910
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Bacteriocinogenic probiotics as an integrated alternative to antibiotics in chicken production - why and how?

, , & ORCID Icon

References

  • Agyare, C., V. Etsiapa Boamah, C. Ngofi Zumbi, and F. Boateng Osei. 2019. Antibiotic use in poultry production and its effects on bacterial resistance. In Antimicrobial resistance - A global threat, ed. Y. Kumar. London, UK: IntechOpen. doi:10.5772/intechopen.79371
  • Alali, W. Q., and C. L. Hoface. 2016. Preharvest food safety in broiler chicken production. In Preharvest food safety, ed. S. Thakur, K. Kniel, 69–86. Washington, DC: American Society of Microbiology. doi: 10.1128/microbiolspec.PFS-0002-2014
  • Anadón, A., M. Rosa Martínez-Larrañaga, and M. Aranzazu Martínez. 2006. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology 45 (1):91–5. doi: 10.1016/j.yrtph.2006.02.004.
  • Ben Lagha, A., B. Haas, M. Gottschalk, and D. Grenier. 2017. Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research 48 (1):1–12. doi: 10.1186/s13567-017-0425-6.
  • Canadian Food Inspection Agency. 2019. Introduction-regulation of livestock feed in Canada [online]. https://www.inspection.gc.ca/animals/feeds/regulatory-guidance/rg-1/introduction/eng/1493737712622/1493737821272.
  • Card, R. M., S. A. Cawthraw, J. Nunez-Garcia, R. J. Ellis, G. Kay, M. J. Pallen, M. J. Woodward, and M. F. Anjum. 2017. An in Vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from Salmonella to commensal Escherichia coli. mBio 8 (4):1–15. doi: 10.1128/mBio.00777-17.
  • Cavera, V. L., T. D. Arthur, D. Kashtanov, and M. L. Chikindas. 2015. Bacteriocins and their position in the next wave of conventional antibiotics. International Journal of Antimicrobial Agents 46 (5):494–501. doi: 10.1016/j.ijantimicag.2015.07.011.
  • Center for Disease Control and Prevention. 2015. Serotypes and the importance of serotyping salmonella | Salmonella Atlas | Reports and Publications | Salmonella | CDC [online]. Center for Disease Control and Prevention. Accessed November 7, 2018. https://www.cdc.gov/salmonella/reportspubs/salmonella-atlas/serotyping-importance.html#three
  • Centers for Disease Control and Prevention. 2018. Outbreak of multidrug-resistant salmonella infections linked to raw chicken products [online]. Posted October 17, 2018 at 12:00 PM ET. Accessed November 7, 2018. https://www.cdc.gov/salmonella/infantis-10-18/index.html
  • Chichlowski, M., W. J. Croom, F. W. Edens, B. W. McBride, R. Qiu, C. C. Chiang, L. R. Daniel, G. B. Havenstein, and M. D. Koci. 2007. Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and salinomycin. Poultry Science 86 (6):1121–32. doi: 10.1093/ps/86.6.1121.
  • Chikindas, M. L., R. Weeks, D. Drider, V. A. Chistyakov, and L. M. Dicks. 2018. Functions and emerging applications of bacteriocins. Current Opinion in Biotechnology 49:23–8. doi: 10.1016/j.copbio.2017.07.011.
  • Chugunov, A., D. Pyrkova, D. Nolde, A. Polyansky, V. Pentkovsky, and R. Efremov. 2013. Lipid-II forms potential ‘landing terrain’ for lantibiotics in simulated bacterial membrane. Scientific Reports 3 (1) doi: 10.1038/srep01678.
  • Coller, J. 2019. Improving antibiotics stewardship in livestock supply chains. Retrieved from https://www.fairr.org/article/improving-antibiotics-stewardship-in-livestock-supply-chains/
  • Congressinal Research Service. n.d. Part II: Policies on antimicrobial use in selected countries.
  • Crhanova, M., D. Karasova, H. Juricova, J. Matiasovicova, E. Jahodarova, T. Kubasova, Z. Seidlerova, A. Cizek, and I. Rychlik. 2019. Systematic culturomics shows that half of chicken caecal microbiota members can be grown in vitro except for two lineages of clostridiales and a single lineage of bacteroidetes. Microorganisms 7 (11):496. doi: 10.3390/microorganisms7110496.
  • Crisol-Martínez, E., D. Stanley, M. S. Geier, R. J. Hughes, and R. J. Moore. 2017. Understanding the mechanisms of zinc bacitracin and avilamycin on animal production: Linking gut microbiota and growth performance in chickens. Applied Microbiology and Biotechnology 101 (11):4547–59. doi: 10.1007/s00253-017-8193-9.
  • Center for Veterinary Medicine (CVM). 2017. Antimicrobials sold or distributed for use in food-producing animals. U.S. Food and Drug Administration. Retrieved from https://www.fda.gov/media/119332/download
  • Dimier-Poisson, I. H., D. T. Bout, and P. Quéré. 2004. Chicken primary enterocytes: Inhibition of Eimeria tenella replication after activation with crude interferon-γ supernatants. Avian Diseases 48 (3):617–24. doi: 10.1637/7180-031604R.
  • Ding, J., R. Dai, L. Yang, C. He, K. Xu, S. Liu, W. Zhao, L. Xiao, L. Luo, Y. Zhang, et al. 2017. Inheritance and Establishment of Gut Microbiota in Chickens. Frontiers in Microbiology 8:1967 doi:10.3389/fmicb.2017.01967. PMC: 29067020
  • Drider, D., Y. Belguesmia, Y. Choiset, H. Prévost, M. Dalgalarrondo, and J. M. Chobert. 2010. Partial purification and characterization of the mode of action of enterocin S37: A bacteriocin produced by enterococcus faecalis S37 isolated from poultry feces. Journal of Environmental and Public Health 2010:1–8. doi: 10.1155/2010/986460.
  • Fernandez, B., C. Le Lay, J. Jean, and I. Fliss. 2013. Growth, acid production and bacteriocin production by probiotic candidates under simulated colonic conditions. Journal of Applied Microbiology 114 (3):877–85. doi: 10.1111/jam.12081.
  • Fields, O. F. 1996. Use of bacteriocins in food: Regulatory considerations. Journal of Food Protection 59 (13):72–7. doi: 10.4315/0362-028X-59.13.72.
  • Flanagan, R. C., J. M. Neal-McKinney, A. S. Dhillon, W. G. Miller, and M. E. Konkel. 2009. Examination of Campylobacter jejuni putative adhesins leads to the identification of a new protein, designated FlpA, required for chicken colonization. Infection and Immunity 77 (6):2399–407. doi: 10.1128/IAI.01266-08.
  • Food and Drug Administration. 2013. Phasing out certain antibiotic use in farm animals [online]. https://www.fda.gov/consumers/consumer-updates/phasing-out-certain-antibiotic-use-farm-animals.
  • Food and Drug Administration. 2018a. Supporting antimicrobial stewardship in veterinary settings: goals for fiscal years 2019-2013. Center for Veterinary Medicine. Retrieved from https://www.fda.gov/media/115776/download.
  • Food and Drug Administration. 2018b. Antimicrobial Resistance Information from FDA [online]. FDA. Accessed November 7, 2018. https://www.fda.gov/EmergencyPreparedness/Counterterrorism/MedicalCountermeasures/MCMIssues/ucm620149.htm
  • Food and Drug Administration. 2019. Product regulation [online]. https://www.fda.gov/animal-veterinary/animal-food-feeds/product-regulation.
  • Food Safety and Standards Authority of India. 2019. Direction Colistin Ban. New Delhi, India: FDA Bhawan.
  • Food, E., Authority, and S. Efsa. 2018. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA Journal 16 (2):5182.
  • Government of Canada. 2017. Antimicrobial resistance and animals-actions [online]. https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/actions.html.
  • Government of Canada. 2018a. Notice to stakeholders: Update on collaborative efforts to promote the prudent use of medically-important antimicrobials in animals [online]. http://www.hc-sc.gc.ca/dhp-mps/vet/antimicrob/amr-notice-ram-avis-2017-eng.php.
  • Government of Canada. 2018b. Canadian integrated program for antimicrobial resistance surveillance (CIPARS) 2016 annual report. Ontario, CA: Public Health Agency of Canada.
  • Government of Canada. 2019. Guidance document on classification of veterinary drugs and livestock feeds [online]. Accessed September 1, 2019. https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/legislation-guidelines/guidance-documents/guidance-document-classification-veterinary-drugs-livestock-feeds/document.html
  • Grilli, E., M. Messina, E. Catelli, M. Morlacchini, and A. Piva. 2009. Pediocin a improves growth performance of broilers challenged with Clostridium perfringens. Poultry Science 88 (10):2152–8. doi: 10.3382/ps.2009-00160.
  • Gulland, A. 2019. Countries still using antibiotics to fatten animals despite ban. The Telegraph.
  • Hammami, R., B. Fernandez, C. Lacroix, and I. Fliss. 2013. Anti-infective properties of bacteriocins: An update. Cellular and Molecular Life Sciences 70 (16):2947–67. doi: 10.1007/s00018-012-1202-3.
  • Hammami, R., I. Fliss, and A. Corsetti. 2019. Editorial: Application of protective cultures and bacteriocins for food biopreservation. Frontiers in Microbiology 10:1561. doi: 10.3389/fmicb.2019.01561.
  • Hammami, R., A. Zouhir, C. Le Lay, J. Ben Hamida, and I. Fliss. 2010. BACTIBASE second release: A database and tool platform for bacteriocin characterization. BMC Microbiology 10 (1):22. doi: 10.1186/1471-2180-10-22.
  • Han, S., M. Shin, H. Park, S. Kim, and W. Lee. 2014. Screening of bacteriocin-producing enterococcus faecalis strains for antagonistic activities against Clostridium perfringens. Korean Journal for Food Science of Animal Resources 34 (5):614–21. doi: 10.5851/kosfa.2014.34.5.614.
  • Hofacre, C. L., J. A. Smith, and G. F. Mathis. 2018. An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poultry Science 97 (6):1929–33. doi: 10.3382/ps/pey082.
  • Holmes, A. H., L. S. P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, P. J. Guerin, and L. J. V. Piddock. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet 387 (10014):176–87. doi: 10.1016/S0140-6736(15)00473-0.
  • Johnson, R. 2011. Potential trade implications of restrictions on antimicrobial use in animal production. In Congressional Research Service (CRS) Report for Congress July, Vol. 11, 7–5700.
  • Johnson, R. 2018. EU bans prophylactic use of antibiotic farming [online]. https://thepoultrysite.com/news/2018/10/eu-bans-prophylactic-use-of-antibiotics-in-farming.
  • Józefiak, D., A. Sip, A. Rutkowski, M. Rawski, S. Kaczmarek, M. Wołuń-Cholewa, R. M. Engberg, and O. Højberg. 2012. Lyophilized Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poultry Science 91 (8):1899–907. doi: 10.3382/ps.2012-02151.
  • Jozefiak, D., A. Sip, M. Rawski, A. Rutkowski, S. Kaczmarek, O. Hojberg, B. B. Jensen, and R. M. Engberg. 2011a. Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. British Poultry Science 52 (4):492–9. doi: 10.1080/00071668.2011.602963.
  • Jozefiak, D., A. Sip, M. Rawski, A. Rutkowski, S. Kaczmarek, O. Hojberg, B. B. Jensen, and R. M. Engberg. 2011b. British Poultry Science Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. British Poultry Science 52 (4):492–9. doi: 10.1080/00071668.2011.602963.
  • Józefiak, D., B. Kierończyk, J. Juśkiewicz, Z. Zduńczyk, M. Rawski, J. Długosz, A. Sip, and O. Højberg. 2013. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One 8 (12):e85347–11. doi: 10.1371/journal.pone.0085347.
  • Józefiak, D., and A. Sip. 2013. Bacteriocins in poultry nutrition – a review. Annals of Animal Science 13 (3):449–62. doi: 10.2478/aoas-2013-0031.
  • Kaiser, A., T. Willer, P. Steinberg, and S. Rautenschlein. 2017. Establishment of an in vitro intestinal epithelial cell culture model of avian origin. Avian Diseases 61 (2):229–36. doi: 10.1637/11524-110216-Reg.1.
  • Kallapura, G. K., X. Hernandez, A. Piekarski, K. Lassiter, N. R. Pumford, G. Tellez, W. G. Bottje, B. M. Hargis, and O. B. Faulkner. 2015. Development of an ex vivo ileal explant culture method for amplified production and differential measurement of nitrite. International Journal of Poultry Science 14 (5):245–51. doi: 10.3923/ijps.2015.245.251.
  • Kapoor, G., S. Saigal, and A. Elongavan. 2017. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology 33 (3):300. doi: 10.4103/joacp.JOACP_349_15.
  • Kheadr, E., A. Zihler, N. Dabour, C. Lacroix, G. Le Blay, and I. Fliss. 2010. Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. Journal of Applied Microbiology 109 (1):54–64. doi: 10.1111/j.1365-2672.2009.04644.x.
  • Kieronczyk, B., M. Sassek, E. Pruszynska-Oszmalek, P. Kolodziejski, M. Rawski, S. Swiatkiewicz, and D. Józefiak. 2017. The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poultry Science 96 (11):4026–37. doi: 10.3382/ps/pex234.
  • Kim, J. Y., J. A. Young, N. W. Gunther, and J. L. Lee. 2015. Inhibition of salmonella by bacteriocin-producing lactic acid bacteria derived from U.S. kimchi and broiler chicken. Journal of Food Safety 35 (1):1–12. doi: 10.1111/jfs.12141.
  • Konkel, M. E., J. E. Christensen, A. S. Dhillon, A. B. Lane, R. Hare-Sanford, D. M. Schaberg, and C. L. Larson. 2007. Campylobacter jejuni strains compete for colonization in broiler chicks. Applied and Environmental Microbiology 73 (7):2297–305. doi: 10.1128/AEM.02193-06.
  • Kumar, S., C. Chen, N. Indugu, G. O. Werlang, M. Singh, W. K. Kim, and H. Thippareddi. 2018. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS ONE 13 (2):e0192450–23. doi: 10.1371/journal.pone.0192450.
  • Larson, C. L., D. H. Shah, A. S. Dhillon, D. R. Call, S. Ahn, G. J. Haldorson, C. Davitt, and M. E. Konkel. 2008. Campylobacter jejuni invade chicken LMH cells inefficiently and stimulate differential expression of the chicken CXCLi1 and CXCLi2 cytokines. Microbiology 154 (12):3835–47. doi: 10.1099/mic.0.2008/021279-0.
  • Laulund, S., A. Wind, P. Derkx, and V. Zuliani. 2017. Regulatory and safety requirements for food cultures. Microorganisms 5 (2):28. doi: 10.3390/microorganisms5020028.
  • Le Lay, C. 2015. Lactococcus lactis ssp. lactis biovar. diacetylactis UL719 et la nisine: une nouvelle approche dans le traitement des infections à Clostridium difficile. Universite Laval.
  • Li, J., H. Hao, G. Cheng, C. Liu, S. Ahmed, M. A. B. B. Shabbir, H. I. Hussain, M. Dai, and Z. Yuan. 2017. Microbial shifts in the intestinal microbiota of Salmonella infected chickens in response to enrofloxacin. Frontiers in Microbiology 8:1–14. doi: 10.3389/fmicb.2017.01711.
  • Li, Q., Y. Li, J. Xia, X. Wang, K. Yin, Y. Hu, C. Yin, Z. Liu, and X. Jiao. 2019. Virulence of Salmonella entericaserovar Pullorum isolates compared using cell-based and chicken embryo infection models. Poultry Science 98 (3):1488–93. doi: 10.3382/ps/pey482.
  • Liu, L., L. Lin, L. Zheng, H. Tang, X. Fan, N. Xue, M. Li, M. Liu, and X. Li. 2018. Cecal microbiome profile altered by Salmonella enterica, serovar Enteritidis inoculation in chicken. Gut Pathogens 10 (1):34. doi: 10.1186/s13099-018-0261-x.
  • Ludlow, K. 2010. Australian pesticides and veterinary medicines authority. In Encyclopedia of nanoscience and society, ed. D. H. Guston, 38–39. Thousand Oaks, CA: SAGE Publications, Inc.
  • Maki, J. J., C. L. Klima, M. J. Sylte, and T. Looft. 2019. The microbial pecking order: Utilization of intestinal microbiota for poultry health. Microorganisms 7 (10):376. doi: 10.3390/microorganisms7100376.
  • Maron, D. F., T. J. Smith, and K. E. Nachman. 2013. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Globalization and Health 9 (1):1–11.
  • Marshall, B. M., and S. B. Levy. 2011. Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews 24 (4):718–33. doi: 10.1128/CMR.00002-11.
  • Messaoudi, S., G. Kergourlay, A. Rossero, M. Ferchichi, H. Prévost, D. Drider, M. Manai, and X. Dousset. 2011. Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. International Microbiology 14 (2):103–10.
  • Messaoudi, S., M. Manai, G. Kergourlay, H. Prévost, N. Connil, J.-M. Chobert, and X. Dousset. 2013. Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiology 36 (2):296–304. doi: 10.1016/j.fm.2013.05.010.
  • Micciche, A. C., S. L. Foley, H. O. Pavlidis, D. R. McIntyre, and S. C. Ricke. 2018. A review of prebiotics against Salmonella in poultry: Current and future potential for microbiome research applications. Frontiers in Veterinary Science 5:1–11. doi: 10.3389/fvets.2018.00191.
  • Mohanty, D., S. Panda, S. Kumar, and P. Ray. 2019. In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial Pathogenesis 126:212–7. doi: 10.1016/j.micpath.2018.11.014.
  • Mottet, A., and G. Tempio. 2017. Global poultry production: Current state and future outlook and challenges. World's Poultry Science Journal 73 (2):245–56. doi: 10.1017/S0043933917000071.
  • Naimi, S., S. Zirah, R. Hammami, B. Fernandez, S. Rebuffat, and I. Fliss. 2018. Fate and biological activity of the antimicrobial lasso peptide microcin J25 under gastrointestinal tract conditions. Frontiers in Microbiology 9:1764. doi: 10.3389/fmicb.2018.01764.
  • Oakley, B. B., H. S. Lillehoj, M. H. Kogut, W. K. Kim, J. J. Maurer, A. Pedroso, M. D. Lee, S. R. Collett, T. J. Johnson, and N. A. Cox. 2014. The chicken gastrointestinal microbiome. FEMS Microbiology Letters 360 (2):100–12. doi: 10.1111/1574-6968.12608.
  • Oladeinde, A., K. Cook, S. M. Lakin, R. Woyda, Z. Abdo, T. Looft, K. Herrington, G. Zock, J. P. Lawrence, J. C. Thomas, et al. 2019. Horizontal gene transfer and acquired antibiotic resistance in Salmonella enterica Serovar Heidelberg following in vitro incubation in broiler ceca. Applied and Environmental Microbiology 85 (22), 175285. doi: 10.1128/AEM.01903-19.
  • O'Toole, P. W., and J. C. Cooney. 2008. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdisciplinary Perspectives on Infectious Diseases 2008:1–9. doi: 10.1155/2008/175285.
  • Pan, D., and Z. Yu. 2013. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5 (1):108–19. doi: 10.4161/gmic.26945.
  • Park, Y. H., F. Hamidon, C. Rajangan, K. P. Soh, C. Y. Gan, T. S. Lim, W. N. W. Abdullah, and M. T. Liong. 2016. Application of probiotics for the production of safe and high-quality poultry meat. Korean Journal for Food Science of Animal Resources 36 (5):567–76. doi: 10.5851/kosfa.2016.36.5.567.
  • Priyodip, P., and S. Balaji. 2019. An in vitro chicken gut model for the assessment of phytase producing bacteria. 3 Biotech 9 (8):294. doi: 10.1007/s13205-019-1825-2.
  • Ralte, R. 2018. Antibiotic use in poultry feeds to be phased out from 2018 [online]. The Poultry Site. https://thepoultrysite.com/news/2018/01/antibiotic-use-in-poultry-feed-to-be-phased-out-from-2018.
  • Rath, N. C., R. Liyanage, A. Gupta, B. Packialakshmi, and J. O. Lay. 2018. A method to culture chicken enterocytes and their characterization. Poultry Science 97 (11):4040–7. doi: 10.3382/ps/pey248.
  • Rychen, G., G. Aquilina, G. Azimonti, V. Bampidis, M. d L. Bastos, G. Bories, A. Chesson, P. S. Cocconcelli, G. Flachowsky, J. Gropp, et al. 2017. Guidance on the assessment of the safety of feed additives for the target species. EFSA Journal 15 (10):5021. doi: 10.2903/j.efsa.2017.5021.
  • Rychen, G., G. Aquilina, G. Azimonti, V. Bampidis, M. d L. Bastos, G. Bories, A. Chesson, P. S. Cocconcelli, G. Flachowsky, J. Gropp, et al. 2018. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal 16 (3):1–24. doi: 10.2903/j.efsa.2018.5206.
  • Sakpuaram, K., T. Wajjwalku, W. Nitisinprasert, S. Swetwiwathana, A. Zendo, T. Fujita, K. Nakayama, and J. Sonomoto. 2006. Faculty of Agricultural Industry, King Mongkut’s Institute of Technology Ladkrabang (KMITL). Ph.D. Agricultural Science, Asst. Prof.
  • Snell, B. 2019. Analysis of AMR Plans in the Western Pacific and South-East Asia Regions TWN Third World Network. Third World Network.
  • Soltani, S., R. Hammami, P. D. Cotter, S. Rebuffat, L. B. Said, H. Gaudreau, F. Bédard, E. Biron, D. Drider, and I. Fliss. 2021. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiology Reviews 45 (1):fuaa039. doi: 10.1093/femsre/fuaa039.
  • Spivey, M. A., S. L. Dunn-Horrocks, and T. Duong. 2014. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry. Poultry Science 93 (11):2910–9. doi: 10.3382/ps.2014-04076.
  • Sri Lanka. 2017. National Strategic Plan for Combating Antimicrobial Resistance in Sri Lanka.
  • Stern, N. J., E. A. Svetoch, B. V. Eruslanov, V. V. Perelygin, E. V. Mitsevich, I. P. Mitsevich, V. D. Pokhilenko, V. P. Levchuk, O. E. Svetoch, and B. S. Seal. 2006. Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrobial Agents and Chemotherapy 50 (9):3111–6. doi: 10.1128/AAC.00259-06.
  • Svetoch, E. A., B. V. Eruslanov, V. P. Levchuk, V. V. Perelygin, E. V. Mitsevich, I. P. Mitsevich, J. Stepanshin, I. Dyatlov, B. S. Seal, and N. J. Stern. 2011. Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum. Applied and Environmental Microbiology 77 (8):2749–54. doi: 10.1128/AEM.02481-10.
  • Svetoch, E. A., and N. J. Stern. 2010. Bacteriocins to control Campylobacter spp. in poultry-A review. Poultry Science 89 (8):1763–8. doi: 10.3382/ps.2010-00659.
  • The Chicken Farmers. 2016. Chicken Farmers of Canada’s AMU Strategy. Accessed on May, 2021. https://www.chickenfarmers.ca/portal/chicken-farmers-of-canadas-amu-strategy/.
  • Timbermont, L., L. De Smet, F. Van Nieuwerburgh, V. R. Parreira, G. Van Driessche, F. Haesebrouck, R. Ducatelle, J. Prescott, D. Deforce, B. Devreese, et al. 2014. Perfrin, a novel bacteriocin associated with netB positive Clostridium perfringens strains from broilers with necrotic enteritis. Veterinary Research 45 (1):40. doi: 10.1186/1297-9716-45-40.
  • Tymoszewska, A., D. B. Diep, P. Wirtek, and T. Aleksandrzak-Piekarczyk. 2017. The non-lantibiotic bacteriocin garvicin Q targets Man-PTS in a broad spectrum of sensitive bacterial genera. Scientific Reports 7 (1):8359. doi: 10.1038/s41598-017-09102-7.
  • Tymoszewska, A., P. Walczak, and T. Aleksandrzak-Piekarczyk. 2020. BacSJ—Another bacteriocin with distinct spectrum of activity that targets Man-PTS. International Journal of Molecular Sciences 21 (21):7860. doi: 10.3390/ijms21217860.
  • Umu, Ö. C. O., C. Bäuerl, M. Oostindjer, P. B. Pope, P. E. Hernández, G. Pérez-Martínez, and D. B. Diep. 2016. The potential of class II bacteriocins to modify gut microbiota to improve host health. Plos ONE 11 (10):e0164036. doi: 10.1371/journal.pone.0164036.
  • Van Immerseel, F. 2003. Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. International Journal of Food Microbiology 85 (3):237–48. doi: 10.1016/S0168-1605(02)00542-1.
  • Velge, P. 2002. Establishment and characterization of partially differentiated chicken enterocyte cell clones. European Journal of Cell Biology 81 (4):203–12. doi: 10.1078/0171-9335-00237.
  • Vieco-Saiz, N., Y. Belguesmia, R. Raspoet, E. Auclair, F. Gancel, I. Kempf, and D. Drider. 2019. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 10:1–17. doi: 10.3389/fmicb.2019.00057.
  • Vriezen, J. A. C., M. Valliere, and M. A. Riley. 2009. The Evolution of Reduced Microbial Killing. Genome Biology and Evolution 1:400–8. doi:10.1093/gbe/evp042.
  • Walia, K., M. Sharma, S. Vijay, and B. R. Shome. 2019. Understanding policy dilemmas around antibiotic use in food animals & offering potential solutions. The Indian Journal of Medical Research 149 (2):107–18. doi: 10.4103/ijmr.IJMR_2_18.
  • Wan, M. L. L. Y., S. J. Forsythe, and H. El-Nezami. 2019. Probiotics interaction with foodborne pathogens: A potential alternative to antibiotics and future challenges. Critical Reviews in Food Science and Nutrition 59 (20):3320–14. doi: 10.1080/10408398.2018.1490885.
  • Wang, Y., Y. Hu, J. Cao, Y. Bi, N. Lv, F. Liu, S. Liang, Y. Shi, X. Jiao, G. F. Gao, et al. 2019. Antibiotic resistance gene reservoir in live poultry markets. Journal of Infection 78 (6):445–53. doi: 10.1016/j.jinf.2019.03.012.
  • Wang, H. T., Y. H. Li, I. P. Chou, Y. H. Hsieh, B. J. Chen, and C. Y. Chen. 2013. Albusin B modulates lipid metabolism and increases antioxidant defense in broiler chickens by a proteomic approach. Journal of the Science of Food and Agriculture 93 (2):284–92. doi: 10.1002/jsfa.5754.
  • Wang, H. T., C. Yu, Y. H. Hsieh, S. W. Chen, B. J. Chen, and C. Y. Chen. 2011. Effects of albusin B (a bacteriocin) of Ruminococcus albus 7 expressed by yeast on growth performance and intestinal absorption of broiler chickens-its potential role as an alternative to feed antibiotics. Journal of the Science of Food and Agriculture 91 (13):2338–43. doi: 10.1002/jsfa.4463.
  • WHO. 2017. Namibia’s ban on antibitocis in healthy animals drives meat exports [online]. https://www.who.int/news-room/feature-stories/detail/namibia-s-ban-on-antibiotics-in-healthy-animals-drives-meat-exports.
  • Wu, Z. 2019. Antibiotic use and antibiotic resistance in food-producing animals in China. No. 134.
  • Yang, H., L. Paruch, X. Chen, A. Van Eerde, H. Skomedal, Y. Wang, D. Liu, and J. Liu Clarke. 2019. Antibiotic Application and Resistance in Swine Production in China: Current Situation and Future Perspectives. Frontiers in Veterinary Science 6:136 doi:10.3389/fvets.2019.00136. PMC: 31157244
  • Yuan, C., Q. He, J. Li, M. M. Azzam, J. Lu, and X. Zou. 2015. Evaluation of embryonic age and the effects of different proteases on the isolation and primary culture of chicken intestinal epithelial cells in vitro: Primary Culture of Chicken IEC In Vitro. Animal Science Journal 86 (6):588–94. doi: 10.1111/asj.12337.
  • Zhang, D., R. Li, and J. Li. 2012. Lactobacillus reuteri ATCC 55730 and L22 display probiotic potential in vitro and protect against Salmonella-induced pullorum disease in a chick model of infection. Research in Veterinary Science 93 (1):366–73. doi:10.1016/j.rvsc.2011.06.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.