7,447
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Variation in milk fat globule size and composition: A source of bioactives for human health

, , &

References

  • Addis, M. F., V. Bronzo, G. M. G. Puggioni, C. Cacciotto, V. Tedde, D. Pagnozzi, C. Locatelli, A. Casula, G. Curone, S. Uzzau, et al. 2017. Relationship between milk cathelicidin abundance and microbiologic culture in clinical mastitis. Journal of Dairy Science 100 (4):2944–53. doi: 10.3168/jds.2016-12110.
  • Admyre, C., S. M. Johansson, K. R. Qazi, J.-J. Filén, R. Lahesmaa, M. Norman, E. P. Neve, A. Scheynius, and S. Gabrielsson. 2007. Exosomes with immune modulatory features are present in human breast milk. Journal of Immunology (Baltimore, MD: 1950) 179 (3):1969–78. doi: 10.4049/jimmunol.179.3.1969.
  • Adriano, B., N. M. Cotto, N. Chauhan, M. Jaggi, S. C. Chauhan, and M. M. Yallapu. 2021. Milk exosomes: Nature's abundant nanoplatform for theranostic applications. Bioactive Materials 6 (8):2479–90. doi: 10.1016/j.bioactmat.2021.01.009.
  • Andersson, Y., K. Sävman, L. Bläckberg, and O. Hernell. 2007. Pasteurization of mother's own milk reduces fat absorption and growth in preterm infants. Acta Paediatrica 96 (10):1445–9. doi: 10.1111/j.1651-2227.2007.00450.x.
  • Andreotti, G., E. Trivellone, and A. Motta. 2006. Characterization of buffalo milk by 31P-nuclear magnetic resonance spectroscopy. Journal of Food Composition and Analysis 19 (8):843–9. doi: 10.1016/j.jfca.2006.03.014.
  • Antonakou, A., K. P. Skenderi, A. Chiou, C. A. Anastasiou, C. Bakoula, and A.-L. Matalas. 2013. Breast milk fat concentration and fatty acid pattern during the first six months in exclusively breastfeeding Greek women. European Journal of Nutrition 52 (3):963–73. doi: 10.1007/s00394-012-0403-8.
  • Argov-Argaman, N. 2019. Symposium review: Milk fat globule size: Practical implications and metabolic regulation. Journal of Dairy Science 102 (3):2783–95. doi: 10.3168/jds.2018-15240.
  • Argov-Argaman, N., C. Raz, and Z. Roth. 2020. Progesterone regulation of milk fat globule size is VLDL dependent. Frontiers in Endocrinology 11:596. doi: 10.3389/fendo.2020.00596.
  • Argov-Argaman, N., J. T. Smilowitz, D. A. Bricarello, M. Barboza, L. Lerno, J. W. Froehlich, H. Lee, A. M. Zivkovic, D. G. Lemay, S. Freeman, et al. 2010. Lactosomes: Structural and compositional classification of unique nanometer-sized protein lipid particles of human milk. Journal of Agricultural and Food Chemistry 58 (21):11234–42. doi: 10.1021/jf102495s.
  • Argov-Argaman, N., T. Mbogori, C. Sabastian, A. Shamay, and S. J. Mabjeesh. 2012. Hyperinsulinemic clamp modulates milk fat globule lipid composition in goats. Journal of Dairy Science 95 (10):5776–87. doi: 10.3168/jds.2012-5569.
  • Argov-Argaman, N., R. Mesilati-Stahy, Y. Magen, and U. Moallem. 2014. Elevated concentrate-to-forage ratio in dairy cow rations is associated with a shift in the diameter of milk fat globules and remodeling of their membranes. Journal of Dairy Science 97 (10):6286–95. doi: 10.3168/jds.2014-8174.
  • Argov-Argaman, N., O. Hadaya, T. Glasser, H. Muklada, L. Dvash, R. Mesilati-Stahy, and S. Y. Landau. 2016. Milk fat globule size, phospholipid contents and composition of milk from purebred and Alpine-crossbred Mid-Eastern goats under confinement or grazing condition. International Dairy Journal 58:2–8. doi: 10.1016/j.idairyj.2015.12.003.
  • Armand, M., B. Pasquier, M. André, P. Borel, M. Senft, J. Peyrot, J. Salducci, H. Portugal, V. Jaussan, and D. Lairon. 1999. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. The American Journal of Clinical Nutrition 70 (6):1096–106. doi: 10.1093/ajcn/70.6.1096.
  • Attaie, R., and R. L. Richter. 2000. Size distribution of fat globules in goat milk. Journal of Dairy Science 83 (5):940–4. doi: 10.3168/jds.S0022-0302(00)74957-5.
  • Barłowska, J., M. Szwajkowska, Z. Litwińczuk, and J. Król. 2011. Nutritional value and technological suitability of milk from various animal species used for dairy production. Comprehensive Reviews in Food Science and Food Safety 10 (6):291–302. doi: 10.1111/j.1541-4337.2011.00163.x.
  • Benboubetra, M., A. Baghiani, D. Atmani, and R. Harrison. 2004. Physicochemical and kinetic properties of purified sheep's milk xanthine oxidoreductase. Journal of Dairy Science 87 (6):1580–4. doi: 10.3168/jds.S0022-0302(04)73311-1.
  • Benoit, B., C. Fauquant, P. Daira, N. Peretti, M. Guichardant, and M.-C. Michalski. 2010. Phospholipid species and minor sterols in French human milks. Food Chemistry 120 (3):684–91. doi: 10.1016/j.foodchem.2009.10.061.
  • Berra, B., I. Colombo, E. Sottocornola, and A. Giacosa. 2002. Dietary sphingolipids in colorectal cancer prevention. European Journal of Cancer Prevention 11 (2):193–7.
  • Berton, A., S. Rouvellac, B. Robert, F. Rousseau, C. Lopez, and I. Crenon. 2012. Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: Native versus homogenized milk fat globules. Food Hydrocolloids 29 (1):123–34. doi: 10.1016/j.foodhyd.2012.02.016.
  • Bharadwaj, S., A. G. T. Naidu, G. V. Betageri, N. V. Prasadarao, and A. S. Naidu. 2009. Milk ribonuclease-enriched lactoferrin induces positive effects on bone turnover markers in postmenopausal women. Osteoporosis International 20 (9):1603–11. doi: 10.1007/s00198-009-0839-8.
  • Bhinder, G., J. M. Allaire, C. Garcia, J. T. Lau, J. M. Chan, N. R. Ryz, E. S. Bosman, F. A. Graef, S. M. Crowley, L. S. Celiberto, et al. 2017. Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Scientific Reports 7, 45274. doi: 10.1038/srep45274.
  • Bianchi, L., C. Casoli, M. Pauselli, M. Pecchiai, E. Duranti, F. Cecchi, M. C. Martini, F. Salari, L. Chianese, and S. D. Pascale. 2004. Preliminary study on Sopravissana sheep milk production [Umbria (Italy)]. Scienza e Tecnica Lattiero Casearia 55 (5):319–43.
  • Bianchi, L., M. Puglia, C. Landi, S. Matteoni, D. Perini, A. Armini, M. Verani, C. Trombetta, P. Soldani, P. Roncada, et al. 2009. Solubilization methods and reference 2-DE map of cow milk fat globules. Journal of Proteomics 72 (5):853–64. doi: 10.1016/j.jprot.2008.11.020.
  • Bieli, C., W. Eder, R. Frei, C. Braun-Fahrländer, W. Klimecki, M. Waser, J. Riedler, E. von Mutius, A. Scheynius, G. Pershagen, PARSIFAL study group, et al. 2007. A polymorphism in CD14 modifies the effect of farm milk consumption on allergic diseases and CD14 gene expression. The Journal of Allergy and Clinical Immunology 120 (6):1308–15. doi: 10.1016/j.jaci.2007.07.034.
  • Bitman, J., L. Wood, M. Hamosh, P. Hamosh, and N. R. Mehta. 1983. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. The American Journal of Clinical Nutrition 38 (2):300–12. doi:10.1093/ajcn/38.2.300. PMID:6881084
  • Bitman, J, and D. L. Wood. 1990. Changes in milk fat phospholipids during lactation. Journal of Dairy Science 73 (5):1208–16. doi:10.3168/jds.S0022-0302(90)78784-X. PMID:2365882
  • Bläckberg, L., and O. Hernell. 1983. Further characterization of the bile salt-stimulated lipase in human milk. FEBS Letters 157 (2):337–41. doi: 10.1016/0014-5793(83)80571-7.
  • Bläckberg, L., R.-D. Duan, and B. Sternby. 1997. Purification of carboxyl ester lipase (bile salt-stimulated lipase) from human milk and pancreas. Methods in Enzymology, 285:185–94.
  • Blans, K., M. S. Hansen, L. V. Sørensen, M. L. Hvam, K. A. Howard, A. Möller, L. Wiking, L. B. Larsen, and J. T. Rasmussen. 2017. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. Journal of Extracellular Vesicles 6 (1):1294340. doi: 10.1080/20013078.2017.1294340.
  • Boersma, E. R., P. J. Offringa, F. A. Muskiet, W. M. Chase, and I. J. Simmons. 1991. Vitamin E, lipid fractions, and fatty acid composition of colostrum, transitional milk, and mature milk: an international comparative study. The American Journal of Clinical Nutrition 53 (5):1197–204. doi:10.1093/ajcn/53.5.1197. PMID:2021129
  • Boots, J.-W., and R. Floris. 2006. Lactoperoxidase: From catalytic mechanism to practical applications. International Dairy Journal 16 (11):1272–6. doi: 10.1016/j.idairyj.2006.06.019.
  • Borzouee, F., M. R. Mofid, J. Varshosaz, and S. Z. A. Samsam Shariat. 2016. Purification of lactoperoxidase from bovine whey and investigation of kinetic parameters. Advanced Biomedical Research 5 (1):189. doi: 10.4103/2277-9175.192738.
  • Bourlieu, C., and M.-C. Michalski. 2015. Structure-function relationship of the milk fat globule. Current Opinion in Clinical Nutrition and Metabolic Care 18 (2):118–27. doi: 10.1097/MCO.0000000000000138.
  • Bourlieu, C., O. Menard, K. Bouzerzour, G. Mandalari, A. Macierzanka, A. R. Mackie, and D. Dupont. 2014. Specificity of infant digestive conditions: Some clues for developing relevant in vitro models. Critical Reviews in Food Science and Nutrition 54 (11):1427–57. doi: 10.1080/10408398.2011.640757.
  • Briard, V., N. Leconte, F. Michel, and M.-C. Michalski. 2003. The fatty acid composition of small and large naturally occurring milk fat globules. European Journal of Lipid Science and Technology 105 (11):677–82. doi: 10.1002/ejlt.200300812.
  • Bullen, J. J., H. J. Rogers, and L. Leigh. 1972. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. British Medical Journal 1 (5792):69–75. doi: 10.1136/bmj.1.5792.69.
  • Cavaletto, M., M. G. Giuffrida, and A. Conti. 2008. Milk fat globule membrane components–a proteomic approach. In: Bioactive components of milk: advances in experimental medicine and biology, ed. Z. Bösze, vol 606. New York, NY: Springer. doi:10.1007/978-0-387-74087-4_4
  • Ceballos, L. S., E. R. Morales, G. de la Torre Adarve, J. D. Castro, L. P. Martínez, and M. R. S. Sampelayo. 2009. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis 22 (4):322–9. doi: 10.1016/j.jfca.2008.10.020.
  • Cebo, C., and P. Martin. 2012. Inter-species comparison of milk fat globule membrane proteins highlights the molecular diversity of lactadherin. International Dairy Journal 24 (2):70–7. doi: 10.1016/j.idairyj.2011.09.017.
  • Cebo, C., C. Lopez, C. Henry, C. Beauvallet, O. Ménard, C. Bevilacqua, F. Bouvier, H. Caillat, and P. Martin. 2012. Goat α(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane. Journal of Dairy Science 95 (11):6215–29. doi: 10.3168/jds.2011-5233.
  • Chabance, B., P. Marteau, J. C. Rambaud, D. Migliore-Samour, M. Boynard, P. Perrotin, R. Guillet, P. Jolles, and A. M. Fiat. 1998. Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie 80 (2):155–65. doi: 10.1016/s0300-9084(98)80022-9.
  • Cho, J.-K., N. Azuma, C.-H. Lee, J.-H. Yu, and C. Kanno. 2000. Purification of membrane-bound lactoferrin from the human milk fat globule membrane. Bioscience, Biotechnology, and Biochemistry 64 (3):633–5. doi: 10.1271/bbb.64.633.
  • Chong, B. M., P. Reigan, K. D. Mayle-Combs, D. J. Orlicky, and J. L. McManaman. 2011. Determinants of adipophilin function in milk lipid formation and secretion. Trends in Endocrinology and Metabolism: TEM 22 (6):211–7. doi:10.1016/j.tem.2011.04.003. PMID:21592818
  • Chong, B. M., T. D. Russell, J. Schaack, D. J. Orlicky, P. Reigan, M. Ladinsky, and J. L. McManaman. 2011. The adipophilin C terminus is a self-folding membrane-binding domain that is important for milk lipid secretion. The Journal of Biological Chemistry 286 (26):23254–65. doi: 10.1074/jbc.M110.217091.
  • Claumarchirant, L., A. Cilla, E. Matencio, L. M. Sanchez-Siles, P. Castro-Gomez, J. Fontecha, A. Alegría, and M. J. Lagarda. 2016. Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. International Dairy Journal 61:228–38. doi: 10.1016/j.idairyj.2016.06.005.
  • Cohen, B.-C., A. Shamay, and N. Argov-Argaman. 2015. Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition—A potential mechanism. PLoS One 10 (3):e0121645. doi: 10.1371/journal.pone.0121645.
  • Communod, R., S. Guida, D. Vigo, V. Beretti, E. Munari, C. Colombani, P. Superchi, and A. Sabbioni. 2013. Body measures and milk production, milk fat globules granulometry and milk fatty acid content in Cabannina cattle breed. Italian Journal of Animal Science 12 (1):e18. doi: 10.4081/ijas.2013.e18.
  • Contarini, G., M. Povolo, V. Pelizzola, L. Monti, A. Bruni, L. Passolungo, F. Abeni, and L. Degano. 2014. Bovine colostrum: changes in lipid constituents in the first 5 days after parturition. Journal of Dairy Science 97 (8):5065–72. doi:10.3168/jds.2013-7517. PMID:24931528
  • Conway, V., P. Couture, S. Gauthier, Y. Pouliot, and B. Lamarche. 2014. Effect of buttermilk consumption on blood pressure in moderately hypercholesterolemic men and women. Nutrition 30 (1):116–9. doi: 10.1016/j.nut.2013.07.021.
  • Conway, V., S. F. Gauthier, and Y. Pouliot. 2014. Buttermilk: Much more than a source of milk phospholipids. Animal Frontiers 4 (2):44–51. doi: 10.2527/af.2014-0014.
  • Coolbear, K. P., D. F. Elgar, T. Coolbear, and J. S. Ayers. 1996. Comparative study of methods for the isolation and purification of bovine kappa-casein and its hydrolysis by chymosin. The Journal of Dairy Research 63 (1):61–71. doi: 10.1017/s002202990003154x.
  • Couvreur, S., C. Hurtaud, C. Lopez, L. Delaby, and J.-L. Peyraud. 2006. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science 89 (6):1956–69. doi: 10.3168/jds.S0022-0302(06)72263-9.
  • Couvreur, S., C. Hurtaud, P. G. Marnet, P. Faverdin, and J. L. Peyraud. 2007. Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. Journal of Dairy Science 90 (1):392–403. doi: 10.3168/jds.S0022-0302(07)72640-1.
  • Danielsson Niemi, L., O. Hernell, and I. Johansson. 2009. Human milk compounds inhibiting adhesion of mutans streptococci to host ligand-coated hydroxyapatite in vitro. Caries Research 43 (3):171–8. doi: 10.1159/000213888.
  • De Goede, J., J. M. Geleijnse, E. L. Ding, and S. S. Soedamah-Muthu. 2015. Effect of cheese consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews 73 (5):259–75. doi: 10.1093/nutrit/nuu060.
  • Deeth, H. C. 1997. The role of phospholipids in the stability of milk fat gobules. Australian Journal of Dairy Technology 52:44–6.
  • Dial, E. J., and L. M. Lichtenberger. 1984. A role for milk phospholipids in protection against gastric acid. Studies in adult and suckling rats. Gastroenterology 87 (2):379–85. doi: 10.1016/0016-5085(84)90716-9.
  • Donato, P., F. Cacciola, F. Cichello, M. Russo, P. Dugo, and L. Mondello. 2011. Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. Journal of Chromatography A 1218 (37):6476–82. doi: 10.1016/j.chroma.2011.07.036.
  • Dowbenko, D., A. Kikuta, C. Fennie, N. Gillett, and L. A. Lasky. 1993. Glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) mucin is expressed by lactating mammary gland epithelial cells and is present in milk. The Journal of Clinical Investigation 92 (2):952–60. doi: 10.1172/JCI116671.
  • Ducháček, J., L. Stádník, J. Beran, M. Okrouhlá, M. Vacek, and M. Doležalová. 2013. Body condition score and milk fatty acid composition in early lactation of Czech Fleckvieh cows. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 61 (6):1621–8. doi:10.11118/actaun201361061621.
  • Eckhardt, E. R., D. Q.-H. Wang, J. M. Donovan, and M. C. Carey. 2002. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology 122 (4):948–56. doi: 10.1053/gast.2002.32539.
  • Et-Thakafy, O., F. Guyomarc’h, and C. Lopez. 2017. Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chemistry 220:352–61. doi: 10.1016/j.foodchem.2016.10.017.
  • El-Zeini, H. M. 2006. Microstructure, rheological and geometrical properties of fat globules of milk from different animal species. Polish Journal of Food and Nutrition Sciences 15 (2):147–53.
  • Elofsson, U. M., P. Dejmek, and M. A. Paulsson. 1996. Heat-induced aggregation of β-lactoglobulin studied by dynamic light scattering. International Dairy Journal 6 (4):343–57. doi:10.1016/0958-6946(95)00019-4.
  • Evers, J. M., R. G. Haverkamp, S. E. Holroyd, G. B. Jameson, D. D. Mackenzie, and O. J. McCarthy. 2008. Heterogeneity of milk fat globule membrane structure and composition as observed using fluorescence microscopy techniques. International Dairy Journal 18 (12):1081–9. doi: 10.1016/j.idairyj.2008.06.001.
  • Fauquant, C., V. Briard, N. Leconte, and M.-C. Michalski. 2005. Differently sized native milk fat globules separated by microfiltration: Fatty acid composition of the milk fat globule membrane and triglyceride core. European Journal of Lipid Science and Technology 107 (2):80–6. doi: 10.1002/ejlt.200401063.
  • Fave, G., T. C. Coste, and M. Armand. 2004. Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability. Cellular and Molecular Biology 50 (7):815–32.
  • Fleming, A., F. S. Schenkel, J. Chen, F. Malchiodi, R. A. Ali, B. Mallard, M. Sargolzaei, M. Corredig, and F. Miglior. 2017. Variation in fat globule size in bovine milk and its prediction using mid-infrared spectroscopy. Journal of Dairy Science 100 (3):1640–9. doi: 10.3168/jds.2016-11427.
  • Freitas, R. F., M. d S. Macedo, A. d C. Lessa, N. A. V. D. Pinto, and R. A. Teixeira. 2021. Relationship between the diet quality index in nursing mothers and the fatty acid profile of mature breast milk. Revista Paulista de Pediatria 39: 1–10. doi: 10.1590/1984-0462/2021/39/2019089.
  • Fong, B. Y., C. S. Norris, and A. K. MacGibbon. 2007. Protein and lipid composition of bovine milk-fat-globule membrane. International Dairy Journal 17 (4):275–88. doi: 10.1016/j.idairyj.2006.05.004.
  • Fuller, K. L., T. B. Kuhlenschmidt, M. S. Kuhlenschmidt, R. Jiménez-Flores, and S. M. Donovan. 2013. Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. Journal of Dairy Science 96 (6):3488–97. doi: 10.3168/jds.2012-6122.
  • Gallier, S., A. Ye, and H. Singh. 2012. Structural changes of bovine milk fat globules during in vitro digestion. Journal of Dairy Science 95 (7):3579–92. doi: 10.3168/jds.2011-5223.
  • Gallier, S., D. Gragson, R. Jiménez-Flores, and D. Everett. 2010. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of Agricultural and Food Chemistry 58 (7):4250–7. doi: 10.1021/jf9032409.
  • Gallier, S., K. C. Gordon, R. Jiménez-Flores, and D. W. Everett. 2011. Composition of bovine milk fat globules by confocal Raman microscopy. International Dairy Journal 21 (6):402–12. doi: 10.1016/j.idairyj.2011.01.008.
  • Gallier, S., J. Cui, T. D. Olson, S. M. Rutherfurd, A. Ye, P. J. Moughan, and H. Singh. 2013. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chemistry 141 (3):3273–81. doi: 10.1016/j.foodchem.2013.06.020.
  • Gallier, S., X. Q. Zhu, S. M. Rutherfurd, A. Ye, P. J. Moughan, and H. Singh. 2013. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. II. Upper digestive tract digestion. Food Chemistry 141 (3):3215–23. doi: 10.1016/j.foodchem.2013.06.019.
  • Gallier, S., K. Vocking, J. A. Post, B. Van De Heijning, D. Acton, E. M. Van Der Beek, and T. Van Baalen. 2015. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids and Surfaces B, Biointerfaces 136:329–39. doi: 10.1016/j.colsurfb.2015.09.024.
  • Garcia, C., N. W. Lutz, S. Confort-Gouny, P. J. Cozzone, M. Armand, and M. Bernard. 2012. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chemistry 135 (3):1777–83. doi: 10.1016/j.foodchem.2012.05.111.
  • Garcia, C., C. Antona, B. Robert, C. Lopez, and M. Armand. 2014. The size and interfacial composition of milk fat globules are key factors controlling triglycerides bioavailability in simulated human gastro-duodenal digestion. Food Hydrocolloids 35:494–504. doi: 10.1016/j.foodhyd.2013.07.005.
  • Garmy, N., N. Taïeb, N. Yahi, and J. Fantini. 2005. Interaction of cholesterol with sphingosine: Physicochemical characterization and impact on intestinal absorption. Journal of Lipid Research 46 (1):36–45. doi: 10.1194/jlr.M400199-JLR200.
  • Giansanti, F., G. Panella, L. Leboffe, and G. Antonini. 2016. Lactoferrin from milk: Nutraceutical and pharmacological properties. Pharmaceuticals 9 (4):61. doi: 10.3390/ph9040061.
  • Giuffrida, F., C. Cruz-Hernandez, B. Flück, I. Tavazzi, S. K. Thakkar, F. Destaillats, and M. Braun. 2013. Quantification of phospholipids classes in human milk. Lipids 48 (10):1051–8. doi: 10.1007/s11745-013-3825-z.
  • Gobbetti, M., F. Minervini, and C. G. Rizzello. 2007. Bioactive peptides in dairy products. In Handbook of Food Products Manufacturing, 489–517. USA: John Wiley & Sons Inc.
  • Gorlov, I. F., M. I. Slozhenkina, N. I. Mosolova, O. Y. Mishina, and E. S. Vorontsova. 2019. Productivity and biological value of milk of cows of various eco-genetic types. IOP Conference Series: Earth and Environmental Science 341:012043. doi: 10.1088/1755-1315/341/1/012043.
  • Granucci, F., and I. Zanoni. 2013. Role of CD14 in host protection against infections and in metabolism regulation. Frontiers in Cellular and Infection Microbiology 3:32. doi: 10.3389/fcimb.2013.00032.
  • Gross, J., H. A. van Dorland, R. M. Bruckmaier, and F. J. Schwarz. 2011. Milk fatty acid profile related to energy balance in dairy cows. The Journal of Dairy Research 78 (4):479–88. doi: 10.1017/S0022029911000550.
  • Guo, H. Y., L. Jiang, S. A. Ibrahim, L. Zhang, H. Zhang, M. Zhang, and F. Z. Ren. 2009. Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. The Journal of Nutrition 139 (5):958–64. doi: 10.3945/jn.108.100586.
  • Gurnida, D. A., A. M. Rowan, P. Idjradinata, D. Muchtadi, and N. Sekarwana. 2012. Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Human Development 88 (8):595–601. doi: 10.1016/j.earlhumdev.2012.01.003.
  • Habte, H. H., G. J. Kotwal, Z. E. Lotz, M. G. Tyler, M. Abrahams, J. Rodriques, D. Kahn, and A. S. Mall. 2007. Antiviral activity of purified human breast milk mucin. Neonatology 92 (2):96–104. doi: 10.1159/000100808.
  • Haenlein, G. F. W. 2007. About the evolution of goat and sheep milk production. Small Ruminant Research 68 (1–2):3–6. doi: 10.1016/j.smallrumres.2006.09.021.
  • Han, L., M. Zhang, Z. Xing, D. N. Coleman, Y. Liang, J. J. Loor, and G. Yang. 2020. Knockout of butyrophilin subfamily 1 member A1 (BTN1A1) alters lipid droplet formation and phospholipid composition in bovine mammary epithelial cells. Journal of Animal Science and Biotechnology 11 (1):1–11. doi: 10.1186/s40104-020-00479-6.
  • Hanayama, R., M. Tanaka, K. Miwa, A. Shinohara, A. Iwamatsu, and S. Nagata. 2002. Identification of a factor that links apoptotic cells to phagocytes. Nature 417 (6885):182–7. doi: 10.1038/417182a.
  • Hansen, S. F., S. A. Hogan, J. Tobin, J. T. Rasmussen, L. B. Larsen, and L. Wiking. 2020. Microfiltration of raw milk for production of high-purity milk fat globule membrane material. Journal of Food Engineering 276:109887. doi: 10.1016/j.jfoodeng.2019.109887.
  • Hanuš, O., E. Samková, L. Křížová, L. Hasoňová, and R. Kala. 2018. Role of fatty acids in milk fat and the influence of selected factors on their variability—a review. Molecules 23 (7):1636. doi: 10.3390/molecules23071636.
  • Harrison, R. 2006. Milk xanthine oxidase: Properties and physiological roles. International Dairy Journal 16 (6):546–54. doi: 10.1016/j.idairyj.2005.08.016.
  • Haug, A., A. T. Høstmark, and O. M. Harstad. 2007. Bovine milk in human nutrition—A review. Lipids in Health and Disease 6 (1):25. doi: 10.1186/1476-511X-6-25.
  • Heid, H. W., and T. W. Keenan. 2005. Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology 84 (2–3):245–58. doi: 10.1016/j.ejcb.2004.12.002.
  • Henrick, B. M., K. Nag, X.-D. Yao, A. G. Drannik, G. M. Aldrovandi, and K. L. Rosenthal. 2012. Milk matters: Soluble Toll-like receptor 2 (sTLR2) in breast milk significantly inhibits HIV-1 infection and inflammation. PLoS One 7 (7):e40138. doi: 10.1371/journal.pone.0040138.
  • Henrick, B. M., X.-D. Yao, A. Y. Taha, J. B. German, and K. L. Rosenthal. 2016. Insights into soluble toll-like receptor 2 as a downregulator of virally induced inflammation. Frontiers in Immunology 7:291. doi: 10.3389/fimmu.2016.00291.
  • Hettinga, K., H. Van Valenberg, S. De Vries, S. Boeren, T. Van Hooijdonk, J. van Arendonk, and J. Vervoort. 2011. The host defense proteome of human and bovine milk. PLoS One 6 (4):e19433. doi: 10.1371/journal.pone.0019433.
  • Hill, R. D., E. Lahav, and D. Givol. 1974. A rennin-sensitive bond in alpha-s1 B-casein. The Journal of Dairy Research 41 (1):147–53. doi: 10.1017/s0022029900015028.
  • Hjerpsted, J., E. Leedo, and T. Tholstrup. 2011. Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. The American Journal of Clinical Nutrition 94 (6):1479–84. doi: 10.3945/ajcn.111.022426.
  • Hochgrebe, T., G. J. Pankhurst, J. Wilce, and S. B. Easterbrook-Smith. 2000. pH-dependent changes in the in vitro ligand-binding properties and structure of human clusterin. Biochemistry 39 (6):1411–9. doi: 10.1021/bi991581b.
  • Holzmüller, W., and U. Kulozik. 2016. Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings–A critical review. International Dairy Journal 61:51–66. doi: 10.1016/j.idairyj.2016.03.013.
  • Honvo-Houéto, E., C. Henry, S. Chat, S. Layani, and S. Truchet. 2016. The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane. Molecular Biology of the Cell 27 (19):2946–64. doi: 10.1091/mbc.E16-06-0364.
  • Hörl, G., A. Wagner, L. K. Cole, R. Malli, H. Reicher, P. Kotzbeck, H. Köfeler, G. Höfler, S. Frank, J. G. Bogner-Strauss, et al. 2011. Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. The Journal of Biological Chemistry 286 (19):17338–50. doi: 10.1074/jbc.M111.234534.
  • Howles, P. N., G. N. Stemmerman, C. M. Fenoglio-Preiser, and D. Y. Hui. 1999. Carboxyl ester lipase activity in milk prevents fat-derived intestinal injury in neonatal mice. The American Journal of Physiology 277 (3):G653–61. doi: 10.1152/ajpgi.1999.277.3.G653.
  • Huang, Shimeng, Zhenhua Wu, Cong Liu, Dandan Han, Cuiping Feng, Shilan Wang, and Junjun Wang. 2019. Milk fat globule membrane supplementation promotes neonatal growth and alleviates inflammation in low-birth-weight mice treated with lipopolysaccharide. BioMed Research International 2019:4876078. doi: 10.1155/2019/4876078.
  • Huang, Z., H. Zheng, C. S. Brennan, M. S. Mohan, L. Stipkovits, L. Li, and D. Kulasiri. 2020. Production of milk phospholipid-enriched dairy ingredients. Foods 9 (3):263. doi: 10.3390/foods9030263.
  • Hvarregaard, J., M. H. Andersen, L. Berglund, J. T. Rasmussen, and T. E. Petersen. 1996. Characterization of glycoprotein PAS-6/7 from membranes of bovine milk fat globules. European Journal of Biochemistry 240 (3):628–36. doi: 10.1111/j.1432-1033.1996.0628h.x.
  • Ingvordsen Lindahl, I., V. Artegoitia, E. Downey, J. O’Mahony, C.-A. O’Shea, C. Ryan, A. Kelly, H. Bertram, and U. Sundekilde. 2019. Quantification of human milk phospholipids: The effect of gestational and lactational age on phospholipid composition. Nutrients 11 (2):222. doi: 10.3390/nu11020222.
  • Jaakamo, M. J., T. J. Luukkonen, P. K. Kairenius, A. R. Bayat, S. A. Ahvenjärvi, T. M. Tupasela, J. H. Vilkki, K. J. Shingfield, and H. M. Leskinen. 2019. The effect of dietary forage to concentrate ratio and forage type on milk fatty acid composition and milk fat globule size of lactating cows. Journal of Dairy Science 102 (10):8825–38. doi: 10.3168/jds.2018-15833.
  • Jiang, W., X. Zhang, J. Cheng, J. Song, Q. Jin, W. Wei, M. Dong, and X. Wang. 2020. Variation of fat globule size and fatty acids in human milk in the first 30 days of lactation. International Dairy Journal 100:104567. doi: 10.1016/j.idairyj.2019.104567.
  • Jukkola, A., R. Partanen, O. J. Rojas, and A. Heino. 2016. Separation of milk fat globules via microfiltration: Effect of diafiltration media and opportunities for stream valorization. Journal of Dairy Science 99 (11):8644–54. doi: 10.3168/jds.2016-11422.
  • Kanno, C. 1990. Secretory membranes of the lactating mammary gland. Protoplasma 159 (2–3):184–208. doi: 10.1007/BF01322601.
  • Kanno, C., and D.-H. Kim. 1990. A simple procedure for the preparation of bovine milk fat globule membrane and a comparison of its composition, enzymatic activities, and electrophoretic properties with those prepared by other methods. Agricultural and Biological Chemistry 54 (11):2845–54.
  • Kashyap, D. R., A. Rompca, A. Gaballa, J. D. Helmann, J. Chan, C. J. Chang, I. Hozo, D. Gupta, and R. Dziarski. 2014. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLoS Pathogens 10 (7):e1004280. doi: 10.1371/journal.ppat.1004280.
  • Keenan, T. W., and I. H. Mather. 2006. Intracellular origin of milk fat globules and the nature of the milk fat globule membrane. In Advanced dairy chemistry volume 2 lipids, 137–71. USA: Springer.
  • Koning, N., S. F. Kessen, J. P. Van Der Voorn, B. J. Appelmelk, P. V. Jeurink, L. M. Knippels, J. Garssen, and Y. Van Kooyk. 2015. Human milk blocks DC-SIGN-pathogen interaction via MUC1. Frontiers in Immunology 6:112. doi: 10.3389/fimmu.2015.00112.
  • Küllenberg, D., L. A. Taylor, M. Schneider, and U. Massing. 2012. Health effects of dietary phospholipids. Lipids in Health and Disease 11 (1):3. doi: 10.1186/1476-511X-11-3.
  • Kvistgaard, A. S., L. T. Pallesen, C. F. Arias, S. Lopez, T. E. Petersen, C. W. Heegaard, and J. T. Rasmussen. 2004. Inhibitory effects of human and bovine milk constituents on rotavirus infections. Journal of Dairy Science 87 (12):4088–96. doi: 10.3168/jds.S0022-0302(04)73551-1.
  • Labéta, M. O., K. Vidal, J. E. Nores, M. Arias, N. Vita, B. P. Morgan, J. C. Guillemot, D. Loyaux, P. Ferrara, D. Schmid, et al. 2000. Innate recognition of bacteria in human milk is mediated by a milk-derived highly expressed pattern recognition receptor, soluble CD14. The Journal of Experimental Medicine 191 (10):1807–12. doi: 10.1084/jem.191.10.1807.
  • Le, T. T., J. Van Camp, R. Rombaut, F. van Leeckwyck, and K. Dewettinck. 2009. Effect of washing conditions on the recovery of milk fat globule membrane proteins during the isolation of milk fat globule membrane from milk. Journal of Dairy Science 92 (8):3592–603. doi: 10.3168/jds.2008-2009.
  • Le, T. T., T. Van de Wiele, T. N. H. Do, G. Debyser, K. Struijs, B. Devreese, K. Dewettinck, and J. Van Camp. 2012. Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. Journal of Dairy Science 95 (5):2307–18. doi: 10.3168/jds.2011-4947.
  • Lecomte, M., C. Bourlieu, E. Meugnier, A. Penhoat, D. Cheillan, G. Pineau, E. Loizon, M. Trauchessec, M. Claude, O. Ménard, et al. 2015. Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice. The Journal of Nutrition 145 (8):1770–7. doi: 10.3945/jn.115.212068.
  • Lee, H., E. Padhi, Y. Hasegawa, J. Larke, M. Parenti, A. Wang, O. Hernell, B. Lönnerdal, and C. Slupsky. 2018. Compositional dynamics of the milk fat globule and its role in infant development. Frontiers in Pediatrics 6:313. doi: 10.3389/fped.2018.00313.
  • Lefèvre, C. M., J. A. Sharp, and K. R. Nicholas. 2010. Evolution of lactation: Ancient origin and extreme adaptations of the lactation system. Annual Review of Genomics and Human Genetics 11:219–38. doi: 10.1146/annurev-genom-082509-141806.
  • Levy, O. 2007. Innate immunity of the newborn: Basic mechanisms and clinical correlates. Nature Reviews Immunology 7 (5):379–90. doi: 10.1038/nri2075.
  • Liao, Y., R. Alvarado, B. Phinney, and B. Lönnerdal. 2011. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. Journal of Proteome Research 10 (8):3530–41. doi: 10.1021/pr200149t.
  • Liu, B., Z. Yu, C. Chen, D. E. Kling, and D. S. Newburg. 2012. Human milk mucin 1 and mucin 4 inhibit Salmonella enterica serovar Typhimurium invasion of human intestinal epithelial cells in vitro. The Journal of Nutrition 142 (8):1504–9. doi: 10.3945/jn.111.155614.
  • Liu, H., E. C. Radlowski, M. S. Conrad, Y. Li, R. N. Dilger, and R. W. Johnson. 2014. Early supplementation of phospholipids and gangliosides affects brain and cognitive development in neonatal piglets. The Journal of Nutrition 144 (12):1903–9. doi: 10.3945/jn.114.199828.
  • Logan, A., M. Auldist, J. Greenwood, and L. Day. 2014. Natural variation of bovine milk fat globule size within a herd. Journal of Dairy Science 97 (7):4072–82. doi: 10.3168/jds.2014-8010.
  • Lopez, C. 2011. Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science 16 (5):391–404. doi: 10.1016/j.cocis.2011.05.007.
  • Lopez, C., and O. Ménard. 2011. Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids and Surfaces B, Biointerfaces 83 (1):29–41. doi: 10.1016/j.colsurfb.2010.10.039.
  • Lopez, C., C. Cauty, and F. Guyomarc’h. 2015. Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science & Technology 95 (6):863–93. doi: 10.1007/s13594-015-0263-0.
  • Lopez, C., M.-N. Madec, and R. Jimenez-Flores. 2010. Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chemistry 120 (1):22–33. doi: 10.1016/j.foodchem.2009.09.065.
  • Lopez, C., V. Briard-Bion, and O. Ménard. 2014. Polar lipids, sphingomyelin and long-chain unsaturated fatty acids from the milk fat globule membrane are increased in milks produced by cows fed fresh pasture based diet during spring. Food Research International 58:59–68. doi: 10.1016/j.foodres.2014.01.049.
  • Lopez, C., V. Briard-Bion, O. Menard, F. Rousseau, P. Pradel, and J.-M. Besle. 2008. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. Journal of Agricultural and Food Chemistry 56 (13):5226–36. doi: 10.1021/jf7036104.
  • Lopez, C., V. Briard-Bion, O. Ménard, E. Beaucher, F. Rousseau, J. Fauquant, N. Leconte, and B. Robert. 2011. Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry 125 (2):355–68. doi: 10.1016/j.foodchem.2010.09.005.
  • Lu, J., E. Antunes Fernandes, A. E. Páez Cano, J. Vinitwatanakhun, S. Boeren, T. van Hooijdonk, A. van Knegsel, J. Vervoort, and K. A. Hettinga. 2013. Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. Journal of Proteome Research 12 (7):3288–96. doi: 10.1021/pr4001306.
  • Lu, J., L. Liu, X. Pang, S. Zhang, Z. Jia, C. Ma, L. Zhao, and J. Lv. 2016. Comparative proteomics of milk fat globule membrane in goat colostrum and mature milk. Food Chemistry 209:10–6. doi: 10.1016/j.foodchem.2016.04.020.
  • Lu, J., N. Argov-Argaman, J. Anggrek, S. Boeren, T. van Hooijdonk, J. Vervoort, and K. A. Hettinga. 2016. The protein and lipid composition of the membrane of milk fat globules depends on their size. Journal of Dairy Science 99 (6):4726–38. doi: 10.3168/jds.2015-10375.
  • Lu, J., S. Boeren, S. C. De Vries, H. J. F. Van Valenberg, J. Vervoort, and K. Hettinga. 2011. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. Journal of Proteomics 75 (1):34–43. doi: 10.1016/j.jprot.2011.07.031.
  • Lu, J., X. Wang, W. Zhang, L. Liu, X. Pang, S. Zhang, and J. Lv. 2016. Comparative proteomics of milk fat globule membrane in different species reveals variations in lactation and nutrition. Food Chemistry 196:665–72. doi: 10.1016/j.foodchem.2015.10.005.
  • Luo, J., Z. W. Wang, F. Wang, H. Zhang, J. Lu, H. Y. Guo, and F. Z. Ren. 2014. Cryo-SEM images of native milk fat globule indicate small casein micelles are constituents of the membrane. RSC Advances 4 (90):48963–6. doi: 10.1039/C4RA06171C.
  • Martini, M., I. Altomonte, and F. Salari. 2012a. The lipid component of Massese ewes’ colostrum: Morphometric characteristics of milk fat globules and fatty acid profile. International Dairy Journal 24 (2):93–6. doi: 10.1016/j.idairyj.2011.07.006.
  • Martini, M., I. Altomonte, and F. Salari. 2012b. Relationship between the nutritional value of fatty acid profile and the morphometric characteristics of milk fat globules in ewe's milk. Small Ruminant Research 105 (1–3):33–7. doi: 10.1016/j.smallrumres.2011.12.007.
  • Martini, M., I. Altomonte, R. Pesi, M. G. Tozzi, and F. Salari. 2013. Fat globule membranes in ewes' milk: The main enzyme activities during lactation. International Dairy Journal 28 (1):36–9. doi: 10.1016/j.idairyj.2012.07.002.
  • Martini, M., F. Cecchi, C. Scolozzi, R. Leotta, and P. Verita. 2003. Milk fat globules in different dairy cattle breeds Part I: Orphometric analysis. Italian Journal of Animal Science 2 (Sup 1):272–4.
  • Martini, M., G. Battista Liponi, and F. Salari. 2010. Effect of forage: Concentrate ratio on the quality of ewe's milk, especially on milk fat globules characteristics and fatty acids composition. Journal of Dairy Research 77 (2):239–44. doi: 10.1017/S0022029910000038.
  • Martini, M., F. Salari, and I. Altomonte. 2016. The macrostructure of milk lipids: The fat globules. Critical Reviews in Food Science and Nutrition 56 (7):1209–21. doi: 10.1080/10408398.2012.758626.
  • Martini, M., F. Salari, I. Altomonte, D. Rignanese, S. Chessa, C. Gigliotti, and A. Caroli. 2010. The Garfagnina goat: A zootechnical overview of a local dairy population. Journal of Dairy Science 93 (10):4659–67. doi: 10.3168/jds.2010-3207.
  • Martini, M., F. Salari, R. Pesi, and M. G. Tozzi. 2010. Relationship between activity of some fat globule membrane enzymes and the lipidic fraction in ewes' milk: Preliminary studies. International Dairy Journal 20 (1):61–4. doi: 10.1016/j.idairyj.2009.07.002.
  • Martini, M., F. Salari, C. Scolozzi, L. Bianchi, M. Pauselli, E. Rossetti, and P. Verita. 2006. Morphometric characteristics of sheep milk fat globules (Part I): Influence of genetic type and phase of lactation. Paper presented at the 14 Congreso Internactional de la Federaciòn Mediterrànea de Sanidad y Producciòn de Ruminantes.
  • Mather, I. H., and T. W. Keenan. 1998. Origin and secretion of milk lipids. Journal of Mammary Gland Biology and Neoplasia 3 (3):259–73. doi: 10.1023/A:1018711410270.
  • Michalski, M. C., V. Briard, F. Michel, F. Tasson, and P. Poulain. 2005. Size distribution of fat globules in human colostrum, breast milk, and infant formula. Journal of Dairy Science 88 (6):1927–40. doi: 10.3168/jds.S0022-0302(05)72868-X.
  • Michalski, M.-C., A. F. Soares, C. Lopez, N. Leconte, V. Briard, and A. Geloen. 2006. The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. European Journal of Nutrition 45 (4):215–24. doi: 10.1007/s00394-006-0588-9.
  • McMahon, D. J., and B. S. Oommen. 2008. Supramolecular structure of the casein micelle. Journal of Dairy Science 91 (5):1709–21. doi: 10.3168/jds.2007-0819.
  • McManaman, J. 2009. Formation of milk lipids: A molecular perspective. Clinical Lipidology 4 (3):391–401. doi: 10.2217/clp.09.15.
  • McManaman, J. L., T. D. Russell, J. Schaack, D. J. Orlicky, and H. Robenek. 2007. Molecular determinants of milk lipid secretion. Journal of Mammary Gland Biology and Neoplasia 12 (4):259–68. doi: 10.1007/s10911-007-9053-5.
  • Mehaia, M. A. 1995. The fat globule size distribution in camel, goat, ewe and cow milk. Milchwissenschaft 50 (5):260–3.
  • Meisel, H., and R. J. Fitzgerald. 2000. Opioid peptides encrypted in intact milk protein sequences. British Journal of Nutrition 84 (S1):27–31. doi: 10.1017/S000711450000221X.
  • Meisel, H., and E. Schlimme. 1994. Inhibitors of angiotensin-converting-enzyme derived from bovine casein (casokinins). In β-Casomorphins and related peptides: Recent developments, 27–33. Weinheim: VCH.
  • Meľuchová, B., J. Blaško, R. Kubinec, R. Górová, J. Dubravská, M. Margetín, and L. Soják. 2008. Seasonal variations in fatty acid composition of pasture forage plants and CLA content in ewe milk fat. Small Ruminant Research 78 (1–3):56–65. doi: 10.1016/j.smallrumres.2008.05.001.
  • Ménard, O., S. Ahmad, F. Rousseau, V. Briard-Bion, F. Gaucheron, and C. Lopez. 2010. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chemistry 120 (2):544–51. doi: 10.1016/j.foodchem.2009.10.053.
  • Mesilati-Stahy, R., and N. Argov-Argaman. 2014. The relationship between size and lipid composition of the bovine milk fat globule is modulated by lactation stage. Food Chemistry 145:562–70. doi: 10.1016/j.foodchem.2013.08.077.
  • Mesilati-Stahy, R., and N. Argov-Argaman. 2018. Changes in lipid droplets morphometric features in mammary epithelial cells upon exposure to non-esterified free fatty acids compared with VLDL. PLoS One 13 (12):e0209565. doi: 10.1371/journal.pone.0209565.
  • Mesilati-Stahy, R., H. Malka, and N. Argov-Argaman. 2012. Association of plasma insulin concentration to fatty acid distribution between milk fat and membrane synthesis. Journal of Dairy Science 95 (4):1767–75. doi: 10.3168/jds.2011-4583.
  • Mesilati-Stahy, R., K. Mida, and N. Argov-Argaman. 2011. Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. Journal of Agricultural and Food Chemistry 59 (13):7427–35. doi: 10.1021/jf201373j.
  • Mesilati-Stahy, R., U. Moallem, Y. Magen, and N. Argov-Argaman. 2015. Altered concentrate to forage ratio in cows ration enhanced bioproduction of specific size subpopulation of milk fat globules. Food Chemistry 179:199–205. doi: 10.1016/j.foodchem.2015.01.138.
  • Michalski, M.-C., V. Briard, and F. Michel. 2001. Optical parameters of milk fat globules for laser light scattering measurements. Le Lait 81 (6):787–96. doi: 10.1051/lait:2001105.
  • Michalski, M.-C., V. Briard, and P. Juaneda. 2005. CLA profile in native fat globules of different sizes selected from raw milk. International Dairy Journal 15 (11):1089–94. doi: 10.1016/j.idairyj.2004.11.011.
  • Michalski, M.-C., J.-Y. Gassi, M.-H. Famelart, N. Leconte, B. Camier, F. Michel, and V. Briard. 2003. The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Le Lait 83 (2):131–43. doi: 10.1051/lait:2003003.
  • Minegishi, Y., N. Ota, S. Soga, and A. Shimotoyodome. 2016. Effects of nutritional supplementation with milk fat globule membrane on physical and muscle function in healthy adults aged 60 and over with semiweekly light exercise: A randomized double-blind, placebo-controlled pilot trial. Journal of Nutritional Science and Vitaminology 62 (6):409–15. doi: 10.3177/jnsv.62.409.
  • Mondy, B. L., and T. W. Keenan. 1993. Butyrophilin and xanthine oxidase occur in constant molar proportions in milk lipid globule membrane but vary in amount with breed and stage of lactation. Protoplasma 177 (1–2):32–6. doi: 10.1007/BF01403396.
  • Monks, J., M. Dzieciatkowska, E. S. Bales, D. J. Orlicky, R. M. Wright, and J. L. McManaman. 2016. Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion. The Journal of Physiology 594 (20):5899–921. doi: 10.1113/JP272390.
  • Moriya, H., K. Uchida, T. Okajima, T. Matsuda, and D. Nadano. 2011. Secretion of three enzymes for fatty acid synthesis into mouse milk in association with fat globules, and rapid decrease of the secreted enzymes by treatment with rapamycin. Archives of Biochemistry and Biophysics 508 (1):87–92. doi: 10.1016/j.abb.2011.01.015.
  • Motouri, M., H. Matsuyama, J.-i. Yamamura, M. Tanaka, S. Aoe, T. Iwanaga, and H. Kawakami. 2003. Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. Journal of Pediatric Gastroenterology and Nutrition 36 (2):241–7. doi: 10.1097/00005176-200302000-00016.
  • Mudd, A. T., Lindsey, S. Alexander, K. Berding, R. V. Waworuntu, B. M. Berg, S. M. Donovan, and R. N. Dilger. 2016. Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Frontiers in Pediatrics 4 (4). doi: 10.3389/fped.2016.00004.
  • Mulder, H., and P. Walstra. 1974. The milk fat globule. Emulsion science as applied to milk products and comparable foods. Wageningen: Centre for Agricultural Publishing and Documentation.
  • Murgia, S., S. Mele, and M. Monduzzi. 2003. Quantitative characterization of phospholipids in milk fat via 31P NMR using a monophasic solvent mixture. Lipids 38 (5):585–91. doi: 10.1007/s11745-003-1500-3.
  • Naarding, M. A., A. M. Dirac, I. S. Ludwig, D. Speijer, S. Lindquist, E.-L. Vestman, M. J. Stax, T. B. H. Geijtenbeek, G. Pollakis, O. Hernell, et al. 2006. Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells. Antimicrobial Agents and Chemotherapy 50 (10):3367–74. doi: 10.1128/AAC.00593-06.
  • Nantapo, C. T. W., V. Muchenje, and A. Hugo. 2014. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian × Jersey cross cow milk under a pasture-based dairy system. Food Chemistry 146:127–33. doi: 10.1016/j.foodchem.2013.09.009.
  • Newburg, D. S., J. A. Peterson, G. M. Ruiz-Palacios, D. O. Matson, A. L. Morrow, J. Shults, M. d. L. Guerrero, P. Chaturvedi, S. O. Newburg, C. D. Scallan, et al. 1998. Role of human-milk lactadherin in protectoin against symptomatic rotavirus infection. The Lancet 351 (9110):1160–4. doi: 10.1016/S0140-6736(97)10322-1.
  • Nielsen, R. L., M. H. Andersen, P. Mabhout, L. Berglund, T. E. Petersen, and J. T. Rasmussen. 1999. Isolation of adipophilin and butyrophilin from bovine milk and characterization of a cDNA encoding adipophilin. Journal of Dairy Science 82 (12):2543–9. doi: 10.3168/jds.S0022-0302(99)75508-6.
  • Ollivier-Bousquet, M. 2002. Milk lipid and protein traffic in mammary epithelial cells: Joint and independent pathways. Reproduction Nutrition Development 42 (2):149–62. doi: 10.1051/rnd:2002014.
  • O’mahony, J. A., K. E. Smith, and J. Anthony Lucey. 2014. Purification of beta casein from milk. Google Patents.
  • Oshida, K., T. Shimizu, M. Takase, Y. Tamura, T. Shimizu, and Y. Yamashiro. 2003. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatric Research 53 (4):589–93. doi: 10.1203/01.PDR.0000054654.73826.AC.
  • Oshima, K., N. Aoki, T. Kato, K. Kitajima, and T. Matsuda. 2002. Secretion of a peripheral membrane protein, MFG-E8, as a complex with membrane vesicles. European Journal of Biochemistry 269 (4):1209–18. doi: 10.1046/j.1432-1033.2002.02758.x.
  • Ota, N., S. Soga, T. Hase, and A. Shimotoyodome. 2015. Daily consumption of milk fat globule membrane plus habitual exercise improves physical performance in healthy middle-aged adults. Springerplus 4 (1):1–8. doi: 10.1186/s40064-015-0896-8.
  • Palmquist, D. L. 2006. Milk fat: Origin of fatty acids and influence of nutritional factors thereon. In Advanced dairy chemistry volume 2 lipids, 43–92. USA: Springer.
  • Park, Y. W., and G. F. Haenlein. 2021. A2 bovine milk and caprine milk as a means of remedy for milk protein allergy. Dairy 2 (2):191–201. doi: 10.3390/dairy2020017.
  • Park, Y. W., and M. S. Nam. 2015. Bioactive peptides in milk and dairy products: A review. Korean Journal for Food Science of Animal Resources 35 (6):831–40. doi: 10.5851/kosfa.2015.35.6.831.
  • Pegolo, S., A. Cecchinato, M. Mele, G. Conte, S. Schiavon, and G. Bittante. 2016. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. Journal of Dairy Science 99 (6):4558–73. doi: 10.3168/jds.2015-10420.
  • Pepeu, G., I. M. Pepeu, and L. Amaducci. 1996. A review of phosphatidylserine pharmacological and clinical effects. Is phosphatidylserine a drug for the ageing brain? Pharmacological Research 33 (2):73–80. doi: 10.1006/phrs.1996.0013.
  • Peterson, J. A., M. Hamosh, C. D. Scallan, R. L. Ceriani, T. R. Henderson, N. R. Mehta, M. Armand, and P. Hamosh. 1998. Milk fat globule glycoproteins in human milk and in gastric aspirates of mother's milk-fed preterm infants. Pediatric Research 44 (4):499–506. doi: 10.1203/00006450-199810000-00006.
  • Pietrzak-Fiećko, R., and A. M. Kamelska-Sadowska. 2020. The comparison of nutritional value of human milk with other mammals’ milk. Nutrients 12 (5):1404. doi: 10.3390/nu12051404.
  • Pisanu, S., S. Ghisaura, D. Pagnozzi, G. Biosa, A. Tanca, T. Roggio, S. Uzzau, and M. F. Addis. 2011. The sheep milk fat globule membrane proteome. Journal of Proteomics 74 (3):350–8. doi: 10.1016/j.jprot.2010.11.011.
  • Pisanu, S., S. Ghisaura, D. Pagnozzi, G. Falchi, G. Biosa, A. Tanca, T. Roggio, S. Uzzau, and M. F. Addis. 2012. Characterization of sheep milk fat globule proteins by two-dimensional polyacrylamide gel electrophoresis/mass spectrometry and generation of a reference map. International Dairy Journal 24 (2):78–86. doi: 10.1016/j.idairyj.2011.05.009.
  • Pisanu, S., G. Marogna, D. Pagnozzi, M. Piccinini, G. Leo, A. Tanca, A. M. Roggio, T. Roggio, S. Uzzau, and M. F. Addis. 2013. Characterization of size and composition of milk fat globules from Sarda and Saanen dairy goats. Small Ruminant Research 109 (2–3):141–51. doi: 10.1016/j.smallrumres.2012.07.024.
  • Qian, Z.-Y., P. Jollès, D. Migliore-Samour, F. Schoentgen, and A.-M. Fiat. 1995. Sheep κ-casein peptides inhibit platelet aggregation. Biochimica et Biophysica Acta (BBA) - General Subjects 1244 (2–3):411–7. doi: 10.1016/0304-4165(95)00047-F.
  • Qiang, X., J. Li, R. Wu, Y. Ji, W. Chaung, W. Dong, and P. Wang. 2011. Expression and characterization of recombinant human milk fat globule-EGF factor factor VIII. International Journal of Molecular Medicine 28 (6):1071–6. doi: 10.3892/ijmm.2011.782.
  • Rasmussen, L. K., and T. E. Petersen. 1991. Purification of disulphide-linked alpha s2- and kappa-casein from bovine milk. The Journal of Dairy Research 58 (2):187–93. doi: 10.1017/s0022029900029733.
  • Rasmussen, L. K., H. A. Due, and T. E. Petersen. 1995. Human αs1-casein: Purification and characterization. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 111 (1):75–81. doi: 10.1016/0305-0491(94)00225-J.
  • Raymond, A., M. A. Ensslin, and B. D. Shur. 2009. SED1/MFG-E8: A bi-motif protein that orchestrates diverse cellular interactions. Journal of Cellular Biochemistry 106 (6):957–66. doi: 10.1002/jcb.22076.
  • Reinhardt, T. A., and J. D. Lippolis. 2006. Bovine milk fat globule membrane proteome. The Journal of Dairy Research 73 (4):406–16. doi: 10.1017/S0022029906001889.
  • Reinhardt, T. A., and J. D. Lippolis. 2008. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. Journal of Dairy Science 91 (6):2307–18. doi: 10.3168/jds.2007-0952.
  • Reinhardt, T. A., J. D. Lippolis, B. J. Nonnecke, and R. E. Sacco. 2012. Bovine milk exosome proteome. Journal of Proteomics 75 (5):1486–92. doi: 10.1016/j.jprot.2011.11.017.
  • Rhodes, D. A., W. Reith, and J. Trowsdale. 2016. Regulation of immunity by butyrophilins. Annual Review of Immunology 34:151–72. doi: 10.1146/annurev-immunol-041015-055435.
  • Robenek, H., O. Hofnagel, I. Buers, S. Lorkowski, M. Schnoor, M. J. Robenek, H. Heid, D. Troyer, and N. J. Severs. 2006. Butyrophilin controls milk fat globule secretion. Proceedings of the National Academy of Sciences of the United States of America 103 (27):10385–90. doi: 10.1073/pnas.0600795103.
  • Russo, M., F. Cichello, C. Ragonese, P. Donato, F. Cacciola, P. Dugo, and L. Mondello. 2013. Profiling and quantifying polar lipids in milk by hydrophilic interaction liquid chromatography coupled with evaporative light-scattering and mass spectrometry detection. Analytical and Bioanalytical Chemistry 405 (13):4617–26. doi: 10.1007/s00216-012-6699-7.
  • Ruvoën-Clouet, N., E. Mas, S. Marionneau, P. Guillon, D. Lombardo, and J. Le Pendu. 2006. Bile-salt-stimulated lipase and mucins from milk of 'secretor' mothers inhibit the binding of Norwalk virus capsids to their carbohydrate ligands. The Biochemical Journal 393 (Pt 3):627–34. doi: 10.1042/BJ20050898.
  • Saeland, E., M. A. de Jong, A. A. Nabatov, H. Kalay, T. B. Geijtenbeek, and Y. van Kooyk. 2009. MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Molecular Immunology 46 (11–12):2309–16. doi: 10.1016/j.molimm.2009.03.025.
  • Salari, F., and M. Martini. 2009. Evaluation of the morphometric characteristics of ewe milk fat globules, cheese yield and ripening in the intermediate lactation phase. Italian Journal of Animal Science 8 (sup 2):429–31. doi: 10.4081/ijas.2009.s2.429.
  • Salari, F., I. Altomonte, N. L. Ribeiro, M. N. Ribeiro, R. Bozzi, and M. Martini. 2016. Effects of season on the quality of Garfagnina goat milk. Italian Journal of Animal Science 15 (4):568–75. doi: 10.1080/1828051X.2016.1247658.
  • Sams, L., J. Paume, J. Giallo, and F. Carrière. 2016. Relevant pH and lipase for in vitro models of gastric digestion. Food & Function 7 (1):30–45. doi: 10.1039/c5fo00930h.
  • Sanogo, T., D. Pâquet, F. Aubert, and G. Linden. 1989. Purification of αs1-casein by fast protein liquid chromatography. Journal of Dairy Science 72 (9):2242–6. doi: 10.3168/jds.S0022-0302(89)79354-1.
  • Sato, R., T. Noguchi, and H. Naito. 1986. Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. Journal of Nutritional Science and Vitaminology 32 (1):67–76. doi: 10.3177/jnsv.32.67.
  • Sherman, M. P., S. H. Bennett, F. F. Hwang, and C. Yu. 2004. Neonatal small bowel epithelia: Enhancing anti-bacterial defense with lactoferrin and Lactobacillus GG. Biometals 17 (3):285–9. doi: 10.1023/B:BIOM.0000027706.51112.62.
  • Shimizu, T. 2009. Lipid mediators in health and disease: Enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annual Review of Pharmacology and Toxicology 49:123–50. doi: 10.1146/annurev.pharmtox.011008.145616.
  • Smith, I. A., B. R. Knezevic, J. U. Ammann, D. A. Rhodes, D. Aw, D. B. Palmer, I. H. Mather, and J. Trowsdale. 2010. BTN1A1, the mammary gland butyrophilin, and BTN2A2 are both inhibitors of T cell activation. Journal of Immunology (Baltimore, MD: 1950) 184 (7):3514–25. doi: 10.4049/jimmunol.0900416.
  • Smoczyński, M. 2017. Role of phospholipid flux during milk secretion in the mammary gland. Journal of Mammary Gland Biology and Neoplasia 22 (2):117–29. doi: 10.1007/s10911-017-9376-9.
  • Snow, D. R., R. E. Ward, A. Olsen, R. Jimenez-Flores, and K. J. Hintze. 2011. Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. Journal of Dairy Science 94 (5):2201–12. doi: 10.3168/jds.2010-3886.
  • Sprong, R. C., M. F. Hulstein, T. T. Lambers, and R. van der Meer. 2012. Sweet buttermilk intake reduces colonisation and translocation of Listeria monocytogenes in rats by inhibiting mucosal pathogen adherence. The British Journal of Nutrition 108 (11):2026–33. doi: 10.1017/S0007114512000165.
  • Stamm, M. 2015. Effects of different microalgae supplements on fatty acid composition, oxidation stability, milk fat globule size and phospholipid content of bovine milk. Finland: University of Helsinki. http://urn.fi/URN:NBN:fi:hulib-201510193736
  • Stevens, C. R., T. M. Millar, J. G. Clinch, J. M. Kanczler, T. Bodamyali, and D. R. Blake. 2000. Antibacterial properties of xanthine oxidase in human milk. The Lancet 356 (9232):829–30. doi: 10.1016/S0140-6736(00)02660-X.
  • Stringer, D. M., P. Zahradka, V. C. DeClercq, N. R. Ryz, R. Diakiw, L. L. Burr, X. Xie, and C. G. Taylor. 2010. Modulation of lipid droplet size and lipid droplet proteins by trans-10,cis-12 conjugated linoleic acid parallels improvements in hepatic steatosis in obese, insulin-resistant rats. Biochimica et Biophysica Acta 1801 (12):1375–85. doi: 10.1016/j.bbalip.2010.08.011.
  • Strzałkowska, Nina, A Jóźwik, Emilia Bagnicka, J Krzyżewski, and JO Horbańczuk. 2009. Studies upon genetic and environmental factors affecting the cholesterol content of cow milk. I. Relationship between the polymorphic form of beta-lactoglobulin, somatic cell count, cow age and stage of lactation and cholesterol content of milk. Animal Science Papers and Reports 27 (2):95–103. 
  • Strömqvist, M., P. Falk, S. Bergström, L. Hansson, B. Lönnerdal, S. Normark, and O. Hernell. 1995. Human milk kappa-casein and inhibition of Helicobacter pylori adhesion to human gastric mucosa. Journal of Pediatric Gastroenterology and Nutrition 21 (3):288–96.
  • Sun, Y., C. Wang, X. Sun, and M. Guo. 2019. Comparative proteomics of whey and milk fat globule membrane proteins of Guanzhong goat and Holstein cow mature milk. Journal of Food Science 84 (2):244–53. doi: 10.1111/1750-3841.14428.
  • Suri, S., V. Kumar, R. Prasad, B. Tanwar, A. Goyal, S. Kaur, Y. Gat, A. Kumar, J. Kaur, and D. Singh. 2019. Considerations for development of lactose-free food. Journal of Nutrition & Intermediary Metabolism 15:27–34. doi: 10.1016/j.jnim.2018.11.003.
  • Tatar, V., H. Mootse, A. Sats, T. Mahla, T. Kaart, and V. Poikalainen. 2015. Evaluation of size distribution of fat globules and fat and protein content in Estonian Goat milk. Agronomy Research 13 (4):1112–9.
  • Thiam, A. R., R. V. Farese, Jr., and T. C. Walther. 2013. The biophysics and cell biology of lipid droplets. Nature Reviews Molecular Cell Biology 14 (12):775–86. doi: 10.1038/nrm3699.
  • Thompson, A. K., and H. Singh. 2006. Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. Journal of Dairy Science 89 (2):410–9. doi: 10.3168/jds.S0022-0302(06)72105-1.
  • Timby, N., E. Domellof, O. Hernell, B. Lonnerdal, and M. Domellof. 2014. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. The American Journal of Clinical Nutrition 99 (4):860–8. doi: 10.3945/ajcn.113.064295.
  • Timmen, H., and S. Patton. 1988. Milk fat globules: Fatty acid composition, size and in vivo regulation of fat liquidity. Lipids 23 (7):685–9. doi: 10.1007/BF02535669.
  • Truong, T., M. Palmer, N. Bansal, and B. Bhandari. 2016. Techniques to measure milk fat globule size. In Effect of milk fat globule size on the physical functionality of dairy products, 11–4. Springer (USA).
  • Vanderghem, C., P. Bodson, S. Danthine, M. Paquot, C. Deroanne, and C. Blecker. 2010. Milk fat globule membrane and buttermilks: From composition to valorization. Base 14 (3): 485–500.
  • Verardo, V., A. Gómez-Caravaca, D. Arráez-Román, and K. Hettinga. 2017. Recent advances in phospholipids from colostrum, milk and dairy by-products. International Journal of Molecular Sciences 18 (1):173. doi: 10.3390/ijms18010173.
  • Walstra, P. 1969. Studies on milk fat dispersion. 2. Globule-size distribution of cows milk. Netherlands Milk and Dairy Journal-Nederlands-Nederlands Melk En Zuiveltijdschrift 23 (2):99.
  • Walter, L., S. Finch, B. Cullen, R. Fry, A. Logan, and B. J. Leury. 2019. The effect of physiological state, milk production traits and environmental conditions on milk fat globule size in cow's milk. The Journal of Dairy Research 86 (4):454–60. doi: 10.1017/S0022029919000748.
  • Walter, L., P. Shrestha, R. Fry, B. J. Leury, and A. Logan. 2020. Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. Journal of Dairy Science 103 (2):1920–30. doi: 10.3168/jds.2019-16775.
  • Ward, T. L., K. Goto, and I. Altosaar. 2014. Ingested soluble CD14 contributes to the functional pool of circulating sCD14 in mice. Immunobiology 219 (7):537–46. doi: 10.1016/j.imbio.2014.03.008.
  • Watanabe, K., A. Holobar, A. Tomita, and Y. Mita. 2020. Effect of milk fat globule membrane supplementation on motor unit adaptation following resistance training in older adults. Physiological Reports 8 (12):e14491. doi: 10.14814/phy2.14491.
  • Wedholm, A., L. B. Larsen, H. Lindmark-Månsson, A. H. Karlsson, and A. Andrén. 2006. Effect of protein composition on the cheese-making properties of milk from individual dairy cows. Journal of Dairy Science 89 (9):3296–305. doi:10.3168/jds.S0022-0302(06)72366-9. PMID:16899662
  • Wiking, L., J. Stagsted, L. Björck, and J. H. Nielsen. 2004. Milk fat globule size is affected by fat production in dairy cows. International Dairy Journal 14 (10):909–13. doi: 10.1016/j.idairyj.2004.03.005.
  • Wiking, L., P. K. Theil, J. H. Nielsen, and M. T. Sørensen. 2010. Effect of grazing fresh legumes or feeding silage on fatty acids and enzymes involved in the synthesis of milk fat in dairy cows. The Journal of Dairy Research 77 (3):337–42. doi: 10.1017/S002202991000021X.
  • Wilde, P. J., and B. S. Chu. 2011. Interfacial & colloidal aspects of lipid digestion. Advances in Colloid and Interface Science 165 (1):14–22. doi: 10.1016/j.cis.2011.02.004.
  • Wooding, F. B. Peter, and I. H. Mather. 2017. Ultrastructural and immunocytochemical evidence for the reorganisation of the milk fat globule membrane after secretion. Cell and Tissue Research 367 (2):283–95. doi: 10.1007/s00441-016-2505-8.
  • Xing, Z. Y., M. L. Zhang, Y. Y. Wang, G. Y. Yang, L. Q. Han, and J. J. Loor. 2020. Short communication: A decrease in diameter of milk fat globules accompanies milk fat depression induced by conjugated linoleic acid supplementation in lactating dairy cows. Journal of Dairy Science 103 (6):5143–7. doi: 10.3168/jds.2019-17845.
  • Wada, Y., and B. Lönnerdal. 2014. Bioactive peptides derived from human milk proteins-mechanisms of action. The Journal of Nutritional Biochemistry 25 (5):503–14. doi: 10.1016/j.jnutbio.2013.10.012.
  • Wang, Y., F. Ding, T. Wang, W. Liu, S. Lindquist, O. Hernell, J. Wang, J. Li, L. Li, Y. Zhao, et al. 2017. Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows. PLoS One 12 (5):e0176864. doi: 10.1371/journal.pone.0176864.
  • Yang, M., M. Cong, X. Peng, J. Wu, R. Wu, B. Liu, W. Ye, and X. Yue. 2016. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food & Function 7 (5):2438–50. doi: 10.1039/c6fo00083e.
  • Yang, M., X. Peng, J. Wu, R.-n. Wu, B. Liu, W. Ye, X. Xu, and X. Yue. 2017. Differential proteomic analysis of milk fat globule membrane proteins in human and bovine colostrum by iTRAQ-coupled LC-MS/MS. European Food Research and Technology 243 (5):901–12. doi: 10.1007/s00217-016-2798-6.
  • Ye, A., J. Cui, and H. Singh. 2011. Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. Journal of Dairy Science 94 (6):2762–70. doi: 10.3168/jds.2010-4099.
  • Ye, A., J. Cui, D. Dalgleish, and H. Singh. 2017. Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. Journal of Dairy Science 100 (1):36–47. doi: 10.3168/jds.2016-11764.
  • Yolken, R. H., J. A. Peterson, S. L. Vonderfecht, E. T. Fouts, K. Midthun, and D. S. Newburg. 1992. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. The Journal of Clinical Investigation 90 (5):1984–91. doi: 10.1172/JCI116078.
  • Zamora, A., B. Guamis, and A. J. Trujillo. 2009. Protein composition of caprine milk fat globule membrane. Small Ruminant Research 82 (2–3):122–9. doi: 10.1016/j.smallrumres.2009.02.010.
  • Zancada, L., F. Pérez-Díez, F. Sánchez-Juanes, J. M. Alonso, L. A. García-Pardo, and P. Hueso. 2013. Phospholipid classes and fatty acid composition of ewe’s and goat’s milk. Grasas y Aceites 64 (3):304–10. doi: 10.3989/gya.095312.
  • Zhang, G.-W., S.-J. Lai, Y. Yoshimura, and N. Isobe. 2014. Expression of cathelicidins mRNA in the goat mammary gland and effect of the intramammary infusion of lipopolysaccharide on milk cathelicidin-2 concentration. Veterinary Microbiology 170 (1–2):125–34. doi: 10.1016/j.vetmic.2014.01.029.
  • Zhang, M., Z. Xing, Q. Huang, and L. Han. 2021. Effect of conjugated linoleic acid supplementation on fat globule size in raw milk. International Dairy Journal 115:104919. doi: 10.1016/j.idairyj.2020.104919.
  • Zhao, L., M. Du, and X. Mao. 2019. Change in interfacial properties of milk fat globules by homogenization and thermal processing plays a key role in their in vitro gastrointestinal digestion. Food Hydrocolloids 96:331–42. doi: 10.1016/j.foodhyd.2019.05.034.
  • Zheng, H., R. Jiménez-Flores, and D. W. Everett. 2014. Lateral lipid organization of the bovine milk fat globule membrane is revealed by washing processes. Journal of Dairy Science 97 (10):5964–74. doi: 10.3168/jds.2014-7951.
  • Zou, X., Z. Guo, Q. Jin, J. Huang, L. Cheong, X. Xu, and X. Wang. 2015. Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chemistry 185:362–70. doi:10.1016/j.foodchem.2015.03.145. PMID:25952880
  • Zou, X., J. Huang, Q. Jin, Z. Guo, Y. Liu, L. Cheong, X. Xu, and X. Wang. 2013. Lipid composition analysis of milk fats from different mammalian species: Potential for use as human milk fat substitutes. Journal of Agricultural and Food Chemistry 61 (29):7070–80. doi: 10.1021/jf401452y.
  • Zou, X.-Q., Z. Guo, J.-H. Huang, Q.-Z. Jin, L.-Z. Cheong, X.-G. Wang, and X.-B. Xu. 2012. Human milk fat globules from different stages of lactation: A lipid composition analysis and microstructure characterization. Journal of Agricultural and Food Chemistry 60 (29):7158–67. doi: 10.1021/jf3013597.