3,954
Views
6
CrossRef citations to date
0
Altmetric
Reviews

New applications of advanced instrumental techniques for the characterization of food allergenic proteins

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Aalberse, R. C. 2000. Structural biology of allergens. Journal of Allergy and Clinical Immunology 106 (2):228–38. doi: 10.1067/mai.2000.108434.
  • Abdullah, S. U., Y. Alexeev, P. E. Johnson, N. M. Rigby, A. R. Mackie, B. Dhaliwal, and E. N. C. Mills. 2016. Ligand binding to an allergenic lipid transfer protein enhances conformational flexibility resulting in an increase in susceptibility to gastroduodenal proteolysis. Scientific Reports 6 (1):30279. doi: 10.1038/srep30279.
  • Alves, R. C., F. B. Pimentel, H. P. A. Nouws, W. Correr, M. B. Gonzalez-Garcia, M. Oliveira, and C. Delerue-Matos. 2015. Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach. Analytical and Bioanalytical Chemistry 407 (23):7157–63. doi: 10.1007/s00216-015-8879-8.
  • Anagnostou, K., S. Islam, Y. King, L. Foley, L. Pasea, S. Bond, C. Palmer, J. Deighton, P. Ewan, and A. Clark. 2014. Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): A phase 2 randomised controlled trial. The Lancet 383 (9925):1297–304. doi: 10.1016/S0140-6736(13)62301-6.
  • Angulo-Ibañez, A., U. Eletxigerra, X. Lasheras, S. Campuzano, and S. Merino. 2019. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta 1079:94–102. doi: 10.1016/j.aca.2019.06.030.
  • Ashley, J., R. D’Aurelio, M. Piekarska, J. Temblay, M. Pleasants, L. Trinh, T. L. Rodgers, and I. E. Tothill. 2018. Development of a beta-Lactoglobulin sensor based on SPR for milk allergens detection. Biosensors 8 (2):32. doi: 10.3390/bios80200.
  • Avino, R., M. L. Bernardi, M. Wallner, P. Palazzo, L. Camardella, L. Tuppo, C. Alessandri, H. Breiteneder, F. Ferreira, M. A. Ciardiello, et al. 2011. Kiwifruit Act d 11 is the first member of the ripening-related protein family identified as an allergen. Allergy 66 (7):870–7. doi: 10.1111/j.1398-9995.2011.02555.x.
  • Azimi, A., S. Caramuta, B. Seashore-Ludlow, J. Boström, J. L. Robinson, F. Edfors, R. Tuominen, K. Kemper, O. Krijgsman, D. S. Peeper, et al. 2018. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Molecular Systems Biology 14 (3):e7858. doi: 10.15252/msb.20177858.
  • Baar, A., S. Pahr, C. Constantin, S. Giavi, N. G. Papadopoulos, A. S. Pelkonen, M. J. Mäkelä, S. Scheiblhofer, J. Thalhamer, M. Weber, et al. 2014. The high molecular weight glutenin subunit Bx7 allergen from wheat contains repetitive IgE epitopes. Allergy 69 (10):1316–23. doi: 10.1111/all.12464.
  • Barral, P., E. Batanero, M. Villalba, and R. Rodríguez. 2005. Expression of the major olive pollen allergen Ole e 10 in the yeast Pichia pastoris: Evidence of post-translational modifications. Protein Expression and Purification 44 (2):147–54. doi: 10.1016/j.pep.2005.04.012.
  • Bavaro, S. L., E. De Angelis, S. Barni, R. Pilolli, F. Mori, E. M. Novembre, and L. Monaci. 2019. Modulation of milk allergenicity by baking milk in foods: A proteomic investigation. Nutrients 11 (7):1536. doi: 10.3390/nu11071536.
  • Becher, I., T. Werner, C. Doce, E. A. Zaal, I. Tögel, C. A. Khan, A. Rueger, M. Muelbaier, E. Salzer, C. R. Berkers, et al. 2016. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nature Chemical Biology 12 (11):908–10. doi: 10.1038/nchembio.2185.
  • Benedé, S., I. López-Expósito, R. López-Fandiño, and E. Molina. 2014. Identification of IgE-binding peptides in hen egg ovalbumin digested in vitro with human and simulated gastroduodenal fluids. Journal of Agricultural and Food Chemistry 62 (1):152–8. doi: 10.1021/jf404226w.
  • Benedé, S., I. López-Expósito, E. Molina, and R. López-Fandiño. 2015. Egg proteins as allergens and the effects of the food matrix and processing. Food & Function 6 (3):694–713. doi: 10.1039/C4FO01104J.
  • Benedé, S., V. R. V. Montiel, E. Povedano, M. Villalba, L. Mata, P. Galan-Malo, R. M. Torrente-Rodriguez, E. Vargas, A. J. Reviejo, S. Campuzano, et al. 2018. Fast amperometric immunoplatform for ovomucoid traces determination in fresh and baked foods. Sensors and Actuators B: Chemical 265:421–8. doi: 10.1016/j.snb.2018.03.075.
  • Beyer, K., E. Morrow, X. M. Li, L. Bardina, G. A. Bannon, A. W. Burks, and H. A. Sampson. 2001. Effects of cooking methods on peanut allergenicity. Journal of Allergy and Clinical Immunology 107 (6):1077–81. doi: 10.1067/mai.2001.115480.
  • Bianchi, M., H. L. Turner, B. Nogal, C. A. Cottrell, D. Oyen, M. Pauthner, R. Bastidas, R. Nedellec, L. E. McCoy, I. A. Wilson, et al. 2018. Electron-microscopy-based epitope mapping defines specificities of polyclonal antibodies elicited during HIV-1 BG505 envelope trimer immunization. Immunity 49 (2):288–300. doi: 10.1016/j.immuni.2018.07.009.
  • Billakanti, J. M., C. J. Fee, F. R. Lane, A. S. Kash, and R. Fredericks. 2010. Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance. International Dairy Journal 20 (2):96–105. doi: 10.1016/j.idairyj.2009.08.008.
  • Bogh, K. L., V. Barkholt, and C. B. Madsen. 2013. The sensitising capacity of intact beta-lactoglobulin is reduced by co-administration with digested beta-lactoglobulin. International Archives of Allergy and Immunology 161 (1):21–36. doi: 10.1159/000343042.
  • Bozzacco, L., H. Yu, H. A. Zebroski, J. Dengjel, H. Deng, S. Mojsov, and R. M. Steinman. 2011. Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. Journal of Proteome Research 10 (11):5016–30. doi: 10.1021/pr200503g.
  • Bromilow, S. N. L., L. A. Gethings, J. I. Langridge, P. R. Shewry, M. Buckley, M. J. Bromley, and E. N. C. Mills. 2017. Comprehensive proteomic profiling of wheat gluten using a combination of data-independent and data-dependent acquisition. Frontiers in Plant Science 7. doi: 10.3389/fpls.2016.02020.
  • Čadková, M., R. Metelka, L. Holubová, D. Horák, V. Dvořáková, Z. Bílková, and L. Korecká. 2015. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins. Analytical Biochemistry 484:4–8. doi: 10.1016/j.ab.2015.04.037.
  • Capriotti, A. L., C. Cavaliere, S. Piovesana, S. Stampachiacchiere, S. Ventura, R. Zenezini Chiozzi, and A. Laganà. 2015. Characterization of quinoa seed proteome combining different protein precipitation techniques: Improvement of knowledge of non-model plant proteomics. Journal of Separation Science 38 (6):1017–25. doi: 10.1002/jssc.201401319.
  • Carrasco del Amor, A., S. Freitas, R. Urbatzka, O. Fresnedo, and S. Cristobal. 2019. Deciphering mechanism of actions of novel compounds by bioactive thermal proteome profiling. Marine Drugs 17 (6):371. doi: 10.3390/md17060371.
  • Chang, Q., O. I. Ornatsky, I. Siddiqui, A. Loboda, V. I. Baranov, and D. W. Hedley. 2017. Imaging mass cytometry. Cytometry Part A 91 (2):160–9. doi: 10.1002/cyto.a.23053.
  • Chapman, H. N., A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini, B. W. Woods, S. Bajt, W. H. Benner, et al. 2006. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Physics 2 (12):839–43. doi: 10.1038/nphys461.
  • Chardin, H., K. Mercier, C. Frydman, and N. Vollmer. 2014. Surface plasmon resonance imaging: A method to measure the affinity of the antibodies in allergy diagnosis. Journal of Immunological Methods 405:23–8. doi: 10.1016/j.jim.2013.12.010.
  • Chinthrajah, R. S., N. Purington, V. Sampath, S. Andorf, M. Manohar, M. Prunicki, X. Zhou, D. Tupa, and K. C. Nadeau. 2018. High dimensional immune biomarkers demonstrate differences in phenotypes and endotypes in food allergy and asthma. Annals of Allergy, Asthma and Immunology 121 (1):117–9.e1. doi: 10.1016/j.anai.2018.04.022.
  • Cho, S.-W., D.-K. Kang, J.-B. Choo, A. J. Demllo, and S.-I. Chang. 2011. Recent advances in microfluidic technologies for biochemistry and molecular biology. BMB Reports 44 (11):705–12. doi: 10.5483/BMBRep.2011.44.11.705.
  • Clement, C. C., A. Becerra, L. Yin, V. Zolla, L. Huang, S. Merlin, A. Follenzi, S. A. Shaffer, L. J. Stern, and L. Santambrogio. 2016. The dendritic cell major histocompatibility complex II (MHC II) peptidome derives from a variety of processing pathways and includes peptides with a broad spectrum of HLA-DM sensitivity. Journal of Biological Chemistry 291 (11):5576–95. doi: 10.1074/jbc.M115.655738.
  • Codex Alimentarius Commission. 2001. Evaluation of allergenicity of genetically modified foods. Rome, Italy: Food and Agriculture Organization of the United Nations.
  • Costa, J., S. L. Bavaro, S. Benedé, A. Diaz-Perales, C. Bueno-Diaz, E. Gelencser, J. Klueber, C. Larré, D. Lozano-Ojalvo, and R. Lupi. 2020. Are physicochemical properties shaping the allergenic potency of plant allergens? Clinical Reviews in Allergy and Immunology. doi: 10.1007/s12016-020-08810-9.
  • Costa, J., C. Villa, K. Verhoeckx, T. Cirkovic-Velickovic, D. Schrama, P. Roncada, P. M. Rodrigues, C. Piras, L. Martín-Pedraza, and L. Monaci. 2021. Are physicochemical properties shaping the allergenic potency of animal allergens? Clinical Reviews in Allergy and Immunology. doi: 10.1007/s12016-020-08826-1.
  • Couto, N., L. Davlyatova, C. A. Evans, and P. C. Wright. 2018. Application of the broadband collision-induced dissociation (bbCID) mass spectrometry approach for protein glycosylation and phosphorylation analysis. Rapid Communications in Mass Spectrometry 32 (2):75–85. doi: 10.1002/rcm.8016.
  • Cox, K. M., S. P. Commins, B. J. Capaldo, L. J. Workman, T. A. E. Platts-Mills, E. D. Amir, J. A. Lannigan, A. J. Schuyler, and L. D. Erickson. 2019. An integrated framework using high-dimensional mass cytometry and fluorescent flow cytometry identifies discrete B cell subsets in patients with red meat allergy. Clinical & Experimental Allergy 49 (5):615–25. doi: 10.1111/cea.13322.
  • Cressman, R. F., and G. Ladics. 2009. Further evaluation of the utility of "sliding window" FASTA in predicting cross-reactivity with allergenic proteins. Regulatory Toxicology and Pharmacology 54 (3):S20–S25. doi: 10.1016/j.yrtph.2008.11.006.
  • Cretich, M., G. D. Carlo, C. Giudici, S. Pokoj, I. Lauer, S. Scheurer, and M. Chiari. 2009. Detection of allergen specific immunoglobulins by microarrays coupled to microfluidics. Proteomics 9 (8):2098–107. doi: 10.1002/pmic.200800651.
  • Croote, D., S. Darmanis, K. C. Nadeau, and S. R. Quake. 2018. High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes. Science 362 (6420):1306–9. doi: 10.1126/science.aau2599.
  • Cui, J., L. Y. Han, H. Li, C. Y. Ung, Z. Q. Tang, C. J. Zheng, Z. W. Cao, and Y. Z. Chen. 2007. Computer prediction of allergen proteins from sequence-derived protein structural and physicochemical properties. Molecular Immunology 44 (4):514–20. doi: 10.1016/j.molimm.2006.02.010.
  • Dall’ Antonia, F., T. Pavkov-Keller, K. Zangger, and W. Keller. 2014. Structure of allergens and structure based epitope predictions. Methods 66 (1):3–21. doi: 10.1016/j.ymeth.2013.07.024.
  • Dhondalay, G. K., E. Rael, S. Acharya, W. M. Zhang, V. Sampath, S. J. Galli, R. Tibshirani, S. D. Boyd, H. Maecker, K. C. Nadeau, et al. 2018. Food allergy and omics. Journal of Allergy and Clinical Immunology 141 (1):20–9. doi: 10.1016/j.jaci.2017.11.007.
  • Emwas, A. H., R. Roy, R. T. McKay, L. Tenori, E. Saccenti, G. A. N. Gowda, D. Raftery, F. Alahmari, L. Jaremko, M. Jaremko, et al. 2019. NMR spectroscopy for metabolomics research. Metabolites 9 (7):123. doi: 10.3390/metabo9070.
  • Fiers, M. W. E. J., G. A. Kleter, H. Nijland, A. A. C. M. Peijnenburg, J. P. Nap, and R. C. H. J. van Ham. 2004. Allermatch, a webtool for the prediction of potential allergenicity according to current FAO/WHO Codex alimentarius guidelines. BMC Bioinformatics 5 (1):133. doi: 10.1186/1471-2105-5-133.
  • Franken, H., T. Mathieson, D. Childs, G. M. A. Sweetman, T. Werner, I. Tögel, C. Doce, S. Gade, M. Bantscheff, G. Drewes, et al. 2015. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nature Protocols 10 (10):1567–93. doi: 10.1038/nprot.2015.101.
  • Gaetani, M., P. Sabatier, A. A. Saei, C. M. Beusch, Z. Yang, S. L. Lundstrom, and R. A. Zubarev. 2019. Proteome integral solubility alteration: A high-throughput proteomics assay for target deconvolution. Journal of Proteome Research 18 (11):4027–37. doi: 10.1021/acs.jproteome.9b00500.
  • Gallat, F. X., N. Matsugaki, N. P. Coussens, K. J. Yagi, M. Boudes, T. Higashi, D. Tsuji, Y. Tatano, M. Suzuki, E. Mizohata, et al. 2014. In vivo crystallography at X-ray free-electron lasers: The next generation of structural biology. Philosophical Transactions of the Royal Society B: Biological Sciences 369 (1647):20130497. doi: 10.1098/rstb.2013.0497.
  • Glab, T. K., and J. Boratynski. 2017. Potential of casein as a carrier for biologically active agents. Topics in Current Chemistry 375 (20). doi: 10.1007/s41061-017-0158-z.
  • Goodman, R. E., M. Ebisawa, F. Ferreira, H. A. Sampson, R. van Ree, S. Vieths, J. L. Baumert, B. Bohle, S. Lalithambika, J. Wise, et al. 2016. AllergenOnline: A peer-reviewed, curated allergen database to assess novel food proteins for potential cross-reactivity. Molecular Nutrition & Food Research 60 (5):1183–98. doi: 10.1002/mnfr.201500769.
  • Goodman, R. E., S. Vieths, H. A. Sampson, D. Hill, M. Ebisawa, S. L. Taylor, and R. van Ree. 2008. Allergenicity assessment of genetically modified crops - what makes sense? Nature Biotechnology 26 (1):73–81. doi: 10.1038/nbt1343.
  • Goswami, R., A. B. Blazquez, R. Kosoy, A. Rahman, A. Nowak-Węgrzyn, and M. C. Berin. 2017. Systemic innate immune activation in food protein-induced enterocolitis syndrome. Journal of Allergy and Clinical Immunology 139 (6):1885–96.e9. doi: 10.1016/j.jaci.2016.12.971.
  • Guan, X., K. A. Noble, Y. Tao, K. H. Roux, S. K. Sathe, N. L. Young, and A. G. Marshall. 2015. Epitope mapping of 7S cashew antigen in complex with antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. Journal of Mass Spectrometry 50 (6):812–9. doi: 10.1002/jms.3589.
  • Hamilton, R. G., S. S. Saini, and D. MacGlashan. 2012. Surface plasmon resonance analysis of free IgE in allergic patients receiving omalizumab (Xolair). Journal of Immunological Methods 383 (1-2):54–9. doi: 10.1016/j.jim.2012.05.015.
  • Hiep, H. M., T. Endo, K. Kerman, M. Chikae, D. K. Kim, S. Yamamura, Y. Takamura, and E. Tamiya. 2007. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Science and Technology of Advanced Materials 8 (4):331–8. doi: 10.1016/j.stam.2006.12.010.
  • Hirano, T., A. Koyanagi, K. Kotoshiba, Y. Shinkai, M. Kasai, T. Ando, A. Kaitani, K. Okumura, and J. Kitaura. 2018. The Fab fragment of anti-IgE Cε2 domain prevents allergic reactions through interacting with IgE-FcεRIα complex on rat mast cells. Scientific Reports 8 (1):14237. doi: 10.1038/s41598-018-32200-z.
  • Hochwallner, H., U. Schulmeister, I. Swoboda, S. Spitzauer, and R. Valenta. 2014. Cow's milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods 66 (1):22–33. doi: 10.1016/j.ymeth.2013.08.005.
  • Holland, J. W., H. C. Deeth, and P. F. Alewood. 2004. Proteomic analysis of kappa-casein micro-heterogeneity. Proteomics 4 (3):743–52. doi: 10.1002/pmic.200300613.
  • Holland, J. W., H. C. Deeth, and P. F. Alewood. 2006. Resolution and characterisation of multiple isoforms of bovine κ-casein by 2-DE following a reversible cysteine-tagging enrichment strategy. Proteomics 6 (10):3087–95. doi: 10.1002/pmic.200500780.
  • Hummel, M., T. Wigger, and J. Brockmeyer. 2015. Characterization of mustard 2S albumin allergens by bottom-up, middle-down, and top-down proteomics: A consensus set of isoforms of Sin a 1. Journal of Proteome Research 14 (3):1547–56. doi: 10.1021/pr5012262.
  • Inaba, I., H. Kuramitz, and K. Sugawara. 2016. Electrochemical sensing of casein based on the interaction between its phosphate groups and a ruthenium(III) complex. Analytical Sciences 32 (8):853–9. doi: 10.2116/analsci.32.853.
  • Ivanciuc, O., C. H. Schein, and W. Braun. 2003. SDAP: Database and computational tools for allergenic proteins. Nucleic Acids Research 31 (1):359–62. doi: 10.1093/nar/gkg010.
  • Jakobsen, C. G., U. Bodtger, L. K. Poulsen, and E. L. Roggen. 2005. Vaccination for birch pollen allergy: Comparison of the affinities of specific immunoglobulins E, G1 and G4 measured by surface plasmon resonance. Clinical & Experimental Allergy 35 (2):193–8. doi: 10.1111/j.1365-2222.2005.02160.x.
  • Jemmerson, R., and Y. Paterson. 1986. Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes. Science 232 (4753):1001–4. doi: 10.1126/science.2422757.
  • Joshi, A. A., M. W. Peczuh, C. V. Kumar, and J. F. Rusling. 2014. Ultrasensitive carbohydrate-peptide SPR imaging microarray for diagnosing IgE mediated peanut allergy. The Analyst 139 (22):5728–33. doi: 10.1039/C4AN01544D.
  • Khoury, G. A., R. C. Baliban, and C. A. Floudas. 2011. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Scientific Reports 1 (1):90. doi: 10.1038/srep00090.
  • King, C., R. S. Stein, J. L. Shamshina, and R. D. Rogers. 2017. Measuring the purity of chitin with a clean, quantitative solid-State NMR Method. ACS Sustainable Chemistry & Engineering 5 (9):8011–6. doi: 10.1021/acssuschemeng.7b01589.
  • Koppelman, S. J., S. L. Hefle, S. L. Taylor, and G. A. H. de Jong. 2010. Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: A comparative in vitro study and partial characterization of digestion-resistant peptides. Molecular Nutrition & Food Research 54 (12):1711–21. doi: 10.1002/mnfr.201000011.
  • Kosoy, R., C. Agashe, A. Grishin, D. Y. Leung, R. A. Wood, S. H. Sicherer, S. M. Jones, A. W. Burks, W. F. Davidson, R. W. Lindblad, et al. 2016. Transcriptional profiling of egg allergy and relationship to disease phenotype. PLoS One 11 (10):e0163831. doi: 10.1371/journal.pone.0163831.
  • Krushelnitsky, A., D. Reichert, and K. Saalwachter. 2013. Solid-state NMR approaches to internal dynamics of proteins: From picoseconds to microseconds and seconds. Accounts of Chemical Research 46 (9):2028–36. doi: 10.1021/ar300292p.
  • Krutz, N. L., J. Winget, C. A. Ryan, R. Wimalasena, S. Maurer-Stroh, R. J. Dearman, I. Kimber, and G. F. Gerberick. 2019. Proteomic and bioinformatic analyses for the identification of proteins with low allergenic potential for hazard assessment. Toxicological Sciences 170 (1):210–22. doi: 10.1093/toxsci/kfz078.
  • Ladizhansky, V. 2019. Nuclear magnetic resonance spectroscopy. Solid-state NMR of macromolecules. In Encyclopedia of analytical science, ed. P. Worsfold, C. Poole, A. Townshend, and M. Miró, 414–26. Amsterdam, Netherlands: Elsevier Inc. doi: 10.1016/B978-0-12-409547-2.14083-1.
  • Laffer, S., C. Lupinek, I. Rauter, M. Kneidinger, A. Drescher, J. H. Jordan, M. T. Krauth, P. Valent, F. Kricek, S. Spitzauer, et al. 2008. A high-affinity monoclonal anti-IgE antibody for depletion of IgE and IgE-bearing cells. Allergy 63 (6):695–702. doi: 10.1111/j.1398-9995.2008.01664.x.
  • Lanucara, F., and C. E. Eyers. 2013. Top-down mass spectrometry for the analysis of combinatorial post-translational modifications. Mass Spectrometry Reviews 32 (1):27–42. doi: 10.1002/mas.21348.
  • Larocca, M., G. Martelli, G. Grossi, M. C. Padula, P. Riccio, and R. Rossano. 2013. Peel LTP (Pru p 3)-the major allergen of peach-is methylated. A proteomic study. Food Chemistry 141 (3):2765–71. doi: 10.1016/j.foodchem.2013.04.082.
  • Lauer, I., K. Foetisch, D. Kolarich, B. K. Ballmer-Weber, A. Conti, F. Altmann, S. Vieths, and S. Scheurer. 2004. Hazelnut (Corylus avellana) vicilin Cor a 11: Molecular characterization of a glycoprotein and its allergenic activity. Biochemical Journal 383 (2):327–34. doi: 10.1042/BJ20041062.
  • Le, T. T., H. C. Deeth, and L. B. Larsen. 2017. Proteomics of major bovine milk proteins: Novel insights. International Dairy Journal 67:2–15. doi: 10.1016/j.idairyj.2016.11.016.
  • Legler, J., D. Zalko, F. Jourdan, M. Jacobs, B. Fromenty, P. Balaguer, W. Bourguet, V. Munic Kos, A. Nadal, C. Beausoleil, et al. 2020. The GOLIATH project: Towards an internationally harmonised approach for testing metabolism disrupting compounds. International Journal of Molecular Sciences 21 (10):3480. doi: 10.3390/ijms21103480.
  • Leitner, A. 2016. Cross-linking and other structural proteomics techniques: How chemistry is enabling mass spectrometry applications in structural biology. Chemical Science 7 (8):4792–803. doi: 10.1039/C5SC04196A.
  • Leitner, A., M. Faini, F. Stengel, and R. Aebersold. 2016. Crosslinking and mass spectrometry: An integrated technology to understand the structure and function of molecular machines. Trends in Biochemical Sciences 41 (1):20–32. doi: 10.1016/j.tibs.2015.10.008.
  • Li, J. X., K. Shefcheck, J. Callahan, and C. Fenselau. 2009. Primary sequence and site-selective hydroxylation of prolines in isoforms of a major peanut allergen protein Ara h 2. Protein Science 19:174–82. doi: 10.1002/pro.295.
  • Li, L., C. Wang, S. Qiang, J. Zhao, S. Song, W. Jin, B. Wang, Y. Zhang, L. Huang, and Z. Wang. 2016. Mass spectrometric analysis of N-glycoforms of soybean allergenic glycoproteins separated by SDS-PAGE. Journal of Agricultural and Food Chemistry 64 (39):7367–76. doi: 10.1021/acs.jafc.6b02773.
  • Lin, H. Y., C. H. Huang, J. Park, D. Pathania, C. M. Castro, A. Fasano, R. Weissleder, and H. Lee. 2017. Integrated magneto-chemical sensor for on-site food allergen detection. ACS Nano 11 (10):10062–9. doi: 10.1021/acsnano.7b04318.
  • López-Fandiño, R. 2020. Role of dietary lipids in food allergy. Critical Reviews in Food Science and Nutrition 60 (11):1797–814. doi: 10.1080/10408398.2019.1602025.
  • Loquet, A., N. E. Mammeri, J. Stanek, M. Berbon, B. Bardiaux, G. Pintacuda, and B. Habenstein. 2018. 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 138-139:26–38. doi: 10.1016/j.ymeth.2018.03.014.
  • Lozano-Ojalvo, D., S. Benedé, and J. van Bilsen. 2021. Food allergy: Etiology, allergens, and analytical strategies. In Reference module in food science, ed. A. Cifuentes, 175–196. Amsterdam, Netherlands: Elsevier. doi: 10.1016/B978-0-08-100596-5.22845-X.
  • Lu, Y., T. Ohshima, and H. Ushio. 2004. Rapid detection of fish major allergen parvalbumin by surface plasmon resonance biosensor. Journal of Food Science 69 (8):C652–8. doi: 10.1111/j.1750-3841.2004.tb18013.x.
  • Maleki, S. J., S. Y. Chung, E. T. Champagne, and J. P. Raufman. 2000. The effects of roasting on the allergenic properties of peanut proteins. Journal of Allergy and Clinical Immunology 106 (4):763–8. doi: 10.1067/mai.2000.109620.
  • Martinez Molina, D., R. Jafari, M. Ignatushchenko, T. Seki, E. A. Larsson, C. Dan, L. Sreekumar, Y. Cao, and P. Nordlund. 2013. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341 (6141):84–7. doi: 10.1126/science.1233606.
  • Matsuo, H., T. Yokooji, and T. Taogoshi. 2015. Common food allergens and their IgE-binding epitopes. Allergology International 64 (4):332–43. doi: 10.1016/j.alit.2015.06.009.
  • Maurer-Stroh, S., N. L. Krutz, P. S. Kern, V. Gunalan, M. N. Nguyen, V. Limviphuvadh, F. Eisenhaber, and G. F. Gerberick. 2019. AllerCatPro - Prediction of protein allergenicity potential from the protein sequence. Bioinformatics 35 (17):3020–7. doi: 10.1093/bioinformatics/btz029.
  • Mazzucchelli, G., T. Holzhauser, T. Cirkovic Velickovic, A. Diaz-Perales, E. Molina, P. Roncada, P. Rodrigues, K. Verhoeckx, and K. Hoffmann-Sommergruber. 2018. Current (food) allergenic risk assessment: Is it fit for novel foods? Status Quo and identification of gaps. Molecular Nutrition & Food Research 62 (1):1700278. doi: 10.1002/mnfr.201700278.
  • Michel, D., F. Xiao, and K. Alameh. 2017. A compact, flexible fiber-optic surface plasmon resonance sensor with changeable sensor chips. Sensors and Actuators B: Chemical 246:258–61. doi: 10.1016/j.snb.2017.02.064.
  • Moffat, J. G., F. Vincent, J. A. Lee, J. Eder, and M. Prunotto. 2017. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nature Reviews Drug Discovery 16 (8):531–43. doi: 10.1038/nrd.2017.111.
  • Montiel, R. V. R., S. Campuzano, R. M. Torrente-Rodriguez, A. J. Reviejo, and J. M. Pingarron. 2016. Electrochemical magnetic beads-based immunosensing platform for the determination of alpha-lactalbumin in milk. Food Chemistry 213:595–601. doi: 10.1016/j.foodchem.2016.07.004.
  • Montiel, V. R. V., S. Campuzano, F. Conzuelo, R. M. Torrente-Rodriguez, M. Gamella, A. J. Reviejo, and J. M. Pingarron. 2015. Electrochemical magnetoimmunosensing platform for determination of the milk allergen beta-lactoglobulin. Talanta 131:156–62. doi: 10.1016/j.talanta.2014.07.076.
  • Montiel, V. R. V., A. Pellicano, S. Campuzano, R. M. Torrente-Rodriguez, A. J. Reviejo, M. S. Cosio, and J. M. Pingarron. 2016. Electrochemical detection of peanuts at trace levels in foods using a magnetoimmunosensor for the allergenic protein Ara h 2. Sensors and Actuators B: Chemical 236:825–33. doi: 10.1016/j.snb.2016.01.123.
  • Montiel, V. R. V., R. M. Torrente-Rodriguez, G. G. de Rivera, A. J. Reviejo, C. Cuadrado, R. Linacero, F. J. Gallego, S. Campuzano, and J. M. Pingarron. 2017. Amperometric determination of hazelnut traces by means of Express PCR coupled to magnetic beads assembled on disposable DNA sensing scaffolds. Sensors and Actuators B: Chemical 245:895–902. doi: 10.1016/j.snb.2017.02.041.
  • Mueller, G. A. 2017. Contributions and future directions for structural biology in the study of allergens. International Archives of Allergy and Immunology 174 (2):57–66. doi: 10.1159/000481078.
  • Muh, H. C., J. C. Tong, and M. T. Tammi. 2009. AllerHunter: A SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins. PLoS One 4 (6):e5861. doi: 10.1371/journal.pone.0005861.
  • Mukai, K., N. Gaudenzio, S. Gupta, N. Vivanco, S. C. Bendall, H. T. Maecker, R. S. Chinthrajah, M. Tsai, K. C. Nadeau, and S. J. Galli. 2017. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. Journal of Allergy and Clinical Immunology 139 (3):889–99.e11. doi: 10.1016/j.jaci.2016.04.060.
  • Neutze, R., R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu. 2000. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406 (6797):752–7. doi: 10.1038/35021099.
  • Nugraha, R., S. D. Kamath, E. Johnston, K. R. Zenger, J. M. Rolland, R. E. O'Hehir, and A. L. Lopata. 2018. Rapid and comprehensive discovery of unreported shellfish allergens using large-scale transcriptomic and proteomic resources. Journal of Allergy and Clinical Immunology 141 (4):1501–4.e8. doi: 10.1016/j.jaci.2017.11.028.
  • Ocana, C., A. Hayat, R. K. Mishra, A. Vasilescu, M. del Valle, and J. L. Marty. 2015. Label free aptasensor for Lysozyme detection: A comparison of the analytical performance of two aptamers. Bioelectrochemistry 105:72–7. doi: 10.1016/j.bioelechem.2015.05.009.
  • Olsen, J. V., and M. Mann. 2013. Status of large-scale analysis of post-translational modifications by mass spectrometry. Molecular & Cellular Proteomics 12 (12):3444–52. doi: 10.1074/mcp.O113.034181.
  • Pandeswari, P. B., and V. Sabareesh. 2019. Middle-down approach: A choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Advances 9 (1):313–44. doi: 10.1039/C8RA07200K.
  • Pascovici, D., J. X. Wu, M. J. McKay, C. Joseph, Z. Noor, K. Kamath, Y. Wu, S. Ranganathan, V. Gupta, and M. Mirzaei. 2018. Clinically relevant post-translational modification analyses—Maturing workflows and bioinformatics tools. International Journal of Molecular Sciences 20 (1):16. doi: 10.3390/ijms20010016.
  • Pekar, J., D. Ret, and E. Untersmayr. 2018. Stability of allergens. Molecular Immunology 100:14–20. doi: 10.1016/j.molimm.2018.03.017.
  • Pereira-Barros, M. A., M. F. Barroso, L. Martin-Pedraza, E. Vargas, S. Benede, M. Villalba, J. M. Rocha, S. Campuzano, and J. M. Pingarron. 2019. Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosensors and Bioelectronics 137:171–7. doi: 10.1016/j.bios.2019.05.011.
  • Piazza, I., K. Kochanowski, V. Cappelletti, T. Fuhrer, E. Noor, U. Sauer, and P. Picotti. 2018. A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172 (1-2):358–72.e23. doi: 10.1016/j.cell.2017.12.006.
  • Pilolli, R., A. Visconti, and L. Monaci. 2015. Rapid and label-free detection of egg allergen traces in wines by surface plasmon resonance biosensor. Analytical and Bioanalytical Chemistry 407 (13):3787–97. doi: 10.1007/s00216-015-8607-4.
  • Pol, E., R. Karlsson, H. Roos, A. Jansson, B. Z. Xu, A. Larsson, T. Jarhede, G. Franklin, A. Fuentes, and S. Persson. 2007. Biosensor-based characterization of serum antibodies during development of an anti-IgE immunotherapeutic against allergy and asthma. Journal of Molecular Recognition 20 (1):22–31. doi: 10.1002/jmr.804.
  • Rahman, A. M. A., A. L. Lopata, R. E. O'Hehir, J. J. Robinson, J. H. Banoub, and R. J. Helleur. 2010. Characterization and de novo sequencing of snow crab tropomyosin enzymatic peptides by both electrospary ionization and matrix-assisted laser desorption ionization QqToF tandem mass spectrometry. Journal of Mass Spectrometry 45:372–81. doi: 10.1002/jms.1721.
  • Ramesh, K. R., R. Hemalatha, C. A. Vijayendra, U. Z. S. Arshi, S. B. Dushyant, and K. B. Dinesh. 2016. Transcriptome analysis of Solanum melongena L. (eggplant) fruit to identify putative allergens and their epitopes. Gene 576 (1):64–71. doi: 10.1016/j.gene.2015.09.064.
  • Ravikiran, B., and R. Mahalakshmi. 2014. Unusual post-translational protein modifications: The benefits of sophistication. RSC Advances 4 (64):33958–74. doi: 10.1039/C4RA04694C.
  • Ray, S., G. Mehta, and S. Srivastava. 2010. Label-free detection techniques for protein microarrays: Prospects, merits and challenges. Proteomics 10 (4):731–48. doi: 10.1002/pmic.200900458.
  • Remington, B., H. C. H. Broekman, W. M. Blom, A. Capt, R. W. R. Crevel, I. Dimitrov, C. K. Faeste, R. Fernandez-Canton, S. Giavi, G. F. Houben, et al. 2018. Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food and Chemical Toxicology 112:97–107. doi: 10.1016/j.fct.2017.12.025.
  • Sathe, S. K., S. S. Teuber, and K. H. Roux. 2005. Effects of food processing on the stability of food allergens. Biotechnology Advances 23 (6):423–9. doi: 10.1016/j.biotechadv.2005.05.008.
  • Savitski, M. M., F. B. M. Reinhard, H. Franken, T. Werner, M. F. Savitski, D. Eberhard, D. M. Molina, R. Jafari, R. B. Dovega, S. Klaeger, et al. 2014. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346 (6205):1255784. doi: 10.1126/science.1255784.
  • Savitski, M. M., N. Zinn, M. Faelth-Savitski, D. Poeckel, S. Gade, I. Becher, M. Muelbaier, A. J. Wagner, K. Strohmer, T. Werner, et al. 2018. Multiplexed proteome dynamics profiling reveals mechanisms controlling protein homeostasis. Cell 173 (1):260–74.e25. doi: 10.1016/j.cell.2018.02.030.
  • Schmidt, C., and H. Urlaub. 2017. Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Current Opinion in Structural Biology 46:157–68. doi: 10.1016/j.sbi.2017.10.005.
  • Schopper, S., A. Kahraman, P. Leuenberger, Y. Feng, I. Piazza, O. Müller, P. J. Boersema, and P. Picotti. 2017. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nature Protocols 12 (11):2391–410. doi: 10.1038/nprot.2017.100.
  • Silvanovich, A., M. A. Nemeth, P. Song, R. Herman, L. Tagliani, and G. A. Bannon. 2006. The value of short amino acid sequence matches for prediction of protein allergenicity. Toxicological Sciences 90 (1):252–8. doi: 10.1093/toxsci/kfj068.
  • Simoni, Y., M. H. Y. Chng, S. Li, M. Fehlings, and E. W. Newell. 2018. Mass cytometry: a powerful tool for dissecting the immune landscape. Current Opinion in Immunology 51:187–96. doi: 10.1016/j.coi.2018.03.023.
  • Singh, R., P. P. Sharma, R. E. Baltus, and I. I. Suni. 2010. Nanopore immunosensor for peanut protein Ara h1. Sensors and Actuators B: Chemical 145 (1):98–103. doi: 10.1016/j.snb.2009.11.039.
  • Sipova, H., and J. Homola. 2013. Surface plasmon resonance sensing of nucleic acids: A review. Analytica Chimica Acta 773:9–23. doi: 10.1016/j.aca.2012.12.040.
  • Sirvent, S., Palomares, O. A. Vereda, M. Villalba, J. Cuesta, ‐Herranz, and R. Rodríguez. 2009. nsLTP and profilin are allergens in mustard seeds: Cloning, sequencing and recombinant production of Sin a 3 and Sin a 4. Clinical & Experimental Allergy 39 (12):1929–36. doi: 10.1111/j.1365-2222.2009.03382.x.
  • Smole, U., M. Bublin, C. Radauer, C. Ebner, and H. Breiteneder. 2008. Mal d 2, the thaumatin-like allergen from apple, is highly resistant to gastrointestinal digestion and thermal processing. International Archives of Allergy and Immunology 147 (4):289–98. doi: 10.1159/000144036.
  • Spitzer, M. H., and G. P. Nolan. 2016. Mass cytometry: Single cells, many features. Cell 165 (4):780–91. doi: 10.1016/j.cell.2016.04.019.
  • Stadler, M. B., and B. M. Stadler. 2003. Allergenicity prediction by protein sequence. The FASEB Journal 17 (9):1141–3. doi: 10.1096/fj.02-1052fje.
  • Stoeckius, M., C. Hafemeister, W. Stephenson, B. Houck-Loomis, P. K. Chattopadhyay, H. Swerdlow, R. Satija, and P. Smibert. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nature Methods 14 (9):865–8. doi: 10.1038/nmeth.4380.
  • Sugahara, M., E. Mizohata, E. Nango, M. Suzuki, T. Tanaka, T. Masuda, R. Tanaka, T. Shimamura, Y. Tanaka, C. Suno, et al. 2015. Grease matrix as a versatile carrier of proteins for serial crystallography. Nature Methods 12 (1):61–3. doi: 10.1038/nmeth.3172.
  • Sun, S., Y. Han, S. Paramasivam, S. Yan, A. E. Siglin, J. C. Williams, I. J. L. Byeon, J. Ahn, A. M. Gronenborn, and T. Polenova. 2012. Solid-state NMR spectroscopy of protein complexes. Methods in Molecular Biology 831:303–31. doi: 10.1007/978-1-61779-480-3_17.
  • Syahir, A., K. Usui, K.-Y. Tomizaki, K. Kajikawa, and H. Mihara. 2015. Label and label-free detection techniques for protein microarrays. Microarrays 4 (2):228–44. doi: 10.3390/microarrays4020228.
  • Tao, B., K. Bernardo, P. Eldi, N. Chegeni, M. Wiese, A. Colella, A. Kral, J. Hayball, W. Smith, K. Forsyth, et al. 2016. Extended boiling of peanut progressively reduces IgE allergenicity while retaining T cell reactivity. Clinical & Experimental Allergy 46 (7):1004–14. doi: 10.1111/cea.12740.
  • Thomas, K., C. Herouet-Guicheney, G. Ladics, G. Bannon, A. Cockburn, R. Crevel, J. Fitzpatrick, C. Mills, L. Privalle, and S. Vieths. 2007. Evaluating the effect of food processing on the potential human allergeni city of novel proteins: International workshop report. Food and Chemical Toxicology 45 (7):1116–22. doi: 10.1016/j.fct.2006.12.016.
  • Tordesillas, L., N. Cubells-Baeza, C. Gomez-Casado, C. Berin, V. Esteban, W. Barcik, L. O’Mahony, C. Ramirez, L. F. Pacios, M. Garrido-Arandia, et al. 2017. Mechanisms underlying induction of allergic sensitization by Pru p 3. Clinical & Experimental Allergy 47 (11):1398–408. doi: 10.1111/cea.12962.
  • Tordesillas, L., A. H. Rahman, H. A. Sampson, and M. C. Berin. 2016. Profiling the immune response to peanut using mass cytometry. Journal of Allergy and Clinical Immunology 137 (2):AB74. doi: 10.1016/j.jaci.2015.12.251.
  • Trejo, R., T. Dokland, J. Jurat-Fuentes, and F. Harte. 2011. Cryo-transmission electron tomography of native casein micelles from bovine milk. Journal of Dairy Science 94 (12):5770–5. doi: 10.3168/jds.2011-4368.
  • Turkowsky, D., P. Lohmann, M. Muhlenbrink, T. Schubert, L. Adrian, T. Goris, N. Jehmlich, and M. von Bergen. 2019. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. Journal of Proteomics 192:10–7. doi: 10.1016/j.jprot.2018.05.018.
  • Upton, J., and A. Nowak-Wegrzyn. 2018. The impact of baked egg and baked milk diets on IgE- and non-IgE-mediated allergy. Clinical Reviews in Allergy & Immunology 55 (2):118–38. doi: 10.1007/s12016-018-8669-0.
  • van der Wel, P. C. A. 2017. Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance 88:1–14. doi: 10.1016/j.ssnmr.2017.10.001.
  • Vedadi, M., F. H. Niesen, A. Allali-Hassani, O. Y. Fedorov, P. J. Finerty, G. A. Wasney, R. Yeung, C. Arrowsmith, L. J. Ball, H. Berglund, et al. 2006. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proceedings of the National Academy of Sciences 103 (43):15835–40. doi: 10.1073/pnas.0605224103.
  • Verhoeckx, K., H. Broekman, A. Knulst, and G. Houben. 2016. Allergenicity assessment strategy for novel food proteins and protein sources. Regulatory Toxicology and Pharmacology 79:118–24. doi: 10.1016/j.yrtph.2016.03.016.
  • Vickery, B. P., S. Chin, and A. W. Burks. 2011. Pathophysiology of food allergy. Pediatric Clinics of North America 58 (2):363–76. doi: 10.1016/j.pcl.2011.02.012.
  • Villas-Boas, M. B., S. Benedé, R. de Lima Zollner, F. M. Netto, and E. Molina. 2015. Epitopes resistance to the simulated gastrointestinal digestion of β-lactoglobulin submitted to two-step enzymatic modification. Food Research International 72:191–7. doi: 10.1016/j.foodres.2015.03.044.
  • Wang, J., Y. B. Yu, Y. A. Zhao, D. B. Zhang, and J. Li. 2013. Evaluation and integration of existing methods for computational prediction of allergens. BMC Bioinformatics 14 (Suppl 4):S1. doi: 10.1186/1471-2105-14-S4-S1.
  • Wang, J., D. B. Zhang, and J. Li. 2013. PREAL: Prediction of allergenic protein by maximum Relevance Minimum Redundancy (mRMR) feature selection. BMC Systems Biology 7 (Suppl 5):S9. doi: 10.1186/1752-0509-7-S5-S9.
  • Wang, X. X., X. W. Zhao, D. W. Huang, X. C. Pan, Y. X. Qi, Y. X. Yang, H. L. Zhao, and G. L. Cheng. 2017. Proteomic analysis and cross species comparison of casein fractions from the milk of dairy animals. Scientific Reports 7 (1):9. doi: 10.1038/srep43020.
  • Watson, C. T., A. T. Cohain, R. S. Griffin, Y. Chun, A. Grishin, H. Hacyznska, G. E. Hoffman, N. D. Beckmann, H. Shah, P. Dawson, et al. 2017. Integrative transcriptomic analysis reveals key drivers of acute peanut allergic reactions. Nature Communications 8 (1):13. doi: 10.1038/s41467-017-02188-7.
  • Weng, X., G. Gaur, and S. Neethirajan. 2016. Rapid detection of food allergens by microfluidics ELISA-based optical sensor. Biosensors 6 (2):24. 10. doi: 10.3390/bios60200.
  • Willison, L. N., P. Tripathi, G. Sharma, S. S. Teuber, S. K. Sathe, and K. H. Roux. 2011. Cloning, expression and patient IgE reactivity of recombinant Pru du 6, an 11S globulin from almond. International Archives of Allergy and Immunology 156 (3):267–81. doi: 10.1159/000323887.
  • Willison, L. N., Q. Zhang, M. Su, S. S. Teuber, S. K. Sathe, and K. H. Roux. 2013. Conformational epitope mapping of Pru du 6, a major allergen from almond nut. Molecular Immunology 55 (3-4):253–63. doi: 10.1016/j.molimm.2013.02.004.
  • Wu, X. L., Y. Li, B. Liu, Y. Feng, W. Y. He, Z. G. Liu, L. Z. Liu, Z. M. Wang, and H. Z. Huang. 2016. Two-site antibody immunoanalytical detection of food allergens by surface plasmon resonance. Food Analytical Methods 9 (3):582–8. doi: 10.1007/s12161-015-0232-5.
  • Wylie, B. J., H. Q. Do, C. G. Borcik, E. P. Hardy, and P. C. der Wel. 2016. Advances in solid-state NMR of membrane proteins. Molecular Physics 114 (24):3598–09. doi: 10.1080/00268976.2016.1252470.
  • Yakubu, R. R., E. Nieves, and L. M. Weiss. 2019. The methods employed in mass spectrometric analysis of posttranslational modifications (PTMs) and protein–protein interactions (PPIs). In Advancements of mass spectrometry in biomedical research, ed. A. G. Woods and C. C. Darie, 169–98. Cham: Springer International Publishing. doi: 10.1007/978-3-030-15950-4_10.
  • Yan, Y., G. Chen, H. Wei, R. Y.-C. Huang, J. Mo, D. L. Rempel, A. A. Tymiak, and M. L. Gross. 2014. Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin. Journal of the American Society for Mass Spectrometry 25 (12):2084–92. doi: 10.1007/s13361-014-0993-x.
  • Yanase, Y., T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide. 2014. Surface plasmon resonance for cell-based clinical diagnosis. Sensors 14 (3):4948–59. doi: 10.3390/s140304948.
  • Yanase, Y., T. Hiragun, T. Yanase, T. Kawaguchi, K. Ishii, and M. Hide. 2012. Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging. Biosensors and Bioelectronics 32 (1):62–8. doi: 10.1016/j.bios.2011.11.023.
  • Zhang, Q., K. A. Noble, Y. Mao, N. L. Young, S. K. Sathe, K. H. Roux, and A. G. Marshall. 2013. Rapid screening for potential epitopes reactive with a polycolonal antibody by solution-phase H/D exchange monitored by FT-ICR mass spectrometry. Journal of the American Society for Mass Spectrometry 24 (7):1016–25. doi: 10.1007/s13361-013-0644-7.
  • Zhou, J. R., Q. Q. Qi, C. Wang, Y. F. Qian, G. M. Liu, Y. B. Wang, and L. L. Fu. 2019. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosensors and Bioelectronics 142:111449. doi: 10.1016/j.bios.2019.
  • Zhou, J. R., Y. B. Wang, Y. F. Qian, T. Zhang, L. Zheng, and L. L. Fu. 2020. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control 107:106547. doi: 10.1016/j.foodcont.2019.02.041.
  • Ziegler, S., V. Pries, C. Hedberg, and H. Waldmann. 2013. Target identification for small bioactive molecules: Finding the needle in the haystack. Angewandte Chemie International Edition 52 (10):2744–92. doi: 10.1002/anie.201208749.