2,211
Views
18
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Adeyeye, S. A. O., and T. J. Ashaolu. 2020. Polycyclic aromatic hydrocarbons formation and mitigation in meat and meat products. Polycyclic Aromatic Compounds :1–11. doi: 10.1080/10406638.2020.1866039
  • Andersen, H. J., H. Østdal, and H. Blom. 1995. Partial purification and characterisation of a lipase from Lactobacillus plantarum MF32. Food Chemistry 53 (4):369–73. doi: 10.1016/0308-8146(95)99829-O.
  • Andrade, M. J., J. J. Córdoba, E. M. Casado, M. G. Córdoba, and M. Rodríguez. 2010. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Science 85 (2):256–64. doi: 10.1016/j.meatsci.2010.01.009.
  • Andrade, M. J., J. J. Córdoba, B. Sánchez, E. M. Casado, and M. Rodríguez. 2009. Evaluation and selection of yeasts isolated from dry-cured Iberian ham by their volatile compound production. Food Chemistry 113 (2):457–63. doi: 10.1016/j.foodchem.2008.07.080.
  • Asaduzzaman, M., M. Ohya, H. Kumura, T. Hayakawa, and J. I. Wakamatsu. 2020. Searching for high ZnPP-forming edible bacteria to improve the color of fermented meat products without nitrite/nitrate. Meat Science 165:108109. doi: 10.1016/j.meatsci.2020.108109.
  • Ashaolu, T. J. 2019. A review on selection of fermentative microorganisms for functional foods and beverages: The production and future perspectives. International Journal of Food Science & Technology 54 (8):2511–9. doi: 10.1111/ijfs.14181.
  • Ashaolu, T. J. 2020. Safety and quality of bacterially fermented functional foods and beverages: A mini review. Food Quality and Safety 4 (3):123–7. doi: 10.1093/fqsafe/fyaa003.
  • Ashaolu, T. J., and A. Reale. 2020. A holistic review on Euro-Asian lactic acid bacteria fermented cereals and vegetables. Microorganisms 8 (8):1176. doi: 10.3390/microorganisms8081176.
  • Barrière, C., R. Brückner, D. Centeno, and R. Talòn. 2002. Characterisation of the katA gene encoding a catalase and evidence for at least a second catalase activity in Staphylococcus xylosus bacteria used in food fermentation. FEMS Microbiology Letters 216 (2):277–83. doi: 10.1016/S0378-1097(02)01030-3.
  • Barrière, C., R. Brückner, and R. Talòn. 2001. Characterization of the single superoxide dismutase of Staphylococcus xylosus. Applied & Environmental Microbiology 67 (9):4096–104. doi: 10.1128/aem.67.9.4096-4104.2001.
  • Barriere, C., S. Leroy-Sétrin, and R. Talòn. 2001. Characterization of catalase and superoxide dismutase in Staphylococcus carnosus 833 strain. Journal of Applied Microbiology 91 (3):514–9. doi: 10.1046/j.1365-2672.2001.01411.x.
  • Belgacem, Z. B., X. Dousset, H. Prévost, and M. Manai. 2009. Polyphasic taxonomic studies of lactic acid bacteria associated with Tunisian fermented meat based on the heterogeneity of the 16S–23S rRNA gene intergenic spacer region. Archives of Microbiology 191 (9):711–20. doi: 10.1007/s00203-009-0499-2.
  • Benito, M. J., A. Martin, E. Aranda, F. Perez-Nevado, S. Ruiz-Moyano, and M. Cordoba. 2007. Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry-fermented salchichón and chorizo sausages. Journal of Food Science 72 (6):M193–201. doi: 10.1111/j.1750-3841.2007.00419.x.
  • Benito, M. J., M. Rodríguez, M. G. Córdoba, M. J. Andrade, and J. J. Córdoba. 2005. Effect of the fungal protease EPg222 on proteolysis and texture in the dry fermented sausage “salchichón”. Journal of the Science of Food and Agriculture 85 (2):273–80. doi: 10.1002/jsfa.1951.
  • Benito, M. J., M. Rodrı́guez, A. Martı́n, E. Aranda, and J. J. Córdoba. 2004. Effect of the fungal protease EPg222 on the sensory characteristics of dry fermented sausage “salchichón” ripened with commercial starter cultures. Meat Science 67 (3):497–505. doi: 10.1016/j.meatsci.2003.11.023.
  • Benito, M. J., M. Rodríguez, F. Nunez, M. A. Asensio, M. E. Bermudez, and J. J. Córdoba. 2002. Purification and characterization of an extracellular protease from Penicillium chrysogenum Pg222 active against meat proteins. Applied and Environmental Microbiology 68:3532–6. doi: 10.1128/aem.68.7.3532-3536.2002.
  • Berni, E. 2014. Molds. In Handbook of Fermented Meat and Poultry, 147–53. New Jersey, USA: Wiley.
  • Bis-Souza, C. V., M. Pateiro, R. Domínguez, J. M. Lorenzo, A. L. B. Penna, and A. C. da Silva Barretto. 2019. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides. Journal of Food Science and Technology 56 (12):5465–73. doi: 10.1007/s13197-019-04018-8.
  • Biscola, V.,S. D. Todorov,V. Capuano,H. Abriouel,A. Gálvez, andB. Franco. 2013. Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product. Meat Science 93 (3):607–13. doi:10.1016/j.meatsci.2012.11.021.
  • Blackstone, N. T.,N. H. El-Abbadi,M. S. McCabe,T. S. Griffin, andM. E. Nelson. 2018. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: a modelling study. The Lancet Planetary Health 2 (8):e344–52. doi:10.1016/S2542-5196(18)30167-0.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldrá. 2003a. Purification and properties of an arginyl aminopeptidase from Debaryomyces hansenii. International Journal of Food Microbiology 86:141–51. doi: 10.1016/S0168-1605(03)00069-2.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldrá. 2003b. Purification and characterization of a prolyl aminopeptidase from Debaryomyces hansenii. Applied and Environmental Microbiology 69:227–32. doi: 10.1128/aem.69.1.227-232.2003.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldrá. 2005. Protease B from Debaryomyces hansenii: Purification and biochemical properties. International Journal of Food Microbiology 98:167–77. doi: 10.1016/j.ijfoodmicro.2004.05.021.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldrá. 2008. Purification and characterisation of proteases A and D from Debaryomyces hansenii. International Journal of Food Microbiology 124:135–41. doi: 10.1016/j.ijfoodmicro.2008.03.001.
  • Bonomo, M. G., A. Ricciardi, T. Zotta, E. Parente, and G. Salzano. 2008. Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Basilicata region (Southern Italy). Meat Science 80:1238–48. doi: 10.1016/j.meatsci.2008.05.032.
  • Bover-Cid, S., M. Izquierdo-Pulido, and M. C. Vidal-Carou. 2000. Mixed starter cultures to control biogenic amine production in dry fermented sausages. Journal of Food Protection 63 (11):1556–62. doi: 10.4315/0362-028x-63.11.1556.
  • Cano-García, L., S. Rivera-Jiménez, C. Belloch, and M. Flores. 2014. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chemistry 151:364–73. doi: 10.1016/j.foodchem.2013.11.051.
  • Casaburi, A., M. C. Aristoy, S. Cavella, R. D. Monaco, D. Ercolini, F. Toldrá, and F. Villani. 2007. Biochemical and sensory characteristics of traditional fermented sausages of Vallo di Diano (Southern Italy) as affected by the use of starter cultures. Meat Science 76 (2):295–307. doi: 10.1016/j.meatsci.2006.11.011.
  • Casaburi, A., R. D. Monaco, S. Cavella, F. Toldrá, D. Ercolini, and F. Villani. 2008. Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits. Food Microbiology 25 (2):335–47. doi: 10.1016/j.fm.2007.10.006.
  • Casquete, R., M. J. Benito, A. Martín, S. Ruiz‐Moyano, F. Pérez‐Nevado, and M. G. Córdoba. 2012. Comparison of the effects of a commercial and an autochthonous Pediococcus acidilactici and Staphylococcus vitulus starter culture on the sensory and safety properties of a traditional Iberian dry‐fermented sausage “salchichón”. International Journal of Food Science & Technology 47 (5):1011–9. doi: 10.1111/j.1365-2621.2011.02935.x.
  • Cid, S. B., M. J. Miguélez-Arrizado, B. Becker, W. H. Holzapfel, and M. C. Vidal-Carou. 2008. Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability. Food Microbiology 25 (2):269–77. doi: 10.1016/j.fm.2007.10.013.
  • Cocconcelli, P. S., and C. Fontana. 2014. Bacteria. In: Toldrá, F. (Ed.), Handbook of Fermented Meat and Poultry, 2nd ed., 117–28. Chichester, UK: John Wiley & Sons.
  • Cocolin, L., P. Dolci, K. Rantsiou, R. Urso, C. Cantoni, and G. Comi. 2009. Lactic acid bacteria ecology of three traditional fermented sausages produced in the North of Italy as determined by molecular methods. Meat Science 82:125–32. doi: 10.1016/j.meatsci.2009.01.004.
  • Cocolin, L., and K. Rantsiou. 2007. Sequencing and expression analysis of sakacin genes in Lactobacillus curvatus strains. Applied Microbiology & Biotechnology 76 (6):1403–11. doi: 10.1007/s00253-007-1120-8.
  • Corbiere Morot‐Bizot, S., S. Leroy, and R. Talòn. 2007. Monitoring of staphylococcal starters in two French processing plants manufacturing dry fermented sausages. Journal of Applied Microbiology 102 (1):238–44. doi: 10.1111/j.1365-2672.2006.03041.x.
  • de Carvalho, K. G., F. H. Bambirra, M. F. Kruger, M. S. Barbosa, J. S. Oliveira, A. M. Santos, J. R. Nicoli, M. P. Bemquerer, A. de Miranda, E. J. Salvucci, et al. 2010. Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product. Journal of Industrial Microbiology & Biotechnology 37 (4):381–90. doi: 10.1007/s10295-009-0684-y.
  • De Filippis, F., E. Parente, and D. Ercolini. 2017. Metagenomics insights into food fermentations. Microbial Biotechnology 10 (1):91–102. doi: 10.1111/1751-7915.12421.
  • Di Gioia, D., G. Mazzola, I. Nikodinoska, I. Aloisio, T. Langerholc, M. Rossi, S. Raimondi, B. Melero, and J. Rovira. 2016. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth. International Journal of Food Microbiology 235:53–9. doi: 10.1016/j.ijfoodmicro.2016.06.019.
  • Dı́az, T. L., C. J. González, B. Moreno, and A. Otero. 2002. Effect of temperature, water activity, pH and some antimicrobials on the growth of Penicillium olsonii isolated from the surface of Spanish fermented meat sausage. Food Microbiology 19 (1):1–7. doi: 10.1006/fmic.2001.0440.
  • Díez, J. G., and L. Patarata. 2013. Behavior of Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Chouriço de Vinho, a dry fermented sausage made from wine-marinated meat. Journal of Food Protection 76 (4):588–94. doi: 10.4315/0362-028X.JFP-12-212.
  • Domínguez, R., P. E. Munekata, R. Agregán, and J. M. Lorenzo. 2016. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT - Food Science and Technology 71:47–53. doi: 10.1016/j.lwt.2016.03.016.
  • Domínguez, R., L. Purriños, C. Pérez-Santaescolástica, M. Pateiro, F. J. Barba, I. Tomasevic, P. C. B. Campagnol, and J. M. Lorenzo. 2019. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Analytical Methods 12 (6):1263–84. doi: 10.1007/s12161-019-01491-x.
  • dos Santos Cruxen, C. E., G. D. Funck, L. Haubert, G. da Silva Dannenberg, J. de Lima Marques, F. C. Chaves, W. P. da Silva, and A. M. Fiorentini. 2019. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Research International 122:371–82. doi: 10.1016/j.foodres.2019.04.018.
  • Durá, M. A., M. Flores, and F. Toldrá. 2002. Purification and characterisation of a glutaminase from Debaryomyces spp. International Journal of Food Microbiology 76:117–26. doi: 10.1016/S0168-1605(02)00024-7.
  • Edwards, R. A., J. A. Ordóñez, R. H. Dainty, E. M. Hierro, and L. de la Hoz. 1999. Characterization of the headspace volatile compounds of selected Spanish dry fermented sausages. Food Chemistry 64 (4):461–5. doi: 10.1016/S0308-8146(98)00066-1.
  • El Malti, J., and H. Amarouch. 2008. Protective cultures used for the biopreservation of horse meat fermented sausage: Microbial and physicochemical characterization. Journal of Food Safety 28 (3):324–45. doi: 10.1111/j.1745-4565.2007.00102.x.
  • Engelvin, G., G. Feron, C. Perrin, D. Mollé, and R. Talòn. 2000. Identification of β-oxidation and thioesterase activities in Staphylococcus carnosus 833 strain. FEMS Microbiology Letters 190 (1):115–20. doi: 10.1016/S0378-1097(00)00302-5.
  • Erkkilä, S., and E. Petäjä. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Science 55 (3):297–300. doi: 10.1016/S0309-1740(99)00156-4.
  • Fadda, S., A. Lebert, S. Leroy-Sétrin, and R. Talòn. 2002. Decarboxylase activity involved in methyl ketone production by Staphylococcus carnosus 833, a strain used in sausage fermentation. FEMS Microbiology Letters 210 (2):209–14. doi: 10.1111/j.1574-6968.2002.tb11182.x.
  • Farag, M. A., E. A. El Hawary, and M. M. Elmassry. 2020. Rediscovering acidophilus milk, its quality characteristics, manufacturing methods, flavor chemistry and nutritional value. Critical Reviews in Food Science and Nutrition 60 (18):3024–41. doi: 10.1080/10408398.2019.1675584.
  • Farnworth, E. R. T. 2008. Handbook of fermented functional foods. Boca Raton, FL: CRC Press.
  • Flores, M., M. A. Durá, A. Marco, and F. Toldrá. 2004. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Science 68 (3):439–46. doi: 10.1016/j.meatsci.2003.04.001.
  • Flores, M., and F. Toldra. 2011. Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology 22 (2–3):81–90. doi: 10.1016/j.tifs.2010.09.007.
  • Fontana, C., D. Bassi, C. López, V. Pisacane, M. C. Otero, E. Puglisi, A. Rebecchi, P. S. Cocconcelli, and G. Vignolo. 2016. Microbial ecology involved in the ripening of naturally fermented llama meat sausages. A focus on lactobacilli diversity. International Journal of Food Microbiology 236:17–25. doi: 10.1016/j.ijfoodmicro.2016.07.002.
  • Francesca, N., C. Sannino, G. Moschetti, and L. Settanni. 2013. Microbial characterisation of fermented meat products from the Sicilian swine breed “Suino Nero Dei Nebrodi”. Annals of Microbiology 63 (1):53–62. doi: 10.1007/s13213-012-0444-5.
  • Fraqueza, M. J., L. Patarata, and A. Lauková. 2017. Protective cultures and bacteriocins in fermented meats. Fermented Meat Products: Health Aspects :228–69.
  • Galgano, F., F. Favati, M. Schirone, M. Martuscelli, and M. A. Crudele. 2003. Influence of indigenous starter cultures on the free fatty acids content during ripening in artisan sausages produced in the Basilicata region. Food Technology and Biotechnology 41 (3):253–8.
  • Gänzle, M. G. 2015. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science 2:106–17. doi: 10.1016/j.cofs.2015.03.001.
  • Gao, Y., D. Li, and X. Liu. 2014. Bacteriocin-producing Lactobacillus sakei C2 as starter culture in fermented sausages. Food Control 35 (1):1–6. doi: 10.1016/j.foodcont.2013.06.055.
  • Gernah, D., C. Ariahu, and E. Ingbian. 2011. Effects of malting and lactic fermentation on some chemical and functional properties of maize (Zea mays). American Journal of Food Technology 6 (5):404–12. doi: 10.3923/ajft.2011.404.412.
  • Hertel, C., G. Schmidt, M. Fischer, K. Oellers, and W. P. Hammes. 1998. Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sake LTH677. Applied and Environmental Microbiology 64:1359–65. doi: 10.1128/AEM.64.4.1359-1365.1998.
  • Hierro, E., L. de la Hoz, and J. A. Ordónez. 1999. Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages. Journal of Agricultural and Food Chemistry 47 (3):1156–61. doi: 10.1021/jf980834p.
  • Holzapfel, W. H., U. Schillinger, R. Geisen, and F. K. Lücke. 2003. Starter and protective cultures. In Food preservatives, 291–320. Boston, MA: Springer.
  • Hu, Y., X. Liu, C. Shan, X. Xia, Y. Wang, M. Dong, and J. Zhou. 2017. Novel bacteriocin produced by Lactobacillus alimentarius FM-MM4 from a traditional Chinese fermented meat Nanx Wudl: Purification, identification and antimicrobial characteristics. Food Control 77:290–7. doi: 10.1016/j.foodcont.2017.02.007.
  • Hussain, M. A. 2018. Molecular techniques for the identification of LAB in fermented cereal and meat products. Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability 261–283. doi: 10.1002/9781119374633.ch11.
  • Kenneally, P. M., R. G. Leuschner, and E. K. Arendt. 1998. Evaluation of the lipolytic activity of starter cultures for meat fermentation purposes. Journal of Applied Microbiology 84 (5):839–46. doi: 10.1046/j.1365-2672.1998.00420.x.
  • Kęska, P., J. Stadnik, D. Zielińska, and D. Kołożyn-Krajewska. 2017. Potential of bacteriocins from lab to improve microbial quality of dry-cured and fermented meat products. Acta Scientiarum Polonorum Technologia Alimentaria 16 (2):119–26.
  • Kim, J. H., H. J. Ahn, J. W. Lee, H. J. Park, G. H. Ryu, I. J. Kang, and M. W. Byun. 2005. Effects of gamma irradiation on the biogenic amines in pepperoni with different packaging conditions. Food Chemistry 89 (2):199–205. doi: 10.1016/j.foodchem.2004.02.026.
  • Kołożyn-Krajewska, D., and Z. J. Dolatowski. 2009. Probiotics in fermented meat products. ACTA Scientiarum Polonorum Technologia Alimentaria 8 (2):61–74.
  • Komprda, T., D. Smělá, P. Pechová, L. Kalhotka, J. Štencl, and B. Klejdus. 2004. Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages. Meat Science 67 (4):607–16. doi: 10.1016/j.meatsci.2004.01.003.
  • Kononiuk, A. D., and M. Karwowska. 2020. Bioactive compounds in fermented sausages prepared from beef and fallow deer meat with acid whey addition. Molecules 25 (10):2429. doi: 10.3390/molecules25102429.
  • Kumar, P., M. K. Chatli, A. K. Verma, N. Mehta, O. P. Malav, D. Kumar, and N. Sharma. 2017. Quality, functionality, and shelf life of fermented meat and meat products: A review. Critical Reviews in Food Science and Nutrition 57 (13):2844–56. doi: 10.1080/10408398.2015.1074533.
  • Laranjo, M., M. Elias, and M. J. Fraqueza. 2017. The use of starter cultures in traditional meat products. Journal of Food Quality 2017:1–18. doi: 10.1155/2017/9546026.
  • Laranjo, M., M. E. Potes, and M. Elias. 2019. Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology 10:853. doi: 10.3389/fmicb.2019.00853.
  • Latorre-Moratalla, M. L., T. Veciana-Nogués, S. Bover-Cid, M. Garriga, T. Aymerich, E. Zanardi, A. Ianieri, M. J. Fraqueza, L. Patarata, E. H. Drosinos, et al. 2008. Biogenic amines in traditional fermented sausages produced in selected European countries. Food Chemistry 107 (2):912–21. doi: 10.1016/j.foodchem.2007.08.046.
  • Leroy, S., P. Giammarinaro, J. P. Chacornac, I. Lebert, and R. Talòn. 2010. Biodiversity of indigenous staphylococci of naturally fermented dry sausages and manufacturing environments of small-scale processing units. Food Microbiology 27:294–301. doi: 10.1016/j.fm.2009.11.005.
  • Leroy, F., J. Verluyten, and L. De Vuyst. 2006. Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology 106 (3):270–85. doi: 10.1016/j.ijfoodmicro.2005.06.027.
  • Lobo, F., S. Ventanas, D. Morcuende, and M. Estévez. 2016. Underlying chemical mechanisms of the contradictory effects of NaCl reduction on the redox-state of meat proteins in fermented sausages. LWT - Food Science and Technology 69:110–6. doi: 10.1016/j.lwt.2016.01.047.
  • Lopes, M. D. F. S., A. L. Leitão, M. Regalla, J. F. Marques, M. J. T. Carrondo, and M. T. B. Crespo. 2002. Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. International Journal of Food Microbiology 76 (1–2):107–15. doi: 10.1016/S0168-1605(02)00013-2.
  • López, C. M., E. Bru, G. M. Vignolo, and S. G. Fadda. 2015. Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages. Meat Science 104:20–9. doi: 10.1016/j.meatsci.2015.01.013.
  • Lorenzo, J. M., M. Bedia, and S. Bañón. 2013. Relationship between flavour deterioration and the volatile compound profile of semi-ripened sausage. Meat Science 93 (3):614–20. doi: 10.1016/j.meatsci.2012.11.006.
  • Lorenzo, J. M., M. Gómez, L. Purriños, and S. Fonseca. 2016. Effect of commercial starter cultures on volatile compound profile and sensory characteristics of dry‐cured foal sausage. Journal of the Science of Food and Agriculture 96 (4):1194–201. doi: 10.1002/jsfa.7203.
  • Ludemann, V., G. Pose, M. L. Pollio, and J. Segura. 2004. Determination of growth characteristics and lipolytic and proteolytic activities of Penicillium strains isolated from Argentinean salami. International Journal of Food Microbiology 96 (1):13–8. doi: 10.1016/j.ijfoodmicro.2004.03.003.
  • Macori, G., and P. D. Cotter. 2018. Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology 49:172–8. doi: 10.1016/j.copbio.2017.09.002.
  • Martin, B., M. Garriga, and T. Aymerich. 2011. Prevalence of Salmonella spp. and Listeria monocytogenes at small-scale Spanish factories producing traditional fermented sausages. Journal of Food Protection 74:812–5. doi: 10.4315/0362-028X.JFP-10-437.
  • Marty, E., J. Buchs, E. Eugster-Meier, C. Lacroix, and L. Meile. 2012. Identification of staphylococci and dominant lactic acid bacteria in spontaneously fermented Swiss meat products using PCR–RFLP. Food Microbiology 29 (2):157–66. doi: 10.1016/j.fm.2011.09.011.
  • Meizhong, H., Y. Jiansheng, Y. Jianping, P. Yutian, and O. Yixin. 2018. Isolation and screening of Staphylococcus xylosus P2 from Chinese bacon: A novel starter culture in fermented meat products. International Journal of Food Engineering 15: 1–7. doi: 10.1515/ijfe-2018-0021.
  • Mejri, L., and M. Hassouna. 2016. Characterization and selection of Lactobacillus plantarum species isolated from dry fermented sausage reformulated with camel meat and hump fat. Applied Biological Chemistry 59 (4):533–42. doi: 10.1007/s13765-016-0192-5.
  • Montel, M. C., J. Reitz, R. Talòn, J. L. Berdagué, and S. Rousset-Akrim. 1996. Biochemical activities of Micrococcaceae and their effects on the aromatic profiles and odours of a dry sausage model. Food Microbiology 13 (6):489–99. doi: 10.1006/fmic.1996.0056.
  • Montel, M. C., M. P. Seronie, R. Talòn, and M. Hebraud. 1995. Purification and characterization of a dipeptidase from Lactobacillus sake. Applied and Environmental Microbiology 61:837–9. doi: 10.1128/AEM.61.2.837-839.1995.
  • Mrkonjic Fuka, M., I. Tanuwidjaja, A. Zgomba Maksimovic, M. Zunabovic-Pichler, S. Kublik, N. Hulak, K. J. Domig, and M. Schloter. 2020. Bacterial diversity of naturally fermented game meat sausages: Sources of new starter cultures. LWT 118:108782. doi: 10.1016/j.lwt.2019.108782.
  • Nguyen, D. T. L., K. Van Hoorde, M. Cnockaert, E. De Brandt, K. De Bruyne, B. T. Le, and P. Vandamme. 2013. A culture-dependent and-independent approach for the identification of lactic acid bacteria associated with the production of nem chua, a Vietnamese fermented meat product. Food Research International 50 (1):232–40. doi: 10.1016/j.foodres.2012.09.029.
  • Nikodinoska, I., L. Baffoni, D. D. Gioia, B. Manso, L. García-Sánchez, B. Melero, and J. Rovira. 2019. Protective cultures against foodborne pathogens in a nitrite reduced fermented meat product. LWT 101:293–9. doi: 10.1016/j.lwt.2018.11.022.
  • Ohata, M., L. Zhou, K. Higuchi, T. Nagai, H. Kasamatsu, and K. Arihara. 2017. Investigation of volatile components and identification of the most potent odour-active component in fermented meat sauce. Flavour and Fragrance Journal 32 (3):171–7. doi: 10.1002/ffj.3371.
  • Papagianni, M., and D. Sergelidis. 2013. Effects of the presence of the curing agent sodium nitrite, used in the production of fermented sausages, on bacteriocin production by Weissella paramesenteroides DX grown in meat simulation medium. Enzyme and Microbial Technology 53 (1):1–5. doi: 10.1016/j.enzmictec.2013.04.003.
  • Papavergou, E. J., I. N. Savvaidis, and I. A. Ambrosiadis. 2012. Levels of biogenic amines in retail market fermented meat products. Food Chemistry 135 (4):2750–5. doi: 10.1016/j.foodchem.2012.07.049.
  • Parapouli, M., C. Delbès-Paus, A. Kakouri, A. I. Koukkou, M. C. Montel, and J. Samelis. 2013. Characterization of a wild, novel nisin a-producing Lactococcus strain with an L. lactis subsp. cremoris genotype and an L. lactis subsp. lactis phenotype, isolated from Greek raw milk. Applied and Environmental Microbiology 79 (11):3476–84. doi: 10.1128/AEM.00436-13.
  • Pidcock, K., G. M. Heard, and A. Henriksson. 2002. Application of nontraditional meat starter cultures in production of Hungarian salami. International Journal of Food Microbiology 76 (1–2):75–81. doi: 10.1016/S0168-1605(02)00002-8.
  • Pragalaki, T., J. G. Bloukas, and P. Kotzekidou. 2013. Inhibition of Listeria monocytogenes and Escherichia coli O157: H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures. Meat Science 95 (3):458–64. doi: 10.1016/j.meatsci.2013.05.034.
  • Pu, D., Y. Zhang, H. Zhang, B. Sun, F. Ren, H. Chen, and Y. Tang. 2020. Characterization of the Key aroma compounds in traditional hunan smoke-cured pork leg (Larou, THSL) by aroma extract dilution analysis (AEDA), odor activity value (OAV), and sensory evaluation experiments. Foods 9 (4):413. doi: 10.3390/foods9040413.
  • Quinto, E. J., P. Arinder, L. Axelsson, E. Heir, A. Holck, R. Lindqvist, and C. Pin. 2014. Predicting the concentration of verotoxin-producing Escherichia coli bacteria during processing and storage of fermented raw-meat sausages. Applied and Environmental Microbiology 80 (9):2715–27. doi: 10.1128/AEM.03791-13.
  • Rauscher-Gabernig, E.,R. Grossgut,F. Bauer, andP. Paulsen. 2009. Assessment of alimentary histamine exposure of consumers in Austria and development of tolerable levels in typical foods. Food Control. 20 (4):423–9. doi:10.1016/j.foodcont.2008.07.011.
  • Ruiz-Capillas, C., and F. Jiménez-Colmenero. 2005. Biogenic amines in meat and meat products. Critical Reviews in Food Science and Nutrition 44 (7–8):489–599. doi: 10.1080/10408690490489341.
  • Rzepkowska, A., D. Zielińska, A. Ołdak, and D. Kołożyn-Krajewska. 2017. Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from polish raw fermented meat products. International Journal of Food Properties 20 (11):2736–47. doi: 10.1080/10942912.2016.1250098.
  • Santos, N. N., R. C. Santos-Mendonca, Y. Sanz, T. Bolumar, M. C. Aristoy, and F. Toldra. 2001. Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. International Journal of Food Microbiology 68 (3):199–206. doi: 10.1016/S0168-1605(01)00489-5.
  • Sanz, Y., F. Mulholland, and F. Toldrá. 1998. Purification and characterization of a tripeptidase from Lactobacillus sake. Journal of Agricultural and Food Chemistry 46:349–53. doi: 10.1021/jf970629u.
  • Sanz, Y., and F. Toldrá. 1997. Purification and characterization of an aminopeptidase from Lactobacillus sake. Journal of Agricultural and Food Chemistry 45 (5):1552–8. doi: 10.1021/jf960738t.
  • Sanz, Y., and F. Toldrá. 2001. Purification and characterization of an Xprolyl-dipeptidyl peptidase from Lactobacillus sakei. Applied and Environmental Microbiology 67:1815–20. doi: 10.1128/AEM.67.4.1815-1820.2001.
  • Sanz, Y., and F. Toldrá. 2002. Purification and characterization of an arginine aminopeptidase from Lactobacillus sakei. Applied and Environmental Microbiology 68:1980–7. doi: 10.1128/aem.68.4.1980-1987.2002.
  • Schlafmann, K., A. P. Meusburger, W. P. Hammes, C. Braun, and A. Fischer. 2002. Starterkulturen zur verbesserung der qualität von rohschinken. Fleischwirtschaft (Frankfurt) 82 (11):108–14.
  • Simatende, P., T. H. Gadaga, S. J. Nkambule, and M. Siwela. 2015. Methods of preparation of Swazi traditional fermented foods. Journal of Ethnic Foods 2 (3):119–25. doi: 10.1016/j.jef.2015.08.008.
  • Simion, A. M. C., C. Vizireanu, P. Alexe, I. Franco, and J. Carballo. 2014. Effect of the use of selected starter cultures on some quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety. Food Control 35 (1):123–31. doi: 10.1016/j.foodcont.2013.06.047.
  • Singh, V., V. Pathak, and A. K. Verma. 2012. Fermented meat products: Organoleptic qualities and biogenic. American Journal of Food Technology 7 (5):278–88. doi: 10.3923/ajft.2012.278.288.
  • Skovgard, N. 2008. Molecular techniques in the microbial ecology of fermented foods. Food microbiology and food safety series, ed. Luca Cocolin and Danilo Ercolini, 280pp. New York, USA: Springer.
  • Somda, M., A. Savadogo, N. Barro, P. Thonart, and A. Traore. 2011. Effect of minerals salts in fermentation process using mango residues as carbon source for bioethanol production. Asian Journal of Industrial Engineering 3 (1):29–38.
  • Stadnik, J., and Z. J. Dolatowski. 2010. Biogenic amines in meat and fermented meat products. ACTA Scientiarum Polonorum Technologia Alimentaria 9 (3):251–63.
  • Stavropoulou, D. A., L. D. Vuyst, and F. Leroy. 2018. Nonconventional starter cultures of coagulase‐negative staphylococci to produce animal‐derived fermented foods, a SWOT analysis. Journal of Applied Microbiology 125 (6):1570–86. doi: 10.1111/jam.14054.
  • Sulaiman, N. B., I. I. Arief, and C. Budiman. 2016. Characteristic of lamb sausages fermented by Indonesian meat-derived probiotic, Lactobacillus plantarum IIA-2C12 and Lactobacillus acidophilus IIA-2B4. Media Peternakan 39 (2):104–11. doi: 10.5398/medpet.2016.39.2.104.
  • Sunesen, L. O., andL. H. Stahnke. 2003. Mould starter cultures for dry sausages—selection, application and effects. Meat Science 65 (3):935–48. doi:10.1016/S0309-1740(02)00281-4.
  • Šušković, J., B. Kos, J. Beganović, A. Leboš Pavunc, K. Habjanič, and S. Matošić. 2010. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technology and Biotechnology 48 (3):296–307.
  • Suzzi, G., and F. Gardini. 2003. Biogenic amines in dry fermented sausages: A review. International Journal of Food Microbiology 88 (1):41–54. doi: 10.1016/S0168-1605(03)00080-1.
  • Talòn, R., N. Dublet, M. C. Montel, and M. Cantonnet. 1995. Purification and characterization of extracellular Staphylococcus warneri lipase. Current Microbiology 30 (1):11–6. doi: 10.1007/BF00294517.
  • Talòn, R., and S. Leroy. 2011. Diversity and safety hazards of bacteria involved in meat fermentation. Meat Science 89:303–9. doi: 10.1016/j.meatsci.2011.04.029.
  • Tiso, M., and A. N. Schechter. 2015. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLOS One 10 (3):e0119712. doi: 10.1371/journal.pone.0119712.
  • Todorov, S. D., P. Ho, M. Vaz-Velho, and L. M. T. Dicks. 2010. Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Science 84 (3):334–43. doi: 10.1016/j.meatsci.2009.08.053.
  • Todorov, S. D., M. Vaz-Velho, B. D. G. de Melo Franco, and W. H. Holzapfel. 2013. Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control 30 (1):111–21. doi: 10.1016/j.foodcont.2012.07.022.
  • Toldrá, F. 2008. Biotechnology of flavor generation in fermented meats. In Meat Biotechnology, 199–215. New York, USA:Springer.
  • Työppönen, S., A. Markkula, E. Petäjä, M. L. Suihko, and T. Mattila-Sandholm. 2003. Survival of Listeria monocytogenes in North European type dry sausages fermented by bioprotective meat starter cultures. Food Control 14 (3):181–5. doi: 10.1016/S0956-7135(02)00086-5.
  • Urso, R., K. Rantsiou, C. Cantoni, G. Comi, and L. Cocolin. 2006. Technological characterization of a bacteriocin-producing Lactobacillus sakei and its use in fermented sausages production. International Journal of Food Microbiology 110 (3):232–9. doi: 10.1016/j.ijfoodmicro.2006.04.015.
  • Van der Veken, D., R. Benhachemi, C. Charmpi, L. Ockerman, M. Poortmans, E. Van Reckem, C. Michiels, and F. Leroy. 2020. Exploring the ambiguous status of coagulase-negative staphylococci in the biosafety of fermented meats: The case of antibacterial activity versus biogenic amine formation. Microorganisms 8 (2):167. doi: 10.3390/microorganisms8020167.
  • Villaverde, A., D. Morcuende, and M. Estévez. 2014. Effect of curing agents on the oxidative and nitrosative damage to meat proteins during processing of fermented sausages. Journal of Food Science 79 (7):C1331–42. doi: 10.1111/1750-3841.12481.
  • Wang, X. H., H. Ren, D. Y. Liu, W. Y. Zhu, and W. Wang. 2013. Effects of inoculating Lactobacillus sakei starter cultures on the microbiological quality and nitrite depletion of Chinese fermented sausages. Food Control 32 (2):591–6. doi: 10.1016/j.foodcont.2013.01.050.
  • Wu, S., J. Yang, H. Dong, Q. Liu, X. Li, X. Zeng, and W. Bai. 2021. Key aroma compounds of Chinese dry-cured Spanish mackerel (Scomberomorus niphonius) and their potential metabolic mechanisms. Food Chemistry 342:128381. doi: 10.1016/j.foodchem.2020.128381.
  • Wulandari, E., H. Yurmiati, T. Subroto, and K. Suradi. 2020. Quality and probiotic lactic acid bacteria diversity of rabbit meat Bekasam-Fermented Meat. Food Science of Animal Resources 40 (3):362. doi: 10.5851/kosfa.2020.e16.
  • Zhang, H., L. Liu, Y. Hao, S. Zhong, H. Liu, T. Han, and Y. Xie. 2013. Isolation and partial characterization of a bacteriocin produced by Lactobacillus plantarum BM‐1 isolated from a traditionally fermented Chinese meat product. Microbiology and Immunology 57 (11):746–55. doi: 10.1111/1348-0421.12091.
  • Zhang, W., S. Xiao, H. Samaraweera, E. J. Lee, and D. U. Ahn. 2010. Improving functional value of meat products. Meat Science 86 (1):15–31. doi: 10.1016/j.meatsci.2010.04.018.
  • Zinina, O., S. Merenkova, A. Soloveva, T. Savostina, E. Sayfulmulyukov, I. Lykasova, and A. Mizhevikina. 2018. The effect of starter cultures on the qualitative indicators of dry fermented sausages made from poultry meat. Agronomy Research 16 (5):2265–81.
  • Zuber, A. D., and M. Horvat. 2007. Influence of starter cultures on the free fatty acids during ripening in Tea sausages. European Food Research and Technology 224 (4):511–7. doi: 10.1007/s00217-006-0304-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.