1,268
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues

&

References

  • Abdou, E. S., and M. A. Sorour. 2014. Preparation and characterization of starch/carrageenan edible films. International Food Research. Journal 21:189–93.
  • Amenta, V., K. Aschberger, M. Arena, H. Bouwmeester, F. B. Moniz, P. Brandhoff, S. Gottardo, H. J. P. Marvin, A. Mech, L. Q. Pesudo, et al. 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology: RTP 73 (1):463–76. doi: 10.1016/j.yrtph.2015.06.016.
  • Ananey-Obiri, D., L. Matthews, M. H. Azahrani, S. A. Ibrahim, C. M. Galanakis, and R. Tahergorabi. 2018. Application of protein-based edible coatings for fat uptake reduction in deep-fat fried foods with an emphasis on muscle food proteins. Trends in Food Science & Technology 80:167–74. doi: 10.1016/j.tifs.2018.08.012.
  • Andrade, R. D., O. Skurtys, and F. A. Osorio. 2012. Atomizing spray systems for application of edible coatings. Comprehensive Reviews in Food Science and Food Safety 11 (3):323–37. doi: 10.1111/j.1541-4337.2012.00186.x.
  • Arnon-Rips, H., and E. Poverenov. 2018. Improving food products’ quality and storability by using layer by layer edible coatings. Trends in Food Science & Technology 75:81–92. doi: 10.1016/j.tifs.2018.03.003.
  • Artiga-Artigas, M., A. Acevedo-Fani, and O. Martín-Belloso. 2017. Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 76:1–12. doi: 10.1016/j.foodcont.2017.01.001.
  • Baldwin, E. A., J. K. Burns, W. Kazokas, J. K. Brecht, R. D. Hagenmaier, R. J. Bender, and E. Pesis. 1999. Effect of two edible coatings with different permeability characteristics on mango (Mangifera Indica L.) ripening during storage. Postharvest Biology and Technology 17 (3):215–26. doi: 10.1016/S0925-5214(99)00053-8.
  • Benbettaïeb, N., C. Tanner, P. Cayot, T. Karbowiak, and F. Debeaufort. 2018. Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Hemistry 242:369–77. doi: 10.1016/j.foodchem.2017.09.065.
  • Bourtoom, T. 2008. Review article edible films and coatings: Characteristics and properties. International Food Research Journal 15:237–48.
  • Bouwmeester, H., P. Brandhoff, H. J. P. Marvin, S. Weigel, and R. J. B. Peters. 2014. State of the safety assessment and current use of nanomaterials in food and food production. Trends in Food Science & Technology 40 (2):200–11. doi: 10.1016/j.tifs.2014.08.009.
  • Bravin, B., D. Peressini, and A. Sensidoni. 2006. Development and application of polysaccharide–lipid edible coating to extend shelf-life of dry bakery products. Journal of Food Engineering 76 (3):280–90. doi: 10.1016/j.jfoodeng.2005.05.021.
  • Bumbudsanpharoke, N., J. Choi, and S. Ko. 2015. Applications of nanomaterials in food packaging. Journal of Nanoscience and Nanotechnology 15 (9):6357–72. doi: 10.1166/jnn.2015.10847.
  • Campos, C. A., L. N. Gerschenson, and S. K. Flores. 2011. Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology 4 (6):849–75. doi: 10.1007/s11947-010-0434-1.
  • Carbone, M., D. T. Donia, G. Sabbatella, and R. Antiochia. 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University - Science 28 (4):273–9. doi: 10.1016/j.jksus.2016.05.004.
  • Cazón, P., G. Velazquez, J. A. Ramírez, and M. Vázquez. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids. 68:136–48. doi:10.1016/j.foodhyd.2016.09.009.
  • Cha, D. S. U., and M. S. Chinnan. 2004. Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition 44 (4):223–37. doi: 10.1080/10408690490464276.
  • Chelebowska-Smigiel, A., M. Gniewosz, and E. Swinczak. 2007. An attempt to apply a pullulan and pullulan-protein coating to prolong apples shelf-life stability. Acta Scientiarum Polonorum, Technologia Alimentaria 6:49–56.
  • Chiumarelli, M., and M. D. Hubinger. 2012. Stability, solubility, mechanical and barrier properties of cassava starch-carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids 28 (1):59–67. doi: 10.1016/j.foodhyd.2011.12.006.
  • Costa, M. J., L. C. Maciel, J. A. Teixeira, A. A. Vicente, and M. A. Cerqueira. 2018. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Research International (Ottawa, Ont.) 107:84–92. doi: 10.1016/j.foodres.2018.02.013.
  • Dehghani, S., S. V. Hosseini, and J. M. Regenstein. 2018. Edible films and coatings in seafood preservation: A review. Food Chemistry 240:505–13. doi: 10.1016/j.foodchem.2017.07.034.
  • Domínguez, R., F. J. Barba, B. Gómez, P. Putnik, D. B. Kovacevic, M. Pateiro, E. M. Santos, and J. M. Lorenzo. 2018. Active packaging films with natural antioxidants to be used in meat industry: A Review. Food Research International (Ottawa, on) 113:93–101. doi: 10.1016/j.foodres.2018.06.073.
  • Elsabee, M. Z., and E. S. Abdou. 2013. Chitosan based edible films and coatings: A review. Materials Science and Engineering: C 33 (4):1819–41. doi:10.1016/j.msec.2013.01.010.
  • European Commission (EC). 2012a. Second Regulatory Review on Nanomaterials. Communication from the Commission to the European Parliament, the Council and the European Economic and Social CommitteeCOM(2012) 572 Final. Brussels, Belgium 3.10.2012:1–15.
  • European Commission (EC). 2012b. Types and uses of nanomaterials, including safety aspects accompanying the communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee on the Second Regulatory Rev. Commision Staff Working Paper SWD(2012) 288 Final. Brussels, Belgium 3.10.2012:1–111.
  • Fagundes, C., L. Palou, A. R. Monteiro, and M. B. Pérez-Gago. 2014. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biology and Technology 92:1–8. doi: 10.1016/j.postharvbio.2014.01.006.
  • Farris, S., I. U. Unalan, L. Introzzi, J. M. Fuentes-Alventosa, and C. A. Cozzolino. 2014. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. Journal of Applied Polymer Science 131 (13):1–12. doi:10.1002/app.40539.
  • Frazão, G. G. S., A. F. Blank, and L. C. L. de. A. Santana. 2017. Optimisation of edible chitosan coatings formulations incorporating Myrcia Ovata Cambessedes essential oil with antimicrobial potential against foodborne bacteria and natural microflora of mangaba fruits gladslene. LWT - Food Science and Technology 79:1–44. doi: 10.1016/j.lwt.2017.01.011.
  • Galus, S., and A. Lenart. 2013. Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering 115 (4):459–65. doi: 10.1016/j.jfoodeng.2012.03.006.
  • Galus, S., and J. Kadzińska. 2015. Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology 45 (2):273–83. doi: 10.1016/j.tifs.2015.07.011.
  • Ghidelli, C., and M. B. Perez-Gago. 2018. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition 58 (4):662–79. doi: 10.1080/10408398.2016.1211087.
  • Gómez-Guillén, M. C., M. Pérez-Mateos, J. Gómez-Estaca, E. López-Caballero, B. Giménez, and P. Montero. 2009. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology 20 (1):3–16. doi:10.1016/j.tifs.2008.10.002.
  • Gorrasi, G., and V. Bugatti. 2016. Edible bio-nano-hybrid coatings for food protection based on pectins and LDH-Salycilate: Preparation and analysis of physical properties. LWT - Food Science and Technology 69:139. doi: 10.1016/j.lwt.2016.01.038.
  • Gounga, M. E., S.-Y. Xu, and Z. Wang. 2007. Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. Journal of Food Engineering 83 (4):521–30. doi: 10.1016/j.jfoodeng.2007.04.008.
  • Gounga, M. E., S.-Y. Xu, and Z. Wang. 2010. Film forming mechanism and mechanical and thermal properties of whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan content. Journal of Food Biochemistry 34:501–19. doi: 10.1111/j.1745-4514.2009.00294.x.
  • Guerreiro, A. C., C. M. L. Gago, M. L. Faleiro, M. G. C. Miguel, and M. D. C. Antunes. 2017. The effect of edible coatings on the nutritional quality of “Bravo De Esmolfe” fresh-cut apple through shelf-life. LWT 75:210–9. doi: 10.1016/j.lwt.2016.08.052.
  • Guimarães, A., Ó. Ramos, M. Cerqueira, A. Venâncio, and L. Abrunhosa. 2020. Active whey protein edible films and coatings incorporating lactobacillus buchneri for penicillium nordicum control in cheese. Food and Bioprocess Technology 13 (6):1074–86. doi: 10.1007/s11947-020-02465-2.
  • Hamad, A. F., J.-H. Han, B.-C. Kim, and I. A. Rather. 2018. The intertwine of nanotechnology with the food industry. Saudi Journal of Biological Sciences 25 (1):27–30. doi: 10.1016/j.sjbs.2017.09.004.
  • Hashemi Gahruie, H., E. Ziaee, M. H. Eskandari, and S. M. H. Hosseini. 2017. Characterization of basil seed gum-based edible films incorporated with Zataria Multiflora essential oil nanoemulsion. Carbohydrate Polymers 166:93–103. doi: 10.1016/j.carbpol.2017.02.103.
  • Hashemi, M., M. Hashemi, S. Daneshamooz, M. Raeisi, B. Jannat, S. Taheri, and S. M. A. Noori. 2020. An overview on antioxidants activity of polysaccharide edible films and coatings contains essential oils and herb extracts in meat and meat products. Advances in Animal and Veterinary Sciences 8 (2):198–207. doi: 10.17582/journal.aavs/2020/8.2.198.207.
  • Hassan, B., S. Ali, S. Chatha, A. I. Hussain, and K. M. Zia. 2018. Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. International Journal of Biological Macromolecules 109:1095–107. doi: 10.1016/j.ijbiomac.2017.11.097.
  • He, X., H. Deng, and H. Hwang. 2019. The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis 27 (1):1–21. doi: 10.1016/j.jfda.2018.12.002.
  • Hubbe, M. A., A. Ferrer, P. Tyagi, Y. Yin, C. Salas, L. Pal, and O. J. Rojas. 2017. Nanocellulose in thin films, coatings, and plies for packaging applications: a review. Bio Resources 12:2143–2233.
  • Imran, M., A.-M. Revol-Junelles, N. René, M. Jamshidian, M. J. Akhtar, E. Arab-Tehrany, M. Jacquot, and S. Desobry. 2012. Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids. 29 (2):407–19. doi: 10.1016/j.foodhyd.2012.04.010.
  • Jain, A., S. Ranjan, N. Dasgupta, and C. Ramalingam. 2016. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition 8398:1–86.
  • Jancikova, S., D. Dordevic, E. Jamroz, H. Behalova, and B. Tremlova. 2020. Chemical and physical characteristics of edible films, based on κ- and ι-Carrageenans with the addition of lapacho tea extract. Foods 9 (3):357. doi: 10.3390/foods9030357.
  • Joshi, M., B. Adak, and B. S. Butola. 2018. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications. Progress in Materials Science 97:230. doi: 10.1016/j.pmatsci.2018.05.001.
  • Jridi, M., O. Abdelhedi, A. Salem, H. Kechaou, M. Nasri, and Y. Menchari. 2020. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocolloids. 103:105688. doi: 10.1016/j.foodhyd.2020.105688.
  • Ju, J., Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition 59 (15):2467. doi: 10.1080/10408398.2018.1456402.
  • Kerry, J. P., M. N. O'Grady, and S. A. Hogan. 2006. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A Review. Meat Science 74 (1):113–30. doi: 10.1016/j.meatsci.2006.04.024.
  • Khwaldia, K., E. Arab-Tehrany, and S. Desobry. 2010. Biopolymer coatings on paper packaging materials. Comprehensive Reviews in Food Science and Food Safety 9 (1):82–91. doi: 10.1111/j.1541-4337.2009.00095.x.
  • Kristo, E., and C. G. Biliaderis. 2006. Water sorption and thermo-mechanical properties of water/sorbitol-plasticized composite biopolymer films: Caseinate–pullulan bilayers and blends. Food Hydrocolloids 20 (7):1057–71. doi: 10.1016/j.foodhyd.2005.11.008.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology 97:196–209. doi: 10.1016/j.tifs.2020.01.002.
  • Kurek, M., M. Scetar, and K. Galic. 2017. Edible coatings minimize fat uptake in deep fat fried products: A Review. Food Hydrocolloids. 71:225–35. doi: 10.1016/j.foodhyd.2017.05.006.
  • Lee, J. Y., H. J. Park, C. Y. Lee, and W. Y. Choi. 2003. Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT - Food Science and Technology 36 (3):323–9. doi: 10.1016/S0023-6438(03)00014-8.
  • Li, H., H. Shi, Y. He, X. Fei, and L. Peng. 2020. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. International Journal of Biological Macromolecules 164:4104–12. doi: 10.1016/j.ijbiomac.2020.09.010.
  • Majid, I., G. A. Nayik, S. M. Dar, and V. Nanda. 2018. Novel food packaging technologies: innovations and future prospective. Journal of the Saudi Society of Agricultural Sciences 17 (4):454–62. doi: 10.1016/j.jssas.2016.11.003.
  • Malakar, A., S. R. Kanel, C. Ray, D. D. Snow, and M. N. Nadagouda. 2021. Nanomaterials in the environment, human exposure pathway, and health effects: a review. Science of the Total Environment 759:143470–8. doi: 10.1016/j.scitotenv.2020.143470.
  • Mallikarjunan, P., M. S. Chinnan, V. M. Balasubramaniam, and R. D. Phillips. 1997. Edible coatings for deep-fat frying of starchy products. Lebensmittel-Wissenschaft Und-Technologie 30 (7):709–14. doi: 10.1006/fstl.1997.0263.
  • Marquez, G. R., P. Di Pierro, L. Mariniello, M. Esposito, C. V. L. Giosafatto, and R. Porta. 2017. Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT 75:124–30. doi: 10.1016/j.lwt.2016.08.017.
  • Martirosyan, A., and Y.-J. Schneider. 2014. Engineered nanomaterials in food: implications for food safety and consumer health. International Journal of Environmental Research and Public Health 11 (6):5720–50. doi: 10.3390/ijerph110605720.
  • Metak, A. M., F. Nabhani, and S. N. Connolly. 2015. Migration of engineered nanoparticles from packaging into food products. LWT - Food Science and Technology 64 (2):781–7. doi: 10.1016/j.lwt.2015.06.001.
  • Mohamed, S. A. A., M. El-Sakhawy, and M. A.-M. El-Sakhawy. 2020. Polysaccharides, protein and lipid-based natural edible films in food packaging: A Review. Carbohydrate Polymers 238:116178. doi: 10.1016/j.carbpol.2020.116178.
  • Mostafavi, F. S., and D. Zaeim. 2020. Agar-based edible films for food packaging applications - A Review. International Journal of Biological Macromolecules 159:1165–76. doi: 10.1016/j.ijbiomac.2020.05.123.
  • Murrieta-Martínez, C. L., H. Soto-Valdez, R. Pacheco-Aguilar, W. Torres-Arreola, F. Rodríguez-Felix, and E. Márquez Ríos. 2018. Edible protein films: Sources and behavior. Packaging Technology and Science 31 (3):113–22. doi:10.1002/pts.2360.
  • Noori, S., F. Zeynali, and H. Almasi. 2018. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber of Ficinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84:312–20. doi: 10.1016/j.foodcont.2017.08.015.
  • Ochoa-Velasco, C. E., J. C. Pérez-Pérez, J. M. Varillas-Torres, A. R. Navarro-Cruz, P. Hernández-Carranza, R. Munguía-Pérez, T. S. Cid-Pérez, and R. Avila-Sosa. 2021. Starch edible films/coatings added with carvacrol and thymol. Foods 10 (1):175. doi: 10.3390/foods10010175.
  • Oh, Y. A., Y. J. Oh, A. Y. Song, J. S. Won, K. B. Song, and S. C. Min. 2017. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT 75:742. doi: 10.1016/j.lwt.2016.10.033.
  • Otoni, C. G., M. R. de Moura, F. A. Aouada, G. P. Camilloto, R. S. Cruz, M. V. Lorevice, N. de. F. F. Soares, and L. H. C. Mattoso. 2014. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41:188–94. doi: 10.1016/j.foodhyd.2014.04.013.
  • Pandhi, S., A. Kumar, and T. Alam. 2019. Probiotic edible films and coatings: concerns, applications and future prospects. Journal of Packaging Technology and Research 3 (3):261–8. doi: 10.1007/s41783-019-00069-6.
  • Pavinatto, A., A. V. de. A. Mattos, A. C. G. Malpass, M. H. Okura, D. T. Balogh, and R. C. Sanfelice. 2020. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. International Journal of Biological Macromolecules 151:1004–11. doi: 10.1016/j.ijbiomac.2019.11.076.
  • Poverenov, E., Y. Zaitsev, H. Arnon, R. Granit, S. Alkalai-Tuvia, Y. Perzelan, T. Weinberg, and E. Fallik. 2014. Effects of a composite chitosan–gelatin edible coating on postharvest quality and storability of red bell peppers. Postharvest Biology and Technology 96:106–9. doi: 10.1016/j.postharvbio.2014.05.015.
  • Prasad, P., G. S. Guru, H. R. Shivakumar, and K. S. Rai. 2008. Miscibility, thermal, and mechanical studies of hydroxypropyl methylcellulose/pullulan blends. Journal of Applied Polymer Science 110 (1):444–52. doi: 10.1002/app.28575.
  • Raghav, P. K., N. Agarwal, and M. Saini. 2016. Edible coating of fruits and vegetables: A review. International Journal of Scientific Research and Modern Education 1:188–204.
  • Rhim, J.-W. 2004. Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials. Food Science and Biotechnology 13:528–35.
  • Ribeiro, A. M., B. N. Estevinho, and F. Rocha. 2021. Preparation and incorporation of functional ingredients in edible films and coatings. Food and Bioprocess Technology 14 (2):209–31. doi: 10.1007/s11947-020-02528-4.
  • Roy, K., R. Thory, A. Sinhmar, A. K. Pathera, and V. Nain. 2020. Development and characterization of nano starch-based composite films from mung bean (Vigna Radiata). International Journal of Biological Macromolecules 144:242–54. doi: 10.1016/j.ijbiomac.2019.12.113.
  • Salvia-Trujillo, L., M. A. Rojas-Graü, R. Soliva-Fortuny, and O. Martín-Belloso. 2015. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biology and Technology 105:8–16. doi: 10.1016/j.postharvbio.2015.03.009.
  • Sandhu, K. S., L. Sharma, M. Kaur, and R. Kaur. 2020. Physical, structural and thermal properties of composite edible films prepared from pearl millet starch and carrageenan gum: process optimization using response surface methodology. International Ournal of Iological Acromolecules 143:704–13. doi: 10.1016/j.ijbiomac.2019.09.111.
  • Seifari, F. K., and H. Ahari. 2020. Active edible films and coatings with enhanced properties using nanoemulsion and nanocrystals. Food & Health 3:15–22.
  • Shih, F. F., K. W. Daigle, and E. T. Champagne. 2011. Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films. Food Chemistry 127 (1):118–21. doi: 10.1016/j.foodchem.2010.12.096.
  • Simona, J., D. Dani, S. Petr, N. Marcela, T. Jakub, and T. Bohuslava. 2021. Edible films from carrageenan/orange essential oil/trehalose — structure, optical properties, and antimicrobial activity. Polymers 13 (3):332. doi: 10.3390/polym13030332.
  • Sirvio, J. A., A. Kolehmainen, H. Liimatainen, J. Niinimäki, and O. E. O. Hormi. 2014. Biocomposite cellulose-alginate films: Promising packaging materials. Food Chemistry 151:343–51. doi: 10.1016/j.foodchem.2013.11.037.
  • Skurtys Acevedo, C., F. Pedreschi, J. Enrione, F. Osorio, and J. M. Aguilera. 2014. Food hydrocolloid edible films and coatings. USA: Nova Science Publisher Inc.
  • Souza, V. G. L., and A. L. Fernando. 2016. Nanoparticles in food packaging: biodegradability and potential migration to food — A review. Food Packaging and Shelf Life 8:63–70. doi: 10.1016/j.fpsl.2016.04.001.
  • Tavassoli-Kafrani, E., H. Shekarchizadeh, and M. Masoudpour-Behabadi. 2016. Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers 137:360–74. doi:10.1016/j.carbpol.2015.10.074.
  • Tkaczewska, J. 2020. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. Trends in Food Science & Technology 106:298–311. doi: 10.1016/j.tifs.2020.10.022.
  • Tong, Q., Q. Xiao, and L.-T. Lim. 2008. Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Research International 41 (10):1007–14. doi: 10.1016/j.foodres.2008.08.005.
  • Umaraw, P., P. E. S. Munekata, A. K. Verma, F. J. Barba, V. P. Singh, P. Kumar, and J. M. Lorenzo. 2020. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology 98:10–24. doi: 10.1016/j.tifs.2020.01.032.
  • Union, T., O. Journal, and E. Union. 2011. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Stablishing a European Chemicals Agency, Mending Directive. Official Journal of the European Union. Brussels, Belgium 1999/4 :1–437.
  • Valencia-Chamorro, S. A., L. Palou, M. A. del Río, and M. B. Pérez-Gago. 2011. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A Review. Critical Reviews in Food Science and Nutrition 51 (9):872–900. doi: 10.1080/10408398.2010.485705.
  • Valencia-Chamorro, S. A., M. B. Pérez-Gago, M. Á. del Rio, and L. Palou. 2009. Effect of Antifungal Hydroxypropyl Methylcellulose (HPMC)–Lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored “Valencia. Postharvest Biology and Technology 54 (2):72–9. doi: 10.1016/j.postharvbio.2009.06.001.
  • Velickova, E., E. Winkelhausen, S. Kuzmanova, V. D. Alves, and M. Moldao-Martins. 2013. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria Ananassa CV Camarosa) under commercial storage conditions. LWT - Food Science and Technology 52 (2):80–92. doi: 10.1016/j.lwt.2013.02.004.
  • Vlachogianni, T., and A. Valavanidis. 2014. Nanomaterials: Environmental pollution, ecolological risks and adverse health effects. Nano Science and Nano Technology an Indian Journal 8:208–26.
  • Wróblewska-Krepsztul, J., T. Rydzkowski, G. Borowski, M. Szczypiński, T. Klepka, and V. K. Thakur. 2018. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization 23 (4):383–95. doi: 10.1080/1023666X.2018.1455382.
  • Wu, J., F. Zhong, Y. Li, C. F. Shoemaker, and W. Xia. 2013. Preparation and characterization of pullulan-chitosan and pullulan–carboxymethyl chitosan blended films. Food Hydrocolloids 30 (1):82. doi: 10.1016/j.foodhyd.2012.04.002.
  • Xiao, Q., L.-T. Lim, and Q. Tong. 2012a. Properties of pullulan-based blend films as affected by alginate content and relative humidity. Carbohydrate Polymers 87 (1):227–34. doi: 10.1016/j.carbpol.2011.07.040.
  • Xiao, Q., Q. Tong, and L.-T. Lim. 2012b. Pullulan-sodium alginate based edible films: Rheological properties of film forming solutions. Carbohydrate Polymers 87 (2):1689–95. doi: 10.1016/j.carbpol.2011.09.077.
  • Yan, Q., H. Hou, P. Guo, and H. Dong. 2012. Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydrate Polymers 87 (1):707–12. doi: 10.1016/j.carbpol.2011.08.048.
  • Youssef, A. M., and S. M. El-Sayed. 2018. Bionanocomposites materials for food packaging applications: Concepts and future outlook. Carbohydrate Polymers 193:19–27. doi: 10.1016/j.carbpol.2018.03.088.
  • Yu, D., J. M. Regenstein, and W. Xia. 2018. Bio-based edible coatings for the preservation of fishery products: A review. Critical Reviews in Food Science and Nutrition 8398:1–13.
  • Zambrano-Zaragoza, M. L., R. Gonzalez-Reza, N. Mendoza-Muñoz, V. Miranda-Linares, T. F. Bernal-Couoh, S. Mendoza-Elvira, and D. Quintanar-Guerrero. 2018. Nanosystems in edible coatings: A novel strategy for food preservation. International Journal of Molecular Sciences 19 (3):705–24. doi: 10.3390/ijms19030705.
  • Zareie, Z., F. T. Yazdi, and S. A. Mortazavi. 2020. Development and characterization of antioxidant and antimicrobial edible films based on chitosan and gamma-aminobutyric acid-rich fermented soy protein. Carbohydrate Olymers 244:116491–8. doi: 10.1016/j.carbpol.2020.116491.
  • Zhang, X.-F., Z.-G. Liu, W. Shen, and S. Gurunathan. 2016. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences 17 (9):1534 doi:10.3390/ijms17091534.
  • Zhang, C., D. Gao, Y. Ma, and X. Zhao. 2013. Effect of gelatin addition on properties of pullulan films. Journal of Food Science 78 (6):C805–810. doi: 10.1111/j.1750-3841.2012.02925.x.
  • Zhu, G., L. Sheng, and Q. Tong. 2014. Preparation and characterization of carboxymethyl-gellan and pullulan blend films. Food Hydrocolloids. 35:341–7. doi: 10.1016/j.foodhyd.2013.06.009.
  • Zhu, G., L. Sheng, J. Li, and Q. Tong. 2013. Preparation and characterisation of gellan/pullulan composite blend films. International Journal of Food Science & Technology 48 (12):2683–7. doi: 10.1111/ijfs.12235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.