691
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Antihypertensive activity of orally consumed ACE-I inhibitory peptides

, , &

References

  • Ahn, C. B., Y. J. Jeon, Y. T. Kim, and J. Y. Je. 2012. Angiotensin i converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochemistry 47 (12):2240–5. doi: 10.1016/j.procbio.2012.08.019.
  • Alashi, A. M., C. L. Blanchard, R. J. Mailer, S. O. Agboola, A. J. Mawson, R. He, S. A. Malomo, A. T. Girgih, and R. E. Aluko. 2014. Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Research International 55:281–7. doi: 10.1016/j.foodres.2013.11.015.
  • Albenzio, M., A. Santillo, M. Caroprese, A. Della Malva, and R. Marino. 2017. Bioactive peptides in animal food products. Foods 6 (5):35. doi: 10.3390/foods6050035.
  • Alemán, A., M. C. Gómez-Guillén, and P. Montero. 2013. Identification of ace-inhibitory peptides from squid skin collagen after in vitro gastrointestinal digestion. Food Research International 54 (1):790–5. doi: 10.1016/j.foodres.2013.08.027.
  • Ali, A. A. M., H. S. M. Noor, P. K. Chong, A. S. Babji, and S. J. Lim. 2019. Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg. Malasian Applied Biology 48 (2):63–9.
  • Andersen, P. C., K. Hill, D. W. Gorbet, and B. V. Brodbeck. 1998. Fatty acid and amino acid profiles of selected peanut cultivars and breeding lines. Journal of Food Composition and Analysis 111:100–11. doi: 10.1006/jfca.1998.0565.
  • Ang, Y. A. Y., E. W. A. D. M. Arczak, M. E. Y. Okoo, H. A. U. Sui, and M. A. Y. Oshikawa. 2003. Isolation and antihypertensive effect of Angiotensin I-Converting Enzyme (ACE) inhibitory peptides from spinach rubisco. Journal of Agricultural and Food Chemistry 51 (17):4897–902. doi: 10.1021/jf026186y.
  • Balti, R., N. Nedjar-Arroume, A. Bougatef, D. Guillochon, and M. Nasri. 2010. Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases. Food Research International 43 (4):1136–43. doi: 10.1016/j.foodres.2010.02.013.
  • Balti, R., A. Bougatef, A. Sila, D. Guillochon, P. Dhulster, and N. Nedjar-Arroume. 2015. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chemistry 170:519–25. doi: 10.1016/j.foodchem.2013.03.091.
  • Barbeau, W. E., and J. E. Kinsella. 1988. Ribulose bisphosphate carboxylase/oxygenase (rubisco) from green leaves—Potential as a food protein. Food Reviews International 4 (1):93–127. doi: 10.1080/87559128809540823.
  • Bardage, C., and D. G. L. Isacson. 2000. Self-reported side-effects of antihypertensive drugs: An epidemiological study on prevalence and impact on health-state utility. Blood Pressure 9 (6):328–34. doi: 10.1080/080370500300000905.
  • Bechtel, P. J., and R. B. Johnson. 2004. Nutritional properties of pollock, cod and salmon processing by-products. Journal of Aquatic Food Product Technology 13 (2):125–42. doi: 10.1300/J030v13n02_11.
  • Bhaskar, B., L. Ananthanarayan, and S. Jamdar. 2019. Purification, identification, and characterization of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from alcalase digested horse gram flour. LWT 103:155–61. doi: 10.1016/j.lwt.2018.12.059.
  • Bhutia, Y. D., and V. Ganapathy. 2018. Protein digestion and absorption. In Physiology of the gastrointestinal tract, 1063–1086. London: Academic Press. doi: 10.1016/B978-0-12-809954-4.00047-5.
  • Calonge, M. L., A. Ilundáin, and J. Bolufer. 1990. Glycylsarcosine transport by epithelial cells isolated from chicken proximal cecum and rectum. American Journal of Physiology-Gastrointestinal and Liver Physiology 258 (5):G660–G664. doi: 10.1152/ajpgi.1990.258.5.G660.
  • Castrillón, A. M., P. Navarro, and E. Alvárez-Pontes. 1997. Changes in chemical composition and nutritional quality of fried sardine (Clupea pilchardus) produced by frozen storage and microwave reheating. Journal of the Science of Food and Agriculture 75 (1):125–32. doi: 10.1002/(SICI)1097-0010(199709)75:1<125::AID-JSFA852>3.0.CO;2-F.
  • Chen, M., and B. Li. 2012. The effect of molecular weights on the survivability of casein-derived antioxidant peptides after the simulated gastrointestinal digestion. Innovative Food Science & Emerging Technologies 16:341–8. doi: 10.1016/j.ifset.2012.07.009.
  • Chen, J., S. Liu, R. Ye, G. Cai, B. Ji, and Y. Wu. 2013. Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: Purification and characterization. Journal of Functional Foods 5 (4):1684–92. doi: 10.1016/j.jff.2013.07.013.
  • Chen, J., B. Ryu, Y. Zhang, P. Liang, C. Li, C. Zhou, P. Yang, and Z. Qian. 2019. Comparison of an angiotensin-I-converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. Journal of the Science of Food and Agriculture 100 (1):315–24. doi: 10.1002/jsfa.10041.
  • Chen, J., Y. Wang, Q. Zhong, Y. Wu, and W. Xia. 2012. Purification and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides 33 (1):52–8. doi: 10.1016/j.peptides.2011.11.006.
  • Cheung, I. W. Y., S. Nakayama, M. N. K. Hsu, A. G. P. Samaranayaka, and E. C. Y. Li-Chan. 2009. Angiotensim-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of Agricultural and Food Chemistry 57 (19):9234–42. doi: 10.1021/jf9018245.
  • Chirinang, P., and K. Intarapichet. 2009. Amino acids and antioxidant properties of the oyster mushrooms. Pleurotus ostreatus and Pleurotus Sajor-Caju 35:326–31. doi: 10.2306/scienceasia1513-1874.2009.35.326.
  • Choonpicharn, S., S. Jaturasitha, N. Rakariyatham, N. Suree, and H. Niamsup. 2015. Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. Journal of Food Science and Technology 52 (5):3134–9. doi: 10.1007/s13197-014-1581-6.
  • Conner, S. D., and S. L. Schmid. 2003. Regulated portals of entry into the cell. Nature 422 (6927):37–44. doi: 10.1038/nature01451.
  • Dakowski, P., M. R. Weisbjerg, and T. Hvelplund. 1996. The effect of temperature during processing of rape seed meal on amino acid degradation in the rumen and digestion in the intestine. Animal Feed Science and Technology 58 (3-4):213–26. doi: 10.1016/0377-8401(95)00868-3.
  • Daliri, E. B. M., B. H. Lee, B. J. Park, S. H. Kim, and D. H. Oh. 2018. Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Science and Biotechnology 27 (6):1781–9. doi: 10.1007/s10068-018-0423-0.
  • Dang, Y., T. Zhou, L. Hao, J. Cao, Y. Sun, and D. Pan. 2019. In vitro and in vivo studies on the angiotensin-converting enzyme inhibitory activity peptides isolated from broccoli protein hydrolysate. Journal of Agricultural and Food Chemistry 67 (24):6757–64. doi: 10.1021/acs.jafc.9b01137.
  • Ding, L., Y. Zhang, Y. Jiang, L. Wang, B. Liu, and J. Liu. 2014. Transport of egg white ACE-inhibitory peptide, Gln-Ile-Gly-Leu-Phe. In Human Intestinal Caco ‑ 2 cell monolayers with cytoprotective effect, 10–5. Washington, DC: ACS publication
  • Donkor, O. N., A. Henriksson, T. K. Singh, T. Vasiljevic, and N. P. Shah. 2007. ACE-inhibitory activity of probiotic yoghurt. International Dairy Journal 17 (11):1321–31. doi: 10.1016/j.idairyj.2007.02.009.
  • Escudero, E., F. Toldrá, M. Angel, H. Nishimura, and K. Arihara. 2012. Antihypertensive activity of peptides identi fi ed in the in vitro gastrointestinal digest of pork meat. Meat Science 91 (3):382–4. doi: 10.1016/j.meatsci.2012.02.007.
  • Essary, E. O., and R. W. Young. 1977. Amino acid content of broiler, quail and duck skins. Poultry Science 56 (5):1605–8. doi: 10.3382/ps.0561605.
  • Foltz, M., P. C. Van Der Pijl, and G. S. M. J. E. Duchateau. 2010. Current in vitro testing of bioactive peptides is not valuable. Journal of Nutrition 140 (1):117–8. doi: 10.3945/jn.109.116228.
  • Fu, Y., J. Feveile, M. Krøyer, T. Kastrup, R. Lametsch, R. E. Aluko, and M. Therkildsen. 2016. Angiotensin I – converting enzyme – inhibitory peptides from bovine collagen: insights into inhibitory mechanism and transepithelial transport. Food Research International 89:373–81. doi: 10.1016/j.foodres.2016.08.037.
  • Fujita, H., K. Yokoyama, and M. Yoshikawa. 2000. Classification and antihypertensive activity of angiostensin I-converting enzyme inhibitory peptides derived from food proteins. Journal of Food Science 65 (4):564–9. doi: 10.1111/j.1365-2621.2000.tb16049.x.
  • García-Moreno, P. J., F. J. Espejo-Carpio, A. Guadix, and E. M. Guadix. 2015. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards. Journal of Functional Foods 18:95–105. doi: 10.1016/j.jff.2015.06.062.
  • Gobbetti, M., F. Minervini, and C. G. Rizzello. 2004. Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. International Journal of Dairy Technology 57 (2-3):173–88. doi: 10.1111/j.1471-0307.2004.00139.x.
  • Grimble, G. K. 2000. Mechanisms of peptide and amino acid transport and their regulation. In Proteins, Peptides and Amino Acids in Enteral Nutrition:63–88. Basel: Karger Medical and Scientific Publishers
  • Gu, R. Z., C. Y. Li, W. Y. Liu, W. X. Yi, and M. Y. Cai. 2011. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International 44 (5):1536–40. doi: 10.1016/j.foodres.2011.04.006.
  • Guo, S., M. Ai, J. Liu, Z. Luo, J. Yu, Z. Li, and A. Jiang. 2019. Physicochemical, conformational properties and ACE-inhibitory activity of peanut protein marinated by aged vinegar. Lwt 101:469–75. doi: 10.1016/j.lwt.2018.11.058.
  • Hamman, J. H., G. M. Enslin, and A. F. Kotz?? 2005. Oral delivery of peptide drugs: Barriers and developments. Biodrugs 19 (3):165–77. doi: 10.2165/00063030-200519030-00003.
  • He, R., A. Alashi, S. A. Malomo, A. T. Girgih, D. Chao, X. Ju, and R. E. Aluko. 2013. Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chemistry 141 (1):153–9. doi: 10.1016/j.foodchem.2013.02.087.
  • He, R., S. A. Malomo, A. Alashi, A. T. Girgih, X. Ju, and R. E. Aluko. 2013. Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. Journal of Functional Foods 5 (2):781–9. doi: 10.1016/j.jff.2013.01.024.
  • He, R., S. A. Malomo, A. T. Girgih, X. Ju, and R. E. Aluko. 2013. Glycinyl-Histidinyl-Serine (GHS), a novel rapeseed protein-derived peptide has blood pressure-lowering effect in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 61 (35):8396–402. doi: 10.1021/jf400865m.
  • Hillgren, K. M., D. Keppler, A. A. Zur, K. M. Giacomini, B. Stieger, C. E. Cass, and L. Zhang. 2013. Emerging transporters of clinical importance: An update from the International Transporter Consortium. Wiley Online Library 94 (1):52–63. doi: 10.1038/clpt.2013.74.
  • Huang, W. H., J. Sun, H. He, H. W. Dong, and J. T. Li. 2011. Antihypertensive effect of corn peptides, produced by a continuous production in enzymatic membrane reactor, in spontaneously hypertensive rats. Food Chemistry 128 (4):968–73. doi: 10.1016/j.foodchem.2011.03.127.
  • Huang, G., H. Chen, and S. Huang. 2008. Sweet potato storage root trypsin inhibitor and their peptic hydrolysates exhibited angiotensin converting enzyme… https://www.academia.edu/download/50909595/Sweet_potato_storage_root_trypsin_inhibi20161215-3260-279ukw.pdf
  • Ishiguro, K., Y. Sameshima, T. Kume, K. I. Ikeda, J. Matsumoto, and M. Yoshimoto. 2012. Hypotensive effect of a sweetpotato protein digest in spontaneously hypertensive rats and purification of angiotensin I-converting enzyme inhibitory peptides. Food Chemistry 131 (3):774–9. doi: 10.1016/j.foodchem.2011.09.038.
  • Ivanovic, S., Z. Stojanovic, K. Nesic, B. Pisinov, M. Baltic, J. Popov-Raljic, and J. Djuric. 2014. Uticaj rase koza na kvalitet mesa. Hemijska industrija 68 (6):801–7. doi: 10.2298/HEMIND131201006I.
  • Jang, A., and M. Lee. 2005. Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Science 69 (4):653–61. doi: 10.1016/j.meatsci.2004.10.014.
  • Je, J. Y., P. J. Park, J. Y. Kwon, and S. K. Kim. 2004. A novel angiotensin I converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Journal of Agricultural and Food Chemistry 52 (26):7842–5. doi: 10.1021/jf0494027.
  • Jukanti, A. K., P. M. Gaur, C. L. L. Gowda, and R. N. Chibbar. 2012. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition 108 (S1):S11–S26. doi: 10.1017/S0007114512000797.
  • Jung, W. K., E. Mendis, J. Y. Je, P. J. Park, W. S. Byeng, C. K. Hyoung, K. C. Yang, and S. K. Kim. 2006. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 94 (1):26–32. doi: 10.1016/j.foodchem.2004.09.048.
  • Kartal, C., B. Kaplan Türköz, and S. Otles. 2020. Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. Journal of Food Measurement and Characterization 14 (4):1865–83. doi: 10.1007/s11694-020-00434-z.
  • Katayama, K., H. E. Anggraeni, T. Mori, A. M. Ahhmed, S. Kawahara, M. Sugiyama, T. Nakayama, M. Maruyama, and M. Muguruma. 2008. Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 56 (2):355–60. doi: 10.1021/jf071408j.
  • Kharazmi-Khorassani, J., A. Asoodeh, and H. Tanzadehpanah. 2019. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activity of thymosin alpha-1 (Thα1) peptide. Bioorganic Chemistry 87:743–52. doi: 10.1016/j.bioorg.2019.04.003.
  • Kuba, M., K. Tanaka, S. Tawata, Y. Takeda, and M. Yasuda. 2003. Angiotensin i-converting enzyme inhibitory peptides isolated from tofuyo fermented soybean food. Bioscience, Biotechnology and Biochemistry 67 (6):1278–83. doi: 10.1271/bbb.67.1278.
  • Kuba, M., C. Tana, S. Tawata, and M. Yasuda. 2005. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase. Process Biochemistry 40 (6):2191–6. doi: 10.1016/j.procbio.2004.08.010.
  • Kudre, T. G., S. Benjakul, and H. Kishimura. 2013. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Journal of the Science of Food and Agriculture 93 (10):2429–36. doi: 10.1002/jsfa.6052.
  • Lee, N. Y., J. T. Cheng, T. Enomoto, and Y. Nakano. 2020. One peptide derived from hen ovotransferrin as pro-drug to inhibit angiotensin converting enzyme. Journal of Food and Drug Analysis 14 (1):31–5. doi: 10.38212/2224-6614.2505.
  • Lee, J. K., J. K. Jeon, and H. G. Byun. 2014. Antihypertensive effect of novel angiotensin I converting enzyme inhibitory peptide from chum salmon (Oncorhynchus keta) skin in spontaneously hypertensive rats. Journal of Functional Foods 7 (1):381–9. doi: 10.1016/j.jff.2014.01.021.
  • Lee, S.-J., Y.-S. Kim, S.-E. Kim, E.-K. Kim, J.-W. Hwang, T.-K. Park, B. K. Kim, S.-H. Moon, B.-T. Jeon, Y.-J. Jeon, et al. 2012. Purification and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from an enzymatic hydrolysate of duck skin byproducts. Journal of Agricultural and Food Chemistry 60 (40):10035–40. doi: 10.1021/jf3023172.
  • Lee, D. H., J. H. Kim, J. S. Park, Y. J. Choi, and J. S. Lee. 2004. Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides 25 (4):621–7. doi: 10.1016/j.peptides.2004.01.015.
  • Lee, S-h, Z. Qian, and S. Kim. 2010. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry 118 (1):96–102. doi: 10.1016/j.foodchem.2009.04.086.
  • Li, G. H., M. R. Qu, J. Z. Wan, and J. M. You. 2007. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pacific Journal of Clinical Nutrition 16 (1):275–80. doi: 10.6133/apjcn.2007.16.s1.52.
  • Li, G. H., J. Z. Wan, G. W. Le, and Y. H. Shi. 2006. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. Journal of Peptide Science 12 (8):509–14. doi: 10.1002/psc.758.
  • Ljøkjel, K., O. M. Harstad, and A. Skrede. 2000. Effect of heat treatment of soybean meal and fish meal on amino acid digestibility in mink and dairy cows. Animal Feed Science and Technology 84 (1-2):83–95. doi: 10.1016/S0377-8401(00)00104-8.
  • Lu, J., D. F. Ren, Y. L. Xue, Y. Sawano, T. Miyakawa, and M. Tanokura. 2010. Isolation of an antihypertensive peptide from alcalase digest of spirulina platensis. Journal of Agricultural and Food Chemistry 58 (12):7166–71. doi: 10.1021/jf100193f.
  • Martínez-Alvarez, O., I. Batista, C. Ramos, and P. Montero. 2016. Enhancement of ACE and prolyl oligopeptidase inhibitory potency of protein hydrolysates from sardine and tuna by-products by simulated gastrointestinal digestion. Food and Function 7 (4):2066–73. doi: 10.1039/c5fo01603g.
  • Matsufuji, H., T. Matsui, M. Nakashima, Y. Osajima, E. Seki, and K. Osajima. 1994. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle. Bioscience, Biotechnology, and Biochemistry 58 (12):2244–5. doi: 10.1271/bbb.58.2244.
  • Matsui, T., C.-H. Li, T. Tanaka, T. Maki, Y. Osajima, and K. Matsumoto. 2000. Depressor effect of wheat germ hydrolysate and its novel angiotensin I-converting enzyme inhibitory peptide, Ile-Val-Tyr, and the metabolism in rat and human plasma. Biological and Pharmaceutical Bulletin 23 (4):427–31. doi: 10.1248/bpb.23.427.
  • Matsui, T., K. Tamaya, E. Seki, K. Osajima, K. Matsumoto, and T. Kawasaki. 2002. Absorption of Val-Tyr with in Vitro angiotensin I-converting enzyme inhibitory activity into the circulating blood system of mild hypertensive subjects. Biological and Pharmaceutical Bulletin 25 (9):1228–30. doi: 10.1248/bpb.25.1228.
  • Miguel, M., I. Recio, J. A. Gómez-Ruiz, M. Ramos, and R. López-Fandiño. 2004. Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection 67 (9):1914–20. doi: 10.4315/0362-028X-67.9.1914.
  • Mirdhayati, I., J. Hermanianto, C. H. Wijaya, D. Sajuthi, and K. Arihara. 2016. Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus). Journal of the Science of Food and Agriculture 96 (10):3536–42. doi: 10.1002/jsfa.7538.
  • Miyoshi, S., H. Ishikawa, T. Kaneko, F. Fukui, H. Tanaka, and S. Maruyama. 1991. Structures and activity of angiotensin-converting enzyme inhibitors in an α-Zein hydrolysate. Agricultural and Biological Chemistry 55 (5):1313–8. doi: 10.1080/00021369.1991.10870760.
  • Mora, L., M. Reig, and F. Toldrá. 2014. Bioactive peptides generated from meat industry by-products. Food Research International 65 (PC):344–9. doi: 10.1016/j.foodres.2014.09.014.
  • Motoi, H., and T. Kodama. 2003. Isolation and characterization of angiotensin I‐converting enzyme inhibitory peptides from wheat gliadin hydrolysate. Nahrung/Food 47 (5):354–8. doi: 10.1002/food.200390081.
  • Muguruma, M., A. M. Ahhmed, K. Katayama, S. Kawahara, M. Maruyama, and T. Nakamura. 2009. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chemistry 114 (2):516–22. doi: 10.1016/j.foodchem.2008.09.081.
  • Nakahara, T., A. Sano, H. Yamaguchi, K. Sugimoto, H. Chikata, E. Kinoshita, and R. Uchida. 2010. Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances. Journal of Agricultural and Food Chemistry 58 (2):821–7. doi: 10.1021/jf903261h.
  • Nakano, D., K. Ogura, M. Miyakoshi, F. Ishii, H. Kawanishi, D. Kurumazuka, C.-J. Kwak, K. Ikemura, M. Takaoka, S. Moriguchi, et al. 2006. Antihypertensive effect of Angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry 70 (5):1118–1126. doi: 10.1271/bbb.70.1118.
  • Neves, A. C., P. A. Harnedy, M. B. O’Keeffe, and R. J. FitzGerald. 2017. Bioactive peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chemistry 218:396–405. doi: 10.1016/j.foodchem.2016.09.053.
  • Nweke, F. N., B. E. Ubi, and K. J. Kunert. 2011. Determination of proximate composition and amino acid profile of nigerian sesame (Sesamum indicum L.) Cultivars. Nigerian Journal of Biotechnology 23:5–12.
  • Otte, J., S. M. A. Shalaby, M. Zakora, and M. S. Nielsen. 2007. Fractionation and identification of ACE-inhibitory peptides from α-lactalbumin and β-casein produced by thermolysin-catalysed hydrolysis. International Dairy Journal 17 (12):1460–72. doi: 10.1016/j.idairyj.2007.04.008.
  • Patel, G., and A. Misra. 2011. Oral delivery of proteins and peptides: concepts and applications. In Challenges in delivery of therapeutic genomics and proteomics, 481–529. USA: Elsevier. doi: 10.1016/B978-0-12-384964-9.00010-4.
  • Penet, C. S., R. E. Worthington, R. D. Phillips, and N. J. Moon. 1983. Free amino acids of raw and cooked ground beef and pork. Journal of Food Science 48 (1):298–9. doi: 10.1111/j.1365-2621.1983.tb14859.x.
  • Pihlanto, A., S. Akkanen, and H. J. Korhonen. 2008. ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chemistry 109 (1):104–12. doi: 10.1016/j.foodchem.2007.12.023.
  • Pihlanto-Leppälä, A. N. N. E., P. Koskinen, K. A. T. I. Piilola, T. Tupasela, and H. Korhonen. 2000. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: Concentration and characterization of active peptides. Journal of Dairy Research 67 (1):53–64. doi: 10.1017/S0022029999003982.
  • Rafiq, S., N. Huma, I. Pasha, A. Sameen, O. Mukhtar, and M. I. Khan. 2016. Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australasian Journal of Animal Sciences 29 (7):1022–8. doi: 10.5713/ajas.15.0452.
  • Raghavan, S., and H. G. Kristinsson. 2009. ACE-inhibitory activity of tilapia protein hydrolysates. Food Chemistry 117 (4):582–8. doi: 10.1016/j.foodchem.2009.04.058.
  • Regazzo, D., D. Mollé, G. Gabai, D. Tomé, D. Dupont, J. Leonil, and R. Boutrou. 2010. The (193–209) 17-residues peptide of bovine β-casein is transported through caco-2 monolayer. Molecular Nutrition and Food Research 54 (10):1428–35. doi: 10.1002/mnfr.200900443.
  • Ruiz, J. Á. G., M. Ramos, and I. Recio. 2004. Angiotensin converting enzyme-inhibitory activity of peptides isolated from Manchego cheese. Stability under simulated gastrointestinal digestion. International Dairy Journal 14 (12):1075–80. doi: 10.1016/j.idairyj.2004.04.007.
  • Sangsawad, P., S. Roytrakul, and J. Yongsawatdigul. 2017. Angiotensin converting enzyme (ACE) inhibitory peptides derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast. Journal of Functional Foods 29:77–83. doi: 10.1016/j.jff.2016.12.005.
  • Sato, M., T. Hosokawa, T. Yamaguchi, T. Nakano, K. Muramoto, T. Kahara, K. Funayama, A. Kobayashi, and T. Nakano. 2002. Angiotensin I-converting enzyme inhibitory peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 50 (21):6245–52. doi: 10.1021/jf020482t.
  • Scudero, E. L. E., M. I. A. N. S. Entandreu, and K. E. A. Rihara. 2010. Angiotensin I-converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat. Journal of Agricultural and Food Chemistry 58 (5):2895–901. doi: 10.1021/jf904204n.
  • Shahidi, F., X. Q. Han, and J. Synowiecki. 1995. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry 53 (3):285–93. doi: 10.1016/0308-8146(95)93934-J.
  • Shen, W., and T. Matsui. 2017. Current knowledge of intestinal absorption of bioactive peptides. Food & Function 8 (12):4306–14. doi: 10.1039/c7fo01185g.
  • Shi, A., H. Liu, L. Liu, H. Hu, Q. Wang, and B. Adhikari. 2014. Isolation, purification and molecular mechanism of a peanut protein-derived ACE-inhibitory peptide. PLoS One 9 (10):e111188. doi: 10.1371/journal.pone.0111188.
  • Smith, D. E., B. Clémençon, and M. A. Hediger. 2013. Molecular Aspects of Medicine Proton-coupled oligopeptide transporter family SLC15: Physiological, pharmacological and pathological implications q. Molecular Aspects of Medicine 34 (2–3):323–36. doi: 10.1016/j.mam.2012.11.003.
  • Straková, E., P. Suchý, F. Vitula, and V. Večerek. 2006. Differences in the amino acid composition of muscles from pheasant and broiler chickens. Archives Animal Breeding 49 (5):508–14. doi: 10.5194/aab-49-508-2006.
  • Sze-Tao, K. W. C., and S. K. Sathe. 2000. Walnuts (Juglans regia L): Proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. Journal of the Science of Food and Agriculture 80 (9):1393–401. doi: 10.1002/1097-0010(200007)80:9<1393::AID-JSFA653>3.0.CO;2-F.
  • Tauzin, J., L. Miclo, and J. L. Gaillard. 2002. Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αS2-casein. FEBS Letters 531 (2):369–74. doi: 10.1016/S0014-5793(02)03576-7.
  • Ten Have, G. A. M., M. P. K. J. Engelen, Y. C. Luiking, and N. E. P. Deutz. 2007. Absorption kinetics of amino acids, peptides, and intact proteins. International Journal of Sport Nutrition and Exercise Metabolism 17 (s1):S23–S36. doi: 10.1123/ijsnem.17.s1.s23.
  • Thewissen, B. G., A. Pauly, I. Celus, K. Brijs, and J. A. Delcour. 2011. Inhibition of angiotensin I-converting enzyme by wheat gliadin hydrolysates. Food Chemistry 127 (4):1653–8. doi: 10.1016/j.foodchem.2010.11.171.
  • Tian, L., J. Liu, L. Ma, L. Zhang, S. Wang, E. Yan, and H. Zhu. 2017. Isolation and purification of antioxidant and ACE-inhibitory peptides from Yak (Bos grunniens) skin. Journal of Food Processing and Preservation 41 (5):e13123. doi: 10.1111/jfpp.13123.
  • Tokunaga, K.-H., C. Yoshida, K.-M. Suzuki, H. Maruyama, Y. Futamura, Y. Araki, and S. Mishima. 2004. Antihypertensive effect of peptides from Royal Jelly in spontaneously hypertensive rats. Biological and Pharmaceutical Bulletin 27 (2):189–92. doi: 10.1248/bpb.27.189.
  • Vermeirssen, V., J. V. Camp, and W. Verstraete. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition 92 (3):357–66. doi: 10.1079/BJN20041189.
  • Wang, X., H. Chen, X. Fu, S. Li, and J. Wei. 2017. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT - Food Science and Technology 75:93–9. doi: 10.1016/j.lwt.2016.08.047.
  • Wang, R., X. Lu, Q. Sun, J. Gao, L. Ma, and J. Huang. 2020. Novel ACE inhibitory peptides derived from simulated gastrointestinal digestion in vitro of sesame (Sesamum indicum L.) protein and molecular docking study. International Journal of Molecular Sciences 21 (3):1059. doi: 10.3390/ijms21031059.
  • Wang, B., N. Xie, and B. Li. 2019. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. Journal of Food Biochemistry 43 (1):e12571. doi: 10.1111/jfbc.12571.
  • Wijesekara, I., Z. J. Qian, B. M. Ryu, D. H. Ngo, and S. K. Kim. 2011. Purification and identification of antihypertensive peptides from seaweed pipefish (Syngnathus schlegeli) muscle protein hydrolysate. Food Research International 44 (3):703–7. doi: 10.1016/j.foodres.2010.12.022.
  • Wilkinson, B. H. P., E. Lee, R. W. Purchas, and P. C. H. Morel. 2014. The retention and recovery of amino acids from pork longissimus muscle following cooking to either 60 °C or 75 °C. Meat Science 96 (1):361–5. doi: 10.1016/j.meatsci.2013.07.019.
  • Wilson, R. P., and C. B. Cowey. 1985. Amino acid composition of whole body tissue of rainbow trout and Atlantic salmon. Aquaculture 48 (3–4):373–6. doi: 10.1016/0044-8486(85)90140-1.
  • Wu, J., R. E. Aluko, and A. D. Muir. 2008. Purification of angiotensin I-converting enzyme-inhibitory peptides from the enzymatic hydrolysate of defatted canola meal. Food Chemistry 111 (4):942–50. doi: 10.1016/j.foodchem.2008.05.009.
  • Wu, J., and X. Ding. 2002. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International 35 (4):367–375. https://www.sciencedirect.com/science/article/pii/S0963996901001314
  • Wu, Q., J. Du, J. Jia, and C. Kuang. 2016. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study. Food Chemistry 199:140–9. doi: 10.1016/j.foodchem.2015.12.012.
  • Wu, T., and L. Mao. 2008. Influences of hot air drying and microwave drying on nutritional and odorous properties of grass carp (Ctenopharyngodon idellus) fillets. Food Chemistry 110 (3):647–53. doi: 10.1016/j.foodchem.2008.02.058.
  • Wu, J. G., C. Shi, and X. Zhang. 2002. Estimating the amino acid composition in milled rice by near-infrared reflectance spectroscopy. Field Crops Research 75 (1):1–7. doi: 10.1016/S0378-4290(02)00006-0.
  • Yathisha, U. G., I. Bhat, I. Karunasagar, and B. S. Mamatha. 2019. Antihypertensive activity of fish protein hydrolysates and its peptides. Critical Reviews in Food Science and Nutrition 59 (15):2363–74. doi: 10.1080/10408398.2018.1452182.
  • Yust, M. M., J. Pedroche, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque. 2003. Production of ace inhibitory peptides by digestion of chickpea legumin with alcalase. Food Chemistry 81 (3):363–9. doi: 10.1016/S0308-8146(02)00431-4.
  • Zhong, C., L. C. Sun, L. J. Yan, Y. C. Lin, G. M. Liu, and M. J. Cao. 2018. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory peptides from sea cucumber (Stichopus japonicus) Gonad. Food and Function 9 (1):594–603. doi: 10.1039/c7fo01388d.
  • Zlatanos, S., K. Laskaridis, C. Feist, and A. Sagredos. 2006. Proximate composition, fatty acid analysis and protein digestibility- corrected amino acid score of three Mediterranean cephalopods. Molecular Nutrition and Food Research 50 (10):967–70. doi: 10.1002/mnfr.200600003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.