi: 10.3390/foods9070918.
  • Zuo, W., Y. Tian, and N. Ren. 2011. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Management 31 (6):1321–6. doi: 10.1016/j.wasman.2011.02.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.