1,566
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Citrus processing by-products: an overlooked repository of bioactive compounds

, &

References

  • Al-Juhaimi, F. Y. 2014. Citrus fruits by-products as sources of bioactive compounds with antioxidant potential. Pakistan Journal of Botany 46 (4):1459–62.
  • Al Juhaimi, F., M. M. Özcan, N. Uslu, and K. Ghafoor. 2018. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils. Journal of Food Science and Technology 55 (1):190–7. doi: 10.1007/s13197-017-2895-y.
  • Ameer, K., H. M. Shahbaz, and J. H. Kwon. 2017. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety 16 (2):295–315. doi: 10.1111/1541-4337.12253.
  • Anticona, M., J. Blesa, A. Frigola, and M. J. Esteve. 2020. High biological value compounds extraction from citrus waste with non-conventional methods. Foods 9 (6):811. doi: 10.3390/foods9060811.
  • Ates, F., S. Sahin, Z. Cigeroglu, and S. I. Kirbaslar. 2019. A Green Valorisation Approach Using Microwaves and Supercritical CO2 for High-Added Value Ingredients from Mandarin (Citrus deliciosa Tenore) Leaf Waste. Waste and Biomass Valorization 10 (5):533–46.
  • Akhtar, M. S., M. K. Swamy, and U. R. Sinniah. (Eds.). 2019. Natural bio-active compounds: Volume 1: Production and applications. Singapore: Springer Nature.
  • Ateş, F., S. Şahin, Z. İlbay, and Ş. İ. Kırbaşlar. 2019. A green valorization approach using microwaves and supercritical CO2 for high-added value ingredients from Mandarin (Citrus deliciosa Tenore) leaf waste. Waste and Biomass Valorization 10 (3):533–46. doi: 10.1007/s12649-017-0074-z.
  • Atti-Santos, A. C., M. Rossato, L. A. Serafini, E. Cassel, and P. Moyna. 2005. Extraction of essential oils from lime (Citrus latifolia Tanaka) by hydro-distillation and supercritical carbon dioxide. Brazilian Archives of Biology and Technology 48 (1):155–60. doi: 10.1590/S1516-89132005000100020.
  • Babbar, N., H. S. Oberoi, and S. K. Sandhu. 2015. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Critical Reviews in Food Science and Nutrition 55 (3):319–37. doi: 10.1080/10408398.2011.653734.
  • Barba, F. J., N. S. Terefe, R. Buckow, D. Knorr, and V. Orlien. 2015. New opportunities and perspectives of high-pressure treatment to improve health and safety attributes of foods. A review. Food Research International 77:725–42. doi: 10.1016/j.foodres.2015.05.015.
  • Barba, F. J., E. Roselló-Soto, K. Marszałek, D. B. Kovačević, A. R. Jambrak, J. M. Lorenzo, & P. Putnik. 2019. Green food processing: Concepts, strategies, and tools. In Green Food processing techniques, 1–21. USA: Academic Press.
  • Barbosa, P. D. P. M., A. R. Ruviaro, I. M. Martins, J. A. Macedo, G. LaPointe, and G. A. Macedo. 2021. Enzyme-assisted extraction of flavanones from citrus pomace: Obtention of natural compounds with anti-virulence and anti-adhesive effect against Salmonella enterica subsp. enterica Serovar typhimurium. Food Control 120:107525. doi: 10.1016/j.foodcont.2020.107525.
  • Barman, K., D. Chowdhury, and P. K. Baruah. 2020. Development of β‐carotene loaded nanoemulsion using the industrial waste of orange (Citrus reticulate) peel to improve in vitro bioaccessibility of carotenoids and use as natural food colorant. Journal of Food Processing and Preservation 44 (5):e14429. doi: 10.1111/jfpp.14429.
  • Barrales, F. M., P. Silveira, P. d P. M. Barbosa, A. R. Ruviaro, B. N. Paulino, G. M. Pastore, G. A. Macedo, and J. Martinez. 2018. Recovery of phenolic compounds from citrus by-products using pressurized liquids—An application to orange peel. Food and Bioproducts Processing 112:9–21. doi: 10.1016/j.fbp.2018.08.006.
  • Boukroufa, M., C. Boutekedjiret, and F. Chemat. 2017. Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resource-Efficient Technologies 3 (3):252–62. doi: 10.1016/j.reffit.2017.08.007.
  • Cardona, F., C. Andrés-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-Ortuño. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24 (8):1415–22. doi: 10.1016/j.jnutbio.2013.05.001.
  • Casquete, R., S. M. Castro, M. C. Villalobos, M. J. Serradilla, R. P. Queirós, J. A. Saraiva, M. G. Córdoba, and P. Teixeira. 2014. High pressure extraction of phenolic compounds from citrus peels. High Pressure Research 34 (4):447–51. doi: 10.1080/08957959.2014.986474.
  • Castillo-Herrera, G. A., L. J. Farías-Álvarez, J. A. García-Fajardo, J. I. Delgado-Saucedo, A. M. Puebla-Pérez, and E. Lugo-Cervantes. 2015. Bioactive extracts of Citrus aurantifolia swingle seeds obtained by supercritical CO2 and organic solvents comparing its cytotoxic activity against L5178Y leukaemia lymphoblasts. The Journal of Supercritical Fluids 101:81–6. doi: 10.1016/j.supflu.2015.02.026.
  • Chavan, P., A. K. Singh, and G. Kaur. 2018. Recent progress in the utilization of industrial waste and by‐products of citrus fruits: A review. Journal of Food Process Engineering 41 (8):e12895. doi: 10.1111/jfpe.12895.
  • Chavez-Gonzalez, M. L., L. I. López-López, R. Rodríguez-Herrera, J. C. Contreras-Esquivel, and C. N. Aguilar. 2016. Enzyme-assisted extraction of citrus essential oil. Chemical Papers 70 (4):412–7. doi: 10.1515/chempap-2015-0234.
  • Chen, Y., T. J. Barzee, R. Zhang, and Z. Pan. 2019. Citrus. In Integrated Processing technologies for food and agricultural by-products, 217–42. USA: Academic Press.
  • Choi, H. S., H. S. Song, H. Ukeda, and M. Sawamura. 2000. Radical-scavenging activities of citrus essential oils and their components: Detection using 1, 1-diphenyl-2-picrylhydrazyl. Journal of Agricultural and Food Chemistry 48 (9):4156–61. doi: 10.1021/jf000227d.
  • Dao, T. P., T. H. Tran, P. T. N. Nguyen, T. K. N. Tran, T. C. Q. Ngo, L. T. H. Nhan, T. T. Anh, T. Q. Toan, P. M. Quan, and H. T. K. Linh. 2020. Optimization of microwave assisted hydrodistillation of essential oil from lemon (Citrus aurantifolia) leaves: Response surface methodology studies. In IOP Conference Series: Materials Science and Engineering ( 736 (2):022038. IOP Publishing. doi: 10.1088/1757-899X/736/2/022038.
  • de Castro, M. D. L. 2014. Towards a comprehensive exploitation of agrofood residues: Olive tree–olive oil as example. Comptes Rendus Chimie 17 (3):252–60.
  • El Kantar, S., N. Boussetta, N. Lebovka, F. Foucart, H. N. Rajha, R. G. Maroun, N. Louka, and E. Vorobiev. 2018. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innovative Food Science & Emerging Technologies 46:153–61. doi: 10.1016/j.ifset.2017.09.024.
  • El Kantar, S., H. N. Rajha, N. Boussetta, E. Vorobiev, R. G. Maroun, and N. Louka. 2019. Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chemistry 295:165–71. doi: 10.1016/j.foodchem.2019.05.111.
  • Espinosa-Pardo, F. A., V. M. Nakajima, G. A. Macedo, J. A. Macedo, and J. Martínez. 2017. Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing 101:1–10. doi: 10.1016/j.fbp.2016.10.002.
  • Falcinelli, B., F. Famiani, A. Paoletti, S. D’Egidio, F. Stagnari, A. Galieni, and P. Benincasa. 2020. Phenolic compounds and antioxidant activity of sprouts from seeds of citrus species. Agriculture 10 (2):33. doi: 10.3390/agriculture10020033.
  • FAOSTAT. 2020. The Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed March 12, 2021.
  • Feng, W., M. Li, Z. Hao, and J. Zhang. 2019. Analytical methods of isolation and identification. In Phytochemicals in human health. London, UK: IntechOpen.
  • Fernández-Ginés, J. M., J. Fernández-López, E. Sayas-Barberá, E. Sendra, and J. A. Pérez-Alvarez. 2003. Effect of storage conditions on quality characteristics of bologna sausages made with citrus fiber. Journal of Food Science 68 (2):710–4. doi: 10.1111/j.1365-2621.2003.tb05737.x.
  • Ferreira-Dias, S., G. Sandoval, F. Plou, and F. Valero. 2013. The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries. Electronic Journal of Biotechnology 16 (3):12.
  • Flori, L., M. Macaluso, I. Taglieri, C. Sanmartin, C. Sgherri, M. De Leo, V. Ciccone, S. Donnini, F. Venturi, L. Pistelli, et al. 2020. Development of fortified citrus olive oils: From their production to their nutraceutical properties on the cardiovascular system. Nutrients 12 (6):1557. doi: 10.3390/nu12061557.
  • Garcia-Castello, E. M., A. D. Rodriguez-Lopez, L. Mayor, R. Ballesteros, C. Conidi, and A. Cassano. 2015. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. Lwt - Food Science and Technology 64 (2):1114–1122. doi: 10.1016/j.lwt.2015.07.024.
  • Garrido, G., W. H. Chou, C. Vega, L. Goïty, and M. Valdés. 2019. Influence of extraction methods on fatty acid composition, total phenolic content and antioxidant capacity of Citrus seed oils from the Atacama Desert, Chile. Journal of Pharmacy & Pharmacognosy Research 7 (6):389–407.
  • Gertenbach, D. D. 2002. Solid-liquid extraction technologies for manufacturing nutraceuticals. In Functional foods: Biochemical and processing aspects, eds. J. Shi, G. Mazza, and M. L. Maguer, vol. 2, 331–66. CRC Press: USA.
  • Godara, A., N. V. Kumar, A. Sharma, J. Hudda, and M. Bakshi. 2020. Beneficial ingredients from kinnow peel-extraction and uses: A review. International Journal of Current Microbiology and Applied Sciences 9 (10):2401–2411. doi: 10.20546/ijcmas.2020.910.287.
  • Goulas, V., and G. A. Manganaris. 2012. Exploring the phytochemical content and the antioxidant potential of Citrus fruits grown in Cyprus. Food Chemistry 131 (1):39–47. doi: 10.1016/j.foodchem.2011.08.007.
  • Gomez, B., B. Gullon, C. Remoroza, H. A. Schols, J. C. Parajo, and J. L. Alonso. 2014. Purification, characterization, and prebiotic properties of pectic oligosaccharides from orange peel wastes. Journal of Agricultural and Food Chemistry 62 (40):9769–9782. doi: 10.1021/jf503475b.
  • Gomez, B., R. Yanez, J. C. Parajo, and J. L. Alonso. 2016. Production of pectin-derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. Journal of Chemical Technology & Biotechnology 91 (1):234–247. doi: 10.1002/jctb.4569.
  • Gorinstein, S., O. Martı́n-Belloso, Y.-S. Park, R. Haruenkit, A. Lojek, M. Ĉı́ž, A. Caspi, I. Libman, and S. Trakhtenberg, 2001. Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry 74 (3):309–315. doi: 10.1016/S0308-8146(01)00157-1.
  • Granato, D., D. S. Nunes, and F. J. Barba. 2017. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends in Food Science & Technology 62:13–22. doi: 10.1016/j.tifs.2016.12.010.
  • Granato, D., F. J. Barba, D. Bursać Kovačević, J. M. Lorenzo, A. G. Cruz, and P. Putnik. 2020. Functional foods: Product development, technological trends, efficacy testing, and safety. Annual Review of Food Science and Technology 11:93–118. doi: 10.1146/annurev-food-032519-051708.
  • Guo, X., D. Han, H. Xi, L. Rao, X. Liao, X. Hu, and J. Wu. 2012. Extraction of pectin from navel orange peel assisted by ultra-high pressure, microwave or traditional heating: A comparison. Carbohydrate Polymers 88 (2):441–448. doi: 10.1016/j.carbpol.2011.12.026.
  • Guo, C., Y. Shan, Z. Yang, L. Zhang, W. Ling, Y. Liang, Z. Ouyang, B. Zhong, and J. Zhang. 2020. Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel. Journal of the Science of Food and Agriculture 100 (6):2664–2674. doi: 10.1002/jsfa.10297.
  • Hayat, K., X. Zhang, H. Chen, S. Xia, C. Jia, and F. Zhong. 2010. Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Separation and Purification Technology 73 (3):371–376. doi: 10.1016/j.seppur.2010.04.026.
  • He, J. Z., P. Shao, J. H. Liu, and Q. M. Ru. 2012. Supercritical carbon dioxide extraction of flavonoids from Pomelo (Citrus grandis (L.) Osbeck) peel and their antioxidant activity. International Journal of Molecular Sciences 13 (12):13065–13078. doi: 10.3390/ijms131013065.
  • Hien, T. T., N. P. T. Nhan, T. D. Nguyen, V. T. T. Ho, and L. G. Bach. 2018. Optimizing the pomelo oils extraction process by microwave-assisted hydro-distillation using soft computing approaches. Solid State Phenomena 279:217–221. Trans Tech Publications Ltd. doi: 10.4028/www.scientific.net/SSP.279.217.
  • Hosseini, S. S., F. Khodaiyan, and M. S. Yarmand. 2016. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers 140:59–65. doi: 10.1016/j.carbpol.2015.12.051.
  • Hosseini, S. S., F. Khodaiyan, M. Kazemi, and Z. Najari. 2019. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. International Journal of Biological Macromolecules 125:621–629. doi: 10.1016/j.ijbiomac.2018.12.096.
  • Hou, Z., S. Chen, and X. Ye. 2021. High pressure processing accelarated the release of RG-I pectic polysaccharides from citrus peel. Carbohydrate Polymers 263:118005. doi: 10.1016/j.carbpol.2021.118005.
  • Hu, H., S. Zhang, F. Liu, P. Zhang, Z. Muhammad, and S. Pan. 2019. Role of the gut microbiota and their metabolites in modulating the cholesterol-lowering effects of citrus pectin oligosaccharides in C57BL/6 mice. Journal of Agricultural and Food Chemistry 67 (43):11922–11930. doi: 10.1021/acs.jafc.9b03731.
  • Huang, Z., K. Li, L. Ma, F. Chen, X. Liao, X. Hu, and J. Ji. 2021. Flavor release from lactose/protein matrix during storage: Effects of lactose crystallization and powder microstructure. LWT 141:110857. doi: 10.1016/j.lwt.2021.110857.
  • Hwang, H. J., H. J. Kim, M. J. Ko, and M. S. Chung. 2021. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Science and Biotechnology 30 (2):217–226. doi: 10.1007/s10068-020-00862-z.
  • Inoue, T., S. Tsubaki, K. Ogawa, K. Onishi, and J. I. Azuma. 2010. Isolation of hesperidin from peels of thinned Citrus unshiu fruits by microwave-assisted extraction. Food Chemistry 123 (2):542–547. doi: 10.1016/j.foodchem.2010.04.051.
  • Jamekhorshid, A., S. M. Sadrameli, and M. Farid. 2014. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews 31:531–542. doi: 10.1016/j.rser.2013.12.033.
  • Jamilah, B., G. Abdulkadir, and M. Suhaila. 2011. Phenolics in Citrus hystrix leaves obtained using supercritical carbon dioxide extraction. International Food Research Journal 18 (3):941–8.
  • Jomaa, S., A. Rahmo, A. S. Alnori, and M. E. Chatty. 2012. The cytotoxic effect of essential oil of Syrian Citrus limon peel on human colorectal carcinoma cell line (Lim1863). Middle East Journal of Cancer 3 (1):15–21.
  • Junior, D. S., F. J. Krug, M. D. G. Pereira, and M. Korn. 2006. Currents on ultrasound-assisted extraction for sample preparation and spectroscopic analytes determination. Applied Spectroscopy Reviews 41 (3):305–321. doi: 10.1080/05704920600620436.
  • Karaman, E., E. Yılmaz, and N. B. Tuncel. 2017. Physicochemical, microstructural and functional characterization of dietary fibers extracted from lemon, orange and grapefruit seeds press meals. Bioactive Carbohydrates and Dietary Fibre 11:9–17. doi: 10.1016/j.bcdf.2017.06.001.
  • Kim, J., G. K. Jayaprakasha, A. Vikram, and B. S. Patil. 2012. Cancer chemo preventive properties of citrus limonoids. In Emerging trends in dietary components for preventing and combating disease, 37–50. Washington, D.C: American Chemical Society.
  • Kim, S. H., E. J. Shin, H. J. Hur, J. H. Park, M. J. Sung, D. Y. Kwon, and J. T. Hwang. 2014. Citrus junos Tanaka peel extract attenuates experimental colitis and inhibits tumor growth in a mouse xenograft model. Journal of Functional Foods 8:301–308. doi: 10.1016/j.jff.2014.03.024.
  • Kratchanova, M., E. Pavlova, and I. Panchev. 2004. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydrate Polymers 56 (2):181–185. doi: 10.1016/j.carbpol.2004.01.009.
  • Kumar, M., A. Dahuja, S. Tiwari, S. Punia, Y. Tak, R. Amarowicz, A. G. Bhoite, S. Singh, S. Joshi, P. S. Panesar, et al. 2021. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chemistry 353:129431. doi: 10.1016/j.foodchem.2021.129431.
  • Lad, J. D., and A. Kar. 2021. Supercritical CO2 extraction of lycopene from pink grapefruit (Citrus paradise Macfad) and its degradation studies during storage. Food Chemistry 361:130113. doi: 10.1016/j.foodchem.2021.130113.
  • Lai, C.-S., M.-L. Tsai, A.-C. Cheng, S. Li, C.-Y. Lo, Y. Wang, H. Xiao, C.-T. Ho, Y.-J. Wang, and M.-H. Pan. 2011. Chemoprevention of colonic tumorigenesis by dietary hydroxylated polymethoxyflavones in azoxymethane-treated mice. Molecular Nutrition & Food Research 55 (2):278–290. doi: 10.1002/mnfr.201000224.
  • Lee, Y. H., A. L. Charles, H. F. Kung, C. T. Ho, and T. C. Huang. 2010. Extraction of nobiletin and tangeretin from Citrus depressa Hayata by supercritical carbon dioxide with ethanol as modifier. Industrial Crops and Products 31 (1):59–64. doi: 10.1016/j.indcrop.2009.09.003.
  • Li, B. B., B. Smith, and M. M. Hossain. 2006. Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology 48 (2):182–188. doi: 10.1016/j.seppur.2005.07.005.
  • Liew, S. Q., G. C. Ngoh, R. Yusoff, and W. H. Teoh. 2016. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. International Journal of Biological Macromolecules 93 (Pt A):426–435. doi: 10.1016/j.ijbiomac.2016.08.065.
  • Luengo, E., I. Álvarez, and J. Raso. 2013. Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innovative Food Science & Emerging Technologies 17:79–84.
  • Mahato, N., M. Sinha, K. Sharma, R. Koteswararao, and M. H. Cho. 2019. Modern extraction and purification techniques for obtaining high purity food-grade bioactive compounds and value-added co-products from citrus wastes. Foods 8 (11):523. doi: 10.3390/foods8110523.
  • Mahdavi, S. A., S. M. Jafari, M. Ghorbani, and E. Assadpoor. 2014. Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Drying Technology 32 (5):509–518. doi: 10.1080/07373937.2013.839562.
  • Mahmoud, K. F., M. A. Ibrahim, E. D. Mervat, H. A. Shaaban, M. M. Kamil, and N. A. Hegazy. 2016. Nano-encapsulation efficiency of lemon and orange peels extracts on cake shelf life. American Journal of Food Technology 11 (3):63–75. doi: 10.3923/ajft.2016.63.75.
  • Manning, T. S., and G. R. Gibson. 2004. Microbial-gut interactions in health and disease. Prebiotics. Best Practice & Research. Clinical Gastroenterology 18 (2):287–298. doi: 10.1016/j.bpg.2003.10.008.
  • Maran, J. P., V. Sivakumar, K. Thirugnanasambandham, and R. Sridhar. 2013. Optimization of microwave assisted extraction of pectin from orange peel. Carbohydrate Polymers 97 (2):703–709. doi: 10.1016/j.carbpol.2013.05.052.
  • Marín, F. R., C. Soler-Rivas, O. Benavente-García, J. Castillo, and J. A. Pérez-Alvarez. 2007. By-products from different citrus processes as a source of customized functional fibres. Food Chemistry 100 (2):736–741. doi: 10.1016/j.foodchem.2005.04.040.
  • Menichini, F., R. Tundis, M. Bonesi, B. de Cindio, M. R. Loizzo, F. Conforti, G. A. Statti, R. Menabeni, R. Bettini, and F. Menichini. 2011. Chemical composition and bioactivity of Citrus medica L. cv. Diamante essential oil obtained by hydro distillation, cold-pressing and supercritical carbon dioxide extraction. Natural Product Research 25 (8):789–799. doi: 10.1080/14786410902900085.
  • M’hiri, N., I. Ioannou, M. Ghoul, and N. M. Boudhrioua. 2014. Extraction methods of citrus peel phenolic compounds. Food Reviews International 30 (4):265–290. doi: 10.1080/87559129.2014.924139.
  • Montero-Calderon, A., C. Cortes, A. Zulueta, A. Frigola, and M. J. Esteve. 2019. Green solvents and Ultrasound-Assisted Extraction of bioactive orange (Citrus sinensis) peel compounds. Scientific Reports 9 (1):1–8. doi: 10.1038/s41598-019-52717-1.
  • Mozafari, M. R., J. Flanagan, L. Matia-Merino, A. Awati, A. Omri, Z. E. Suntres, and H. Singh. 2006. Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture 86 (13):2038–2045. doi: 10.1002/jsfa.2576.
  • Mudgil, D., and S. Barak. 2013. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules 61:1–6. doi: 10.1016/j.ijbiomac.2013.06.044.
  • Moulehi, I., S. Bourgou, I. Ourghemmi, and M. S. Tounsi. 2012. Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Industrial Crops and Products 39:74–80. doi: 10.1016/j.indcrop.2012.02.013.
  • Multari, S., C. Licciardello, M. Caruso, A. Anesi, and S. Martens. 2021. Flavedo and albedo of five citrus fruits from Southern Italy: Physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. Journal of Food Measurement and Characterization 15 (2):1754–62.
  • Muniraj, N., S. Siddharth, and D. Sharma. 2019. Bioactive compounds: Multi-targeting silver bullets for preventing and treating breast cancer. Cancers 11 (10):1563. doi: 10.3390/cancers11101563.
  • Mushtaq, M.,. B. Sultana, H. N. Bhatti, and M. Asgher. 2014. Optimization of enzyme-assisted revalorization of sweet lime (Citrus limetta Risso) peel into phenolic antioxidants. BioResources 9 (4):6153–6165. doi: 10.15376/biores.9.4.6153-6165.
  • Naghshineh, M., K. Olsen, and C. A. Georgiou. 2013. Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chemistry 136 (2):472–478. doi: 10.1016/j.foodchem.2012.08.036.
  • Nayak, B., F. Dahmoune, K. Moussi, H. Remini, S. Dairi, O. Aoun, and M. Khodir. 2015. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chemistry 187:507–516. doi: 10.1016/j.foodchem.2015.04.081.
  • Ndayishimiye, J., D. J. Lim, and B. S. Chun. 2018. Antioxidant and antimicrobial activity of oils obtained from a mixture of citrus by-products using a modified supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry 57:339–348. doi: 10.1016/j.jiec.2017.08.041.
  • Nguyen Tram Anh, M., P. Van Hung, and N. Thi Lan Phi. 2021. Optimized conditions for flavonoid extraction from pomelo peel byproducts under enzyme-and ultrasound-assisted extraction using response surface methodology. Journal of Food Quality 2021:1–10. doi: 10.1155/2021/6666381.
  • Nipornram, S., W. Tochampa, P. Rattanatraiwong, and R. Singanusong. 2018. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chemistry 241:338–345. doi: 10.1016/j.foodchem.2017.08.114.
  • Nishad, J., S. Saha, A. K. Dubey, E. Varghese, and C. Kaur. 2019. Optimization and comparison of non-conventional extraction technologies for Citrus paradisi L. peels: A valorization approach. Journal of Food Science and Technology 56 (3):1221–1233. doi: 10.1007/s13197-019-03585-0.
  • Nishad, J., S. Saha, and C. Kaur. 2019. Enzyme and ultrasound-assisted extractions of polyphenols from Citrus sinensis (cv. Malta) peel: A comparative study. Journal of Food Processing and Preservation 43 (8):e14046. doi: 10.1111/jfpp.14046.
  • Niu, D., E. F. Ren, J. Li, X. A. Zeng, and S. L. Li. 2021. Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin. Separation and Purification Technology 265:118480. doi: 10.1016/j.seppur.2021.118480.
  • Okino-Delgado, C. H., Pereira, M. S. da Silva, J. V. I. Kharfan, D. do Prado, D. Z. Fleuri. and L. F. 2019. Lipases obtained from orange wastes: Commercialization potential and biochemical properties of different varieties and fractions. Biotechnology Progress 35 (1):e2734. doi: 10.1002/btpr.2734.
  • Olatunji, O. M., K. C. Umani, and J. T. Ekanem. 2021. Oil and pectin extraction from citrus paradise (grape) peels: A case of response surface optimization. MOJ Food Process Technologies 9 (2):44–55.
  • Olabinjo, O. O., and A. L. Oliveira. 2020. Comparative study of extraction yield and antioxidant property of sweet orange peels (Citrus Sinesis) essential oil. Croatian Journal of Food Science and Technology 12 (2):184–192. doi: 10.17508/CJFST.2020.12.2.06.
  • Omar, J., I. Alonso, A. Garaikoetxea, and N. Etxebarria. 2013. Optimization of focused ultrasound extraction (FUSE) and supercritical fluid extraction (SFE) of citrus peel volatile oils and antioxidants. Food Analytical Methods 6 (4):1244–1252. doi: 10.1007/s12161-012-9536-x.
  • Ozcan, M. M., K. Ghafoor, F. Al Juhaimi, N. Uslu, E. E. Babiker, I. A. Mohamed Ahmed, and I. A. Almusallam. 2021. Influence of drying techniques on bioactive properties, phenolic compounds and fatty acid compositions of dried lemon and orange peel powders. Journal of Food Science and Technology 58 (1):147–158. doi: 10.1007/s13197-020-04524-0.
  • Palazzolo, E., V. A. Laudicina, and M. A. Germanà. 2013. Current and potential use of citrus essential oils. Current Organic Chemistry 17 (24):3042–3049. doi: 10.2174/13852728113179990122.
  • Pantsulaia, I., M. Iobadze, N. Pantsulaia, and T. Chikovani. 2014. The effect of citrus peel extracts on cytokines levels and T regulatory cells in acute liver injury. BioMed Research International 2014:1–7. doi: 10.1155/2014/127879.
  • Panwar, D., P. S. Panesar, and H. K. Chopra. 2021. Recent trends on the valorization strategies for the management of citrus by-products. Food Reviews International 37 (1):91–120. doi: 10.1080/87559129.2019.1695834.
  • Papoutsis, K., J. B. Golding, Q. Vuong, P. Pristijono, C. E. Stathopoulos, C. J. Scarlett, and M. Bowyer. 2018. Encapsulation of citrus by-product extracts by spray-drying and freeze-drying using combinations of maltodextrin with soybean protein and ι-Carrageenan. Foods 7 (7):115. doi: 10.3390/foods7070115.
  • Park, K.-I., H.-S. Park, M.-K. Kim, G.-E. Hong, A. Nagappan, H.-J. Lee, S. Yumnam, W.-S. Lee, C.-K. Won, S.-C. Shin, et al. 2014. Flavonoids identified from Korean Citrus aurantium L. inhibit non-small cell lung cancer growth in vivo and in vitro. Journal of Functional Foods 7:287–297. doi: 10.1016/j.jff.2014.01.032.
  • Peiro, S., E. Luengo, F. Segovia, J. Raso, and M. P. Almajano. 2019. Improving Polyphenol Extraction from Lemon Residues by Pulsed Electric Fields. Waste and Biomass Valorization 10 (4):889–97.
  • Petrotos, K., I. Giavasis, K. Gerasopoulos, C. Mitsagga, C. Papaioannou, and P. Gkoutsidis. 2021. Optimization of Vacuum-Microwave-Assisted Extraction of Natural Polyphenols and Flavonoids from Raw Solid Waste of the Orange Juice Producing Industry at Industrial Scale. Molecules 26 (1):246. doi: 10.3390/molecules26010246.
  • Pirvu, C. D., C. Hlevca, A. Ortan, and R. Prisada. 2010. Elastic vesicles as drugs carriers through the skin. Farmacia 58 (2):128–135.
  • Popovic, B. M., B. Blagojevic, D. Latković, D. Četojević-Simin, A. Z. Kucharska, F. Parisi, and G. Lazzara. 2021. A one step enhanced extraction and encapsulation system of cornelian cherry (Cornus mas L.) polyphenols and iridoids with β-cyclodextrin. LWT 141:110884. doi: 10.1016/j.lwt.2021.110884.
  • Poyraz, Ç., G. Küçükyıldız, Ş. İ. Kırbaşlar, Z. Ciğeroğlu, and S. Şahin. 2021. Valorization of Citrus unshiu biowastes to value-added products: An optimization of ultrasound-assisted extraction method using response surface methodology and particle swarm optimization. Biomass Conversion and Biorefinery 1–11. doi: 10.1007/s13399-021-01329-9.
  • Priyadarsani, S., A. S. Patel, A. Kar, and S. Dash. 2021. Process optimization for the supercritical carbondioxide extraction of lycopene from ripe grapefruit (Citrus paradisi) endocarp. Scientific Reports 11 (1):1–8. doi: 10.1038/s41598-021-89772-6.
  • Putnik, P., D. Bursać Kovačević, A. Režek Jambrak, F. Barba, G. Cravotto, A. Binello, J. Lorenzo, and A. Shpigelman. 2017. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—A review. Molecules 22 (5):680. doi: 10.3390/molecules22050680.
  • Putnik, P., J. Lorenzo, F. Barba, S. Roohinejad, A. Režek Jambrak, D. Granato, D. Montesano, and D. Bursać Kovačević. 2018. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 7 (7):106. doi: 10.3390/foods7070106.
  • Quoc, L. P. T., V. T. N. Huyen, L. T. N. Hue, N. T. H. Hue, N. H. D. Thuan, N. T. T. Tam, … T. H. Duy. 2015. Extraction of pectin from pomelo (Citrus maxima) peels with the assistance of microwave and tartaric acid. International Food Research Journal 22 (4):1637.
  • Rasouli Ghahroudi, F., M. Mizani, K. Rezaei, and M. Bameni Moghadam. 2017. Mixed extracts of green tea and orange peel encapsulated and impregnated on black tea bag paper to be used as a functional drink. International Journal of Food Science & Technology 52 (7):1534–1542. doi: 10.1111/ijfs.13439.
  • Rezzadori, K., S. Benedetti, and E. R. Amante. 2012. Proposals for the residue’s recovery: Orange waste as raw material for new products. Food and Bioproducts Processing 90 (4):606–614. doi: 10.1016/j.fbp.2012.06.002.
  • Roohinejad, S., I. Oey, J. Wen, S. J. Lee, D. W. Everett, and D. J. Burritt. 2015. Formulation of oil-in-water β-carotene microemulsions: Effect of oil type and fatty acid chain length. Food Chemistry 174:270–278. doi: 10.1016/j.foodchem.2014.11.056.
  • Roohinejad, S., N. Nikmaram, M. Brahim, M. Koubaa, A. Khelfa, and R. Greiner. 2017. Potential of novel technologies for aqueous extraction of plant bioactives. In Water extraction of bioactive compounds, 399–419. Netherlands: Elsevier.
  • Rosa, A., B. Era, C. Masala, M. Nieddu, P. Scano, A. Fais, S. Porcedda, and A. Piras. 2019. Supercritical CO2 extraction of waste citrus seeds: Chemical composition, nutritional and biological properties of edible fixed oils. European Journal of Lipid Science and Technology 121 (7):1800502. doi: 10.1002/ejlt.201800502.
  • Rudra, S. G., J. Nishad, N. Jakhar, and C. Kaur. 2015. Food industry waste: Mine of nutraceuticals. International Journal of Environmental Science and Technology 4 (1):205–229.
  • Ruviaro, A. R., P. D. P. M. Barbosa, and G. A. Macedo. 2019. Enzyme-assisted biotransformation increases hesperetin content in citrus juice by-products. Food Research International (Ottawa, Ont.) 124:213–221. doi: 10.1016/j.foodres.2018.05.004.
  • Safdar, M. N., T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, and A. A. Saddozai. 2017. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis 25 (3):488–500. doi: 10.1016/j.jfda.2016.07.010.
  • Sahin, S. 2015. A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: Solvent-free microwave extraction. Korean Journal of Chemical Engineering 32 (5):950–7.
  • Şahin, S. 2015. A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: Solvent-free microwave extraction. Korean Journal of Chemical Engineering 32 (5):950–957. doi: 10.1007/s11814-014-0293-y.
  • Saini, A., P. S. Panesar, and M. B. Bera. 2019. Comparative study on the extraction and quantification of polyphenols from citrus peels using maceration and ultrasonic technique. Current Research in Nutrition and Food Science Journal 7 (3):678–685. doi: 10.12944/CRNFSJ.7.3.08.
  • Saini, A., P. S. Panesar, and M. B. Bera. 2020. Valuation of Citrus reticulata (kinnow) peel for the extraction of lutein using ultrasonication technique. Biomass Conversion and Biorefinery 1–9. doi: 10.1007/s13399-020-00605-4.
  • Satari, B., and K. Karimi. 2018. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resources, Conservation and Recycling 129:153–167. doi: 10.1016/j.resconrec.2017.10.032.
  • Sen, A., S. G. A. Manuel, and R. D. Kale. 2014. Fruit waste pectin in enhancing the establishment of probiotic bacteria. Journal of Nutritional Health & Food Engineering 1:124–126.
  • Sharma, K., N. Mahato, M. H. Cho, and Y. R. Lee. 2017. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition (Burbank, Los Angeles County, Calif.) 34:29–46. doi: 10.1016/j.nut.2016.09.006.
  • Shetty, S. B., P. Mahin-Syed-Ismail, S. Varghese, B. Thomas-George, P. Kandathil-Thajuraj, D. Baby, & D. Devang-Divakar. 2016. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: An in vitro study. Journal of Clinical and Experimental Dentistry 8 (1):e71.
  • Shishir, M. R. I., L. Xie, C. Sun, X. Zheng, and W. Chen. 2018. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology 78:34–60. doi: 10.1016/j.tifs.2018.05.018.
  • Singla, G., P. S. Panesar, R. S. Sangwan, and M. Krishania. 2020. Enzymatic processing of Citrus reticulata (Kinnow) pomace using naringinase and its valorization through preparation of nutritionally enriched pasta. Journal of Food Science and Technology 45 (2):e15135.
  • Sir Elkhatim, K. A., R. A. Elagib, and A. B. Hassan. 2018. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Science & Nutrition 6 (5):1214–1219. doi: 10.1002/fsn3.660.
  • Soliman, E. A., A. Y. El-Moghazy, M. M. El-Din, and M. A. Massoud. 2013. Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of antifungal activity.
  • Sridharan, B., S. T. Michael, R. Arya, S. Mohana Roopan, R. N. Ganesh, and P. Viswanathan. 2016. Beneficial effect of Citrus limon peel aqueous methanol extract on experimentally induced urolithic rats. Pharmaceutical Biology 54 (5):759–769. doi: 10.3109/13880209.2015.1079724.
  • Sun, Y., D. Liu, J. Chen, X. Ye, and D. Yu. 2011. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry 18 (1):243–249. doi: 10.1016/j.ultsonch.2010.05.014.
  • Teigiserova, D. A., L. Tiruta-Barna, A. Ahmadi, L. Hamelin, and M. Thomsen. 2021. A step closer to circular bioeconomy for citrus peel waste: A review of yields and technologies for sustainable management of essential oils. Journal of Environmental Management 280:111832. doi: 10.1016/j.jenvman.2020.111832.
  • Tanaka, M., A. Takamizu, M. Hoshino, M. Sasaki, and M. Goto. 2012. Extraction of dietary fiber from Citrus junos peel with subcritical water. Food and Bioproducts Processing 90 (2):180–186. doi: 10.1016/j.fbp.2011.03.005.
  • Trabelsi, D., A. Aydi, A. W. Zibetti, G. Della Porta, M. Scognamiglio, V. Cricchio, E. Langa, M. Abderrabba, and A. M. Mainar. 2016. Supercritical extraction from Citrus aurantium amara peels using CO2 with ethanol as co-solvent. The Journal of Supercritical Fluids 117:33–39. doi: 10.1016/j.supflu.2016.07.003.
  • Tsitsagi, M., K. Ebralidze, M. Chkhaidze, I. Rubashvili, and V. Tsitsishvili. 2018. Sequential extraction of bioactive compounds from tangerine (Citrus Unshiu) peel. Annals of Agrarian Science 16 (2):236–241. doi: 10.1016/j.aasci.2018.02.007.
  • Tuan, N. T., L. N. Dang, B. T. C. Huong, and L. T. Danh. 2019. One step extraction of essential oils and pectin from pomelo (Citrus grandis) peels. Chemical Engineering and Processing - Process Intensification 142:107550. doi: 10.1016/j.cep.2019.107550.
  • Uesato, S., H. Yamashita, R. Maeda, Y. Hirata, M. Yamamoto, S. Matsue, Y. Nagaoka, M. Shibano, M. Taniguchi, K. Baba, et al. 2014. Synergistic antitumor effect of a combination of paclitaxel and carboplatin with nobiletin from Citrus depressa on non-small-cell lung cancer cell lines. Planta Medica 80 (6):452–457. doi: 10.1055/s-0034-1368321.
  • Van Hung, P., N. H. Yen Nhi, L. Y. Ting, and N. T. Lan Phi. 2020. Chemical composition and biological activities of extracts from pomelo peel by-products under enzyme and ultrasound-assisted extractions. Journal of Chemistry 2020:1–7. doi: 10.1155/2020/1043251.
  • Wang, L., and C. L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 17 (6):300–312. doi: 10.1016/j.tifs.2005.12.004.
  • Wang, W., X. Ma, Y. Xu, Y. Cao, Z. Jiang, T. Ding, X. Ye, and D. Liu. 2015. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry 178:106–114. doi: 10.1016/j.foodchem.2015.01.080.
  • Wang, L., H. Xu, F. Yuan, Q. Pan, R. Fan, and Y. Gao. 2015. Physicochemical characterization of five types of citrus dietary fibers. Biocatalysis and Agricultural Biotechnology 4 (2):250–258. doi: 10.1016/j.bcab.2015.02.003.
  • Wang, W., X. Ma, P. Jiang, L. Hu, Z. Zhi, J. Chen, T. Ding, X. Ye, and D. Liu. 2016. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids. 61:730–739. doi: 10.1016/j.foodhyd.2016.06.019.
  • Wang, W.,. Y. Feng, W. Chen, K. Adie, D. Liu, and Y. Yin. 2021. Citrus pectin modified by micro-fluidization and ultrasonication: Improved emulsifying and encapsulation properties. Ultrasonics Sonochemistry 70:105322. doi: 10.1016/j.ultsonch.2020.105322.
  • Xi, J., Z. Li, and Y. Fan. 2021. Recent advances in continuous extraction of bioactive ingredients from food-processing wastes by pulsed electric fields. Critical Reviews in Food Science and Nutrition 61 (10):1738–1750. doi: 10.1080/10408398.2020.1765308.
  • Xu, M., L. Ran, N. Chen, X. Fan, D. Ren, and L. Yi. 2019. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chemistry 297:124970. doi: 10.1016/j.foodchem.2019.124970.
  • Youssef, H. M. K. E., and R. M. Mousa. 2012. Nutritional assessment of wheat biscuits and fortified wheat biscuits with citrus peels powders. Food and Public Health 2 (1):55–60.
  • Yu, J., D. V. Dandekar, R. T. Toledo, R. K. Singh, and B. S. Patil. 2007. Supercritical fluid extraction of limonoids and naringin from grapefruit (Citrus paradisi Macf.) seeds. Food Chemistry 105 (3):1026–1031. doi: 10.1016/j.foodchem.2007.04.062.
  • Zhong, G., and E. Nicolosi. 2020. Citrus origin, diffusion, and economic importance. In Citrus Genome, eds. G. Alessandra, L. M. Stefano and Z. Deng, vol. 1, 5–21. Switzerland. Springer International Publishing.
  • Zhu, Z., M. Gavahian, F. J. Barba, E. Roselló-Soto, D. B. Kovačević, P. Putnik, and G. I. Denoya. 2020. Valorization of waste and by-products from food industries through the use of innovative technologies. In Agri-food industry strategies for healthy diets and sustainability, 249–66. USA: Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.