1,179
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Dissecting dietary melanoidins: formation mechanisms, gut interactions and functional properties

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Adams, A.,. R. C. Borrelli, V. Fogliano, and N. De Kimpe. 2005. Thermal degradation studies of food melanoidins. Journal of Agricultural and Food Chemistry 53 (10):4136–42. doi: 10.1021/jf047903m.
  • Adams, A.,. S. Hamdani, F. V. Lancker, S. Méjri, and N. De Kimpe. 2010. Stability of acrylamide in model systems and its reactivity with selected nucleophiles. Food Research International 43 (5):1517–22. doi: 10.1016/j.foodres.2010.04.033.
  • Aktağ, I. G., A. Hamzalıoğlu, and V. Gökmen. 2019. Lactose hydrolysis and protein fortification pose an increased risk for the formation of Maillard reaction products in UHT treated milk products. Journal of Food Composition and Analysis 84:103308. doi: 10.1016/j.jfca.2019.103308.
  • Aljahdali, N., P. G. Widehem, P. M. Anton, and F. Carbonero. 2020. Gut microbiota modulation by dietary barley malt melanoidins. Nutrients 12 (1):241. doi: 10.3390/nu12010241.
  • Alves, G., P. Xavier, R. Limoeiro, and D. Perrone. 2020. Contribution of melanoidins from heat-processed foods to the phenolic compound intake and antioxidant capacity of the Brazilian diet. Journal of Food Science and Technology 57 (8):3119–31. doi: 10.1007/s13197-020-04346-0.
  • Ames, J. M., A. Wynne, A. Hofmann, S. Plos, and G. R. Gibson. 1999. The effect of a model melanoidin mixture on faecal bacterial populations in vitro. British Journal of Nutrition 82 (6):489–95. doi: 10.1017/S0007114599001749.
  • Antioxidant and anti-oxidation beverage. 2014. Antioxidant and anti-oxidation beverage. JP5563550B2.
  • Antioxidant bread and confectionery. 2009. Antioxidant bread and confectionery. JP2009171890A.
  • Argirova, M. D., I. D. Stefanova, and A. D. Krustev. 2013. New biological properties of coffee melanoidins. Food and Function 4 (8):1204–8. doi: 10.1039/c3fo60025d.
  • Bekedam, E. K., M. J. Loots, H. A. Schols, M. A. J. S. Van Boekel, and G. Smit. 2008. Roasting effects on formation mechanisms of coffee brew melanoidins. Journal of Agricultural and Food Chemistry 56 (16):7138–45. doi: 10.1021/jf800999a.
  • Bekedam, E. K., H. A. Schols, M. A. J. S. Van Boekel, and G. Smit. 2008. Incorporation of chlorogenic acids in coffee brew melanoidins. Journal of Agricultural and Food Chemistry 56 (6):2055–63. doi: 10.1021/jf073157k.
  • Bharagava, R. N., R. Chandra, and V. Rai. 2009. Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery effluent. World Journal of Microbiology and Biotechnology 25 (5):737–44. doi: 10.1007/s11274-008-9944-7.
  • Borrelli, R. C., A. Visconti, C. Mennella, M. Anese, and V. Fogliano. 2002. Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry 50 (22):6527–33. doi: 10.1021/jf025686o.
  • Browning composition. 1997. Browning composition. JP09107867A.
  • Brudzynski, K., and D. Miotto. 2011a. The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chemistry 125 (2):570–5. doi: 10.1016/j.foodchem.2010.09.049.
  • Brudzynski, K., and D. Miotto. 2011b. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chemistry 127 (3):1023–30. doi: 10.1016/j.foodchem.2011.01.075.
  • Cämmerer, B., and L. W. Kroh. 1995. Investigation of the influence of reaction conditions on the elementary composition of melanoidins. Food Chemistry 53 (1):55–9. doi: 10.1016/0308-8146(95)95786-6.
  • Cani, P. D., H. Plovier, M. Van Hul, L. Geurts, N. M. Delzenne, C. Druart, and A. Everard. 2016. Endocannabinoids-at the crossroads between the gut microbiota and host metabolism. Nature Reviews Endocrinology 12 (3):133–43. doi: 10.1038/nrendo.2015.211.
  • Chandra, R., R. N. Bharagava, and V. Rai. 2008. Melanoidins as major colourant in sugarcane molasses based distillery effluent and its degradation. Bioresource Technology 99 (11):4648–60. doi: 10.1016/j.biortech.2007.09.057.
  • Chelating complex, method for preparing thereof, and composition for diagnosing and treating cancer comprising the same. 2019. Chelating complex, method for preparing thereof, and composition for diagnosing and treating cancer comprising the same. KR1020190005753A.
  • Cosmetic composition which contains melanoidin. 2007. Cosmetic composition which contains melanoidin. KR100779876B1.
  • Culver, C. A., and H. E. Swaisgood. 1989. Changes in the digestibility of dried casein and glucose mixtures occurring during storage at different temperatures and water activities. Journal of Dairy Science 72 (11):2916–20. doi: 10.3168/jds.S0022-0302(89)79442-X.
  • Delgado-Andrade, C., and V. Fogliano. 2018. Dietary Advanced glycosylation end-products (dages) and melanoidins formed through the Maillard reaction: physiological consequences of their intake. Annual Review of Food Science and Technology 9 (1):271–91. doi: 10.1146/annurev-food-030117-012441.
  • Diaz-Morales, N., M. Cavia-Saiz, G. Salazar, M. D. Rivero-Pérez, and P. Muñiz. 2021. Cytotoxicity study of bakery product melanoidins on intestinal and endothelial cell lines. Food Chemistry 343:128405. doi: 10.1016/j.foodchem.2020.128405.
  • Diez-Simon, C., R. Mumm, and R. D. Hall. 2019. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 15 (3):1–20. doi: 10.1007/s11306-019-1493-6.
  • Echavarría, A. P., J. Pagán, and A. Ibarz. 2012. Melanoidins formed by Maillard reaction in food and their biological activity. Food Engineering Reviews 4 (4):203–23. doi: 10.1007/s12393-012-9057-9.
  • Echavarría, A. P., J. Pagán, and A. Ibarz. 2014. Kinetics of color development of melanoidins formed from fructose/amino acid model systems. Food Science and Technology International 20 (2):119–26. doi: 10.1177/1082013213476071.
  • Elshahed, M. S., A. Miron, A. C. Aprotosoaie, and M. A. Farag. 2021. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydrate Polymers 255:117388. doi: 10.1016/j.carbpol.2020.117388.
  • Enhancer for indigo dyeing and enhancing method. 2009. Enhancer for indigo dyeing and enhancing method. JP2009197353A.
  • Flint, H. J., K. P. Scott, P. Louis, and S. H. Duncan. 2012. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology 9 (10):577–89. doi: 10.1038/nrgastro.2012.156.
  • Fogliano, V., and F. J. Morales. 2011. Estimation of dietary intake of melanoidins from coffee and bread. Food and Function 2 (2):117–23. doi: 10.1039/c0fo00156b.
  • Goya, L., C. Delgado-Andrade, J. A. Rufián-Henares, L. Bravo, and F. J. Morales. 2007. Effect of coffee Melanoidin on human hepatoma HepG2 cells. Protection against oxidative stress induced by terf-butylhydroperoxide. Molecular Nutrition and Food Research 51 (5):536–45. doi: 10.1002/mnfr.200600228.
  • Hair Cosmetic Composition containing melanoidin and caffeine. 2020. Hair Cosmetic Composition containing melanoidin and caffeine. KR102075479B1.
  • Helou, C., S. Denis, M. Spatz, D. Marier, V. Rame, M. Alric, F. J. Tessier, and P. Gadonna-Widehem. 2015. Insights into bread melanoidins: Fate in the upper digestive tract and impact on the gut microbiota using in vitro systems. Food and Function 6 (12):3737–45. doi: 10.1039/c5fo00836k.
  • Hirano, M., M. Miura, and T. Gomyo. 1994. Melanoidin as a Novel Trypsin Inhibitor. Bioscience, Biotechnology, and Biochemistry 58 (5):940–1. doi: 10.1271/bbb.58.940.
  • Hofmann, T., and P. Schieberle. 2002. Chemical interactions between odor-active thiols and melanoidins involved in the aroma staling of coffee beverages. Journal of Agricultural and Food Chemistry 50 (2):319–26. doi: 10.1021/jf010823n.
  • Ilze, L., and Z. Kruma. 2019. Influence of the roasting process on bioactive compounds and aroma profile in specialty coffee: A review. Conference Proceedings. FOODBALT 2019. 13th Baltic Conference on Food Science and Technology "FOOD, NUTRITION, WELL-BEING", Jelgava, Latvia, 2-3 May 2019, 7–12. doi: 10.22616/FoodBalt.2019.002.
  • Indigestible materials and manufacturing method thereof. 2018. Indigestible materials and manufacturing method thereof. JP6306170B2.
  • Iriondo-DeHond, A., A. S. Elizondo, M. Iriondo-DeHond, M. B. Ríos, R. Mufari, J. A. Mendiola, E. Ibañez, and M. D. del Castillo. 2020. Assessment of healthy and harmful Maillard reaction products in a novel coffee cascara beverage: Melanoidins and acrylamide. Foods 9 (5):620. doi: 10.3390/foods9050620.
  • Jakszyn, P., A. Agudo, R. Ibãñez, R. García-Closas, G. Pera, P. Amiano, and C. A. González. 2004. Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. Journal of Nutrition 134 (8):2011–4. doi: 10.1093/jn/134.8.2011.
  • Johansson, M. A. E., L. B. Fay, G. A. Gross, K. Olsson, and M. Jägerstad. 1995. Influence of amino acids on the formation of mutagenic/carcinogenic heterocydic amines in a model system. Carcinogenesis 16 (10):2553–60. doi: 10.1093/carcin/16.10.2553.
  • Knol, J. J., J. P. H. Linssen, and M. A. J. S. van Boekel. 2010. Unravelling the kinetics of the formation of acrylamide in the Maillard reaction of fructose and asparagine by multiresponse modelling. Food Chemistry 120 (4):1047–57. doi: 10.1016/j.foodchem.2009.11.049.
  • Kuntcheva, M. J., and T. D. Obretenov. 1996. Isolation and characterization of melanoidins from beer. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 202 (3):238–43. doi: 10.1007/BF01263547.
  • Langner, E., and W. Rzeski. 2014. Biological properties of melanoidins: A review. International Journal of Food Properties 17 (2):344–53. doi: 10.1080/10942912.2011.631253.
  • Machate, D. J., P. S. Figueiredo, G. Marcelino, R. Guimarães, C. A. de, P. A. Hiane, D. Bogo, V. A. Z. Pinheiro, L. C. S. de Oliveira, and A. Pott. 2020. Fatty acid diets: Regulation of gut microbiota composition and obesity and its related metabolic dysbiosis. International Journal of Molecular Sciences 21 (11):4093–22. doi: 10.3390/ijms21114093.
  • Marhuenda-Muñoz, M.,. E. P. Laveriano-Santos, A. Tresserra-Rimbau, R. M. Lamuela-Raventós, M. Martínez-Huélamo, and A. Vallverdú-Queralt. 2019. Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients 11 (11):2725. doi: 10.3390/nu11112725.
  • Martín, M. Á., S. Ramos, R. Mateos, J. A. Rufián-Henares, F. J. Morales, L. Bravo, and L. Goya. 2009. Biscuit melanoidins of different molecular masses protect human HepG2 cells against oxidative stress. Journal of Agricultural and Food Chemistry 57 (16):7250–8. doi: 10.1021/jf9006032.
  • Martinez-Gomez, A., I. Caballero, and C. A. Blanco. 2020. Phenols and melanoidins as natural antioxidants in beer. Structure, reactivity and antioxidant activity. Biomolecules 10 (3):400. doi: 10.3390/biom10030400.
  • Mesías, M., and C. Delgado-Andrade. 2017. Melanoidins as a potential functional food ingredient. Current Opinion in Food Science ( 14:37–42. Elsevier Ltd. doi: 10.1016/j.cofs.2017.01.007.
  • Microwave oven-cooked browning composition. 1992. Microwave oven-cooked browning composition. JP04229155A.
  • Mohsin, G. F., F. J. Schmitt, C. Kanzle, J. D. Epping, D. Buhrke, and A. Hornemann. 2020. Melanoidin formed from fructosylalanine contains more alanine than melanoidin formed from D-glucose with L-alanine. Food Chemistry 305:125459. doi: 10.1016/j.foodchem.2019.125459.
  • Morales, F. J., C. Fernández-Fraguas, and S. Jiménez-Pérez. 2005. Iron-binding ability of melanoidins from food and model systems. Food Chemistry 90 (4):821–7. doi: 10.1016/j.foodchem.2004.05.030.
  • Morales, F. J., V. Somoza, and V. Fogliano. 2012. Physiological relevance of dietary melanoidins. Amino Acids. 42 (4):1097–109. doi: 10.1007/s00726-010-0774-1.
  • Mundt, S., and B. L. Wedzicha. 2003. A kinetic model for the glucose-fructose-glycine browning reaction. Journal of Agricultural and Food Chemistry 51 (12):3651–5. doi: 10.1021/jf026027e.
  • Nooshkam, M., M. Varidi, and D. K. Verma. 2020. Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Research International 131:109003. doi: 10.1016/j.foodres.2020.109003.
  • Nunes, F. M., and M. A. Coimbra. 2007. Melanoidins from coffee infusions. Fractionation, chemical characterization, and effect of the degree of roast. Journal of Agricultural and Food Chemistry 55 (10):3967–77. doi: 10.1021/jf063735h.
  • Obretenov, T. D., S. D. Ivanova, M. J. Kuntcheva, and G. T. Somov. 1993. Melanoidin Formation in Cooked Meat Products. Journal of Agricultural and Food Chemistry 41 (4):653–6. doi: 10.1021/jf00028a028.
  • Ogutu, B., Y. J. Kim, D. W. Kim, S. C. Oh, D. L. Hong, and Y. B. Lee. 2017. Optimization of Maillard reaction between glucosamine and other precursors by measuring browning with a spectrophotometer. Preventive Nutrition and Food Science 22 (3):211–5. doi: 10.3746/pnf.2017.22.3.211.
  • Oracz, J., E. Nebesny, and D. Żyżelewicz. 2019. Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MSn. Food Research International 115:135–49. doi: 10.1016/j.foodres.2018.08.028.
  • Oracz, J., and D. Zyzelewicz. 2019. In vitro antioxidant activity and ftir characterization of high-molecular weight melanoidin fractions from different types of cocoa beans. Antioxidants 8 (11):1–16. doi: 10.3390/antiox8110560.
  • Oxidation-resistant functional beverage and preparation method thereof. 2017. Oxidation-resistant functional beverage and preparation method thereof. CN107307245A.
  • Pastoriza, S., and J. A. Rufián-Henares. 2014. Contribution of melanoidins to the antioxidant capacity of the Spanish diet. Food Chemistry 164:438–45. doi: 10.1016/j.foodchem.2014.04.118.
  • Pastoriza, S., J. á Rufián-Henares, and F. J. Morales. 2012. Reactivity of acrylamide with coffee melanoidins in model systems. LWT - Food Science and Technology 45 (2):198–203. doi: 10.1016/j.lwt.2011.08.004.
  • Pérez-Burillo, S., S. Rajakaruna, S. Pastoriza, O. Paliy, and J. Ángel Rufián-Henares. 2020. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chemistry 316:126309. doi: 10.1016/j.foodchem.2020.126309.
  • Preparation method of coffee melanoidin pigment. 2016. Preparation method of coffee melanoidin pigment. CN105831557A.
  • Process for preparing fodder from bio-ethanol repreparation by-products. 2015. Process for preparing fodder from bio-ethanol repreparation by-products. RO130200A3.
  • Rani, A., and N. Pal. 2013. Biodegradation of melanoidin from distillery effluent: role of microbes and their potential enzymes. Biodegradation of Hazardous and Special Products 5:71–100. doi: 10.5772/56252.
  • Ripper, B., C. R. Kaiser, and D. Perrone. 2020. Use of NMR techniques to investigate the changes on the chemical composition of coffee melanoidins. Journal of Food Composition and Analysis 87:103399. doi: 10.1016/j.jfca.2019.103399.
  • Rodríguez, A., P. Lema, M. I. Bessio, G. Moyna, L. A. Panizzolo, and F. Ferreira. 2019. Isolation and characterization of melanoidins from dulce de leche, a confectionary dairy product. Molecules 24 (22):4163. doi: 10.3390/molecules24224163.
  • Rowland, I., G. Gibson, A. Heinken, K. Scott, J. Swann, I. Thiele, and K. Tuohy. 2018. Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition 57 (1):1–24. doi: 10.1007/s00394-017-1445-8.
  • Rufián-Henares, J. A., and F. J. Morales. 2007. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Research International 40 (8):995–1002. doi: 10.1016/j.foodres.2007.05.002.
  • Rufián-Henares, J. A., and F. J. Morales. 2008. Microtiter plate-based assay for screening antimicrobial activity of melanoidins against E. coli and S. aureus. Food Chemistry 111 (4):1069–74. doi: 10.1016/j.foodchem.2008.05.027.
  • Selma, M. V., J. C. Espín, and F. A. Tomás-Barberán. 2009. Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry 57 (15):6485–501. doi: 10.1021/jf902107d.
  • Silván, J. M., J. van de Lagemaat, A. Olano, and M. D. del Castillo. 2006. Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. Journal of Pharmaceutical and Biomedical Analysis 41 (5):1543–51. doi: 10.1016/j.jpba.2006.04.004.
  • Somoza, V. 2005. Five years of research on health risks and benefits of Maillard reaction products: An update. Molecular Nutrition and Food Research 49 (7):663–72. doi: 10.1002/mnfr.200500034.
  • Sonnenburg, E. D., S. A. Smits, M. Tikhonov, S. K. Higginbottom, N. S. Wingreen, and J. L. Sonnenburg. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529 (7585):212–5. doi: 10.1038/nature16504.
  • Substrate with antimicrobial coating, an antimicrobial packing material, as well as procedure for the production the same. 2011. Substrate with antimicrobial coating, an antimicrobial packing material, as well as procedure for the production the same. DE102009059320A1.
  • System and method for selectively feel hair roots along a hair shaft. 2020. System and method for selectively feel hair roots along a hair shaft. BRPI0820946B1.
  • Tagliazucchi, D., and A. Bellesia. 2015. The gastro-intestinal tract as the major site of biological action of dietary melanoidins. Amino Acids. 47 (6):1077–89. doi: 10.1007/s00726-015-1951-z.
  • Tagliazucchi, D., V. Elena, and C. Angela. 2010a. Effect of dietary melanoidins on lipid peroxidation during simulated gastric digestion: their possible role in the prevention of oxidative damage. Journal of Agricultural and Food Chemistry 58 (4):2513–9. doi: 10.1021/jf903701h.
  • Tagliazucchi, D., E. Verzelloni, and A. Conte. 2010b. Contribution of melanoidins to the antioxidant activity of traditional balsamic vinegar during aging. Journal of Food Biochemistry 34 (5):1061–78. doi: 10.1111/j.1745-4514.2010.00349.x.
  • Takahama, U., and S. Hirota. 2008. Reduction of nitrous acid to nitric oxide by coffee melanoidins and enhancement of the reduction by thiocyanate: Possibility of its occurrence in the stomach. Journal of Agricultural and Food Chemistry 56 (12):4736–44. doi: 10.1021/jf703660k.
  • Tuohy, K. M., D. J. S. Hinton, S. J. Davies, M. J. C. Crabbe, G. R. Gibson, and J. M. Ames. 2006. Metabolism of Maillard reaction products by the human gut microbiota - implications for health. Molecular Nutrition and Food Research 50 (9):847–57. doi: 10.1002/mnfr.200500126.
  • Verzelloni, E., D. Tagliazucchi, and A. Conte. 2010. From balsamic to healthy: traditional balsamic vinegar melanoidins inhibit lipid peroxidation during simulated gastric digestion of meat. Food and Chemical Toxicology 48 (8–9):2097–102. doi: 10.1016/j.fct.2010.05.010.
  • Walker, J. M., I. Mennella, R. Ferracane, S. Tagliamonte, A. K. Holik, K. Hölz, M. M. Somoza, V. Somoza, V. Fogliano, and P. Vitaglione. 2020. Melanoidins from coffee and bread differently influence energy intake: A randomized controlled trial of food intake and gut-brain axis response. Journal of Functional Foods 72:104063. doi: 10.1016/j.jff.2020.104063.
  • Wang, H. Y., H. Qian, and W. R. Yao. 2011. Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chemistry 128 (3):573–84. doi: 10.1016/j.foodchem.2011.03.075.
  • Wang, Z., Z. Zhang, S. Li, X. Zhang, M. Xia, T. Xia, and M. Wang. 2021. Formation mechanisms and characterisation of the typical polymers in melanoidins from vinegar, coffee and model experiments. Food Chemistry 355:129444. doi: 10.1016/j.foodchem.2021.129444.
  • Wu, J., Y. Liu, Z. Dou, T. Wu, R. Liu, W. Sui, Y. Jin, and M. Zhang. 2020. Black garlic melanoidins prevent obesity, reduce serum LPS levels and modulate the gut microbiota composition in high-fat diet-induced obese C57BL/6J mice. Food and Function 11 (11):9585–98. doi: 10.1039/d0fo02379e.
  • Zhang, H., A. D. Troise, H. Zhang, and V. Fogliano. 2021. Cocoa melanoidins reduce the formation of dietary advanced glycation end-products in dairy mimicking system. Food Chemistry 345:128827. doi: 10.1016/j.foodchem.2020.128827.
  • Zhao, Y., Y. Ding, D. Wang, Y. Deng, and Y. Zhao. 2021. Effect of high hydrostatic pressure conditions on the composition, morphology, rheology, thermal behavior, color, and stability of black garlic melanoidins. Food Chemistry 337:127790. doi: 10.1016/j.foodchem.2020.127790.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.