889
Views
7
CrossRef citations to date
0
Altmetric
Reviews

DNA, protein and aptamer-based methods for seafood allergens detection: Principles, comparisons and updated applications

, & ORCID Icon

References

  • Aas, K., and J. Jebsen. 1967. Studies of hypersensitivity to fish. Partial purification and crystallization of a major allergenic component of cod. International Archives of Allergy and Immunology 32 (1):1–20. doi: 10.1159/000229911.
  • Abdelli, H., T. Tsukamoto, T. Ito, K. Y. Inoue, T. Matsue, and S. Tanaka. 2019. Aptamer-Based Allergen Sensing System for Food Safety, in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), IEEE, 932–935.
  • Adams, P. S. 2006. Data analysis and reporting. In Real Time PCR (BIOS Advanced Methods), 39–61. New York: Taylor & Francis Grou.
  • Alves, R. C., M. F. Barroso, M. B. González-García, M. B. P. Oliveira, and C. Delerue-Matos. 2016. New trends in food allergens detection: Toward biosensing strategies. Critical Reviews in Food Science and Nutrition 56 (14):2304–19. doi: 10.1080/10408398.2013.831026.
  • Ambrosi, A., M. T. Castañeda, A. J. Killard, M. R. Smyth, S. Alegret, and A. Merkoçi. 2007. Double-codified gold nanolabels for enhanced immunoanalysis. Analytical Chemistry 79 (14):5232–40. doi: 10.1021/ac070357m.
  • Anfossi, L., F. Di Nardo, A. Russo, S. Cavalera, C. Giovannoli, G. Spano, S. Baumgartner, K. Lauter, and C. Baggiani. 2019. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Analytical and Bioanalytical Chemistry 411 (9):1905–13. doi: 10.1007/s00216-018-1451-6.
  • Angulo-Ibanez, A., U. Eletxigerra, X. Lasheras, S. Campuzano, and S. Merino. 2019. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis. Analytica Chimica Acta 1079:94–102. doi: 10.1016/j.aca.2019.06.030.
  • Ayuso, R., G. Grishina, L. Bardina, T. Carrillo, C. Blanco, M. D. Ibáñez, H. A. Sampson, and K. Beyer. 2008. Myosin light chain is a novel shrimp allergen, Lit v 3. The Journal of Allergy and Clinical Immunology 122 (4):795–802. doi: 10.1016/j.jaci.2008.07.023.
  • Baker, M. 2012. Digital PCR hits its stride. Nature Methods 9 (6):541–4. doi: 10.1038/nmeth.2027.
  • Bugajska-Schretter, A., L. Elfman, T. Fuchs, S. Kapiotis, H. Rumpold, R. Valenta, and S. Spitzauer. 1998. Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. Journal of Allergy and Clinical Immunology 101 (1):67–74. doi: 10.1016/S0091-6749(98)70195-2.
  • Bush, R. K. 2001. Mechanism and epidemiology of laboratory animal allergy. ILAR Journal 42 (1):4–11. doi: 10.1093/ilar.42.1.4.
  • Carrera, M., M. Pazos, and M. Gasset. 2020. Proteomics-based methodologies for the detection and quantification of seafood allergens. Foods 9 (8):1134. doi: 10.3390/foods9081134.
  • Chen, Y.-T., and Y.-H P. Hsieh. 2014. A sandwich ELISA for the detection of fish and fish products. Food Control 40:265–73. doi: 10.1016/j.foodcont.2013.12.010.
  • Chinnappan, R., A. A. Rahamn, R. AlZabn, S. Kamath, A. L. Lopata, K. M. Abu-Salah, and M. Zourob. 2020. Aptameric biosensor for the sensitive detection of major shrimp allergen, tropomyosin. Food Chemistry 314:126133. doi: 10.1016/j.foodchem.2019.126133.
  • Chu, K. H., C. Y. Tang, A. Wu, and P. S. Leung. 2005. Seafood allergy: Lessons from clinical symptoms, immunological mechanisms and molecular biology. Advances in Biochemical Engineering/Biotechnology 97:205–235.
  • Clark, M. F., R. M. Lister, and M. Bar-Joseph. 1986. ELISA techniques. In Methods in enzymology, 742–66. The Netherlands: Elsevier.
  • Costa, J., T. J. Fernandes, C. Villa, M. Oliveira, and I. Mafra. 2017. Advances in food allergen analysis. In Food Safety: Innovative Analytical Tools for Safety Assessment, 305–60. doi:10.1002/9781119160588
  • Costa, J., C. Villa, K. Verhoeckx, T. Cirkovic-Velickovic, D. Schrama, P. Roncada, P. M. Rodrigues, C. Piras, L. Martín-Pedraza, and L. Monaci. 2021. Are physicochemical properties shaping the allergenic potency of animal allergens? In Clinical Reviews in Allergy & Immunology, 1–36. doi: 10.1007/s12016-020-08826-1
  • Daczkowska-Kozon, E. G., and B. S. Pan. 2011. Environmental effects on seafood availability, safety, and quality, 1–401. Boca Raton: CRC Press.
  • Daga, C., S. Cau, M. G. Tilocca, B. Soro, A. Marongiu, and B. Vodret. 2018. Detection of fish allergen by droplet digital PCR. Italian Journal of Food Safety 7 (4):7264. doi: 10.4081/ijfs.2018.7264.
  • Daul, C., M. Slattery, G. Reese, and S. Lehrer. 1994. Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. International Archives of Allergy and Immunology 105 (1):49–55. doi: 10.1159/000236802.
  • Davis, C. M., R. S. Gupta, O. N. Aktas, V. Diaz, S. D. Kamath, and A. L. Lopata. 2020. Clinical management of seafood allergy. Journal of Allergy and Clinical Immunology 8 (1):37–44.
  • Dong, Y., Y. Xu, W. Yong, X. Chu, and D. Wang. 2014. Aptamer and its potential applications for food safety. Critical Reviews in Food Science and Nutrition 54 (12):1548–1561. doi: 10.1080/10408398.2011.642905.
  • Du, S., H. Lin, J. Sui, X. Wang, and L. Cao. 2014. Nano-gold capillary immunochromatographic assay for parvalbumin. Analytical and Bioanalytical Chemistry 406 (26):6637–6646. doi: 10.1007/s00216-014-8093-0.
  • Eischeid, A. C. 2016. Development and evaluation of a real-time PCR assay for detection of lobster, a crustacean shellfish allergen. Food Control 59:393–399. doi: 10.1016/j.foodcont.2015.06.013.
  • Eischeid, A. C. 2019. A method to detect allergenic fish, specifically cod and pollock, using quantitative real-time PCR and COI DNA barcoding sequences . Journal of the Science of Food and Agriculture 99 (5):2641–2645. doi: 10.1002/jsfa.9466.
  • Eischeid, A. C., B.-h. Kim, and S. M. Kasko. 2013. Two quantitative real-time PCR assays for the detection of penaeid shrimp and blue crab, crustacean shellfish allergens. Journal of Agricultural and Food Chemistry 61 (24):5669–5674. doi: 10.1021/jf3031524.
  • Faber, M., M. Pascal, O. El Kharbouchi, V. Sabato, M. Hagendorens, I. Decuyper, C. H. Bridts, and D. Ebo. 2017. Shellfish allergens: Tropomyosin and beyond. Allergy 72 (6):842–848. doi: 10.1111/all.13115.
  • Faeste, C. K., and C. Plassen. 2008. Quantitative sandwich ELISA for the determination of fish in foods. Journal of Immunological Methods 329 (1-2):45–55. doi: 10.1016/j.jim.2007.09.007.
  • Faisal, M., T. Vasiljevic, and O. N. Donkor. 2019. A review on methodologies for extraction, identification and quantification of allergenic proteins in prawns. Food Research International (Ottawa, ON) 121:307–318. doi: 10.1016/j.foodres.2019.03.040.
  • FAO. 1995. Report of the FAO Technical Consultation on Food Allergies. 13th–14th November, Food and Agriculture Organization, Italy.
  • Fernandes, T. J., J. Costa, M. B. P. Oliveira, and I. Mafra. 2018a. Exploiting 16S rRNA gene for the detection and quantification of fish as a potential allergenic food: A comparison of two real-time PCR approaches. Food Chemistry 245:1034–1041. doi: 10.1016/j.foodchem.2017.11.068.
  • Fernandes, T. J., J. Costa, M. B. P. Oliveira, and I. Mafra. 2015. An overview on fish and shellfish allergens and current methods of detection. Food and Agricultural Immunology 26 (6):848–869. doi: 10.1080/09540105.2015.1039497.
  • Fernandes, T. J., J. Costa, M. B. P. Oliveira, and I. Mafra. 2018b. A new real-time PCR quantitative approach for the detection of shrimp crustaceans as potential allergens. Journal of Food Composition and Analysis 72:7–14. doi: 10.1016/j.jfca.2018.05.012.
  • Furutani, S., Y. Hagihara, and H. Nagai. 2017. On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system. Meat Science 131:56–59. doi: 10.1016/j.meatsci.2017.04.009.
  • Garibyan, L., and N. Avashia. 2013. Polymerase chain reaction. Journal of Investigative Dermatology 133 (3):e6–4. doi: 10.1038/jid.2013.1.
  • Heid, C. A., J. Stevens, K. J. Livak, and P. M. Williams. 1996. Real time quantitative PCR. Genome Research 6 (10):986–994. doi: 10.1101/gr.6.10.986.
  • Herrero, B., J. M. Vieites, and M. Espiñeira. 2012. Fast real-time PCR for the detection of crustacean allergen in foods. Journal of Agricultural and Food Chemistry 60 (8):1893–1897. doi: 10.1021/jf2043532.
  • Herrero, B., J. M. Vieites, and M. Espiñeira. 2014. Development of an in-house fast real-time PCR method for detection of fish allergen in foods and comparison with a commercial kit. Food Chemistry 151:415–420. doi: 10.1016/j.foodchem.2013.11.042.
  • Holzhauser, T. 2018. Protein or no protein? Opportunities for DNA-based detection of allergenic foods. Journal of Agricultural and Food Chemistry 66 (38):9889–9894. doi: 10.1021/acs.jafc.8b03657.
  • Hsieh, Y. P., and Q. Rao. 2017. Immunoassays. In Food Analysis, 487–502. Germany: Springer.
  • Huang, X., Z. Zhu, H. Feng, Q. Zhang, and H. Zhang. 2020. Simultaneous determination of multi-allergens in surimi products by LC-MS/MS with a stable isotope-labeled peptide. Food Chemistry 320:126580. doi: 10.1016/j.foodchem.2020.126580.
  • Ishizaki, S., Y. Sakai, T. Yano, S. Nakano, T. Yamada, Y. Nagashima, K. Shiomi, Y. Nakao, and H. Akiyama. 2012. Specific detection by the polymerase chain reaction of potentially allergenic salmonid fish residues in processed foods. Bioscience, Biotechnology, and Biochemistry 76 (5):980–985. doi: 10.1271/bbb.110992.
  • Kalyanasundaram, A., and T. C. Santiago. 2015. Identification and characterization of new allergen troponin C (Pen m 6.0101) from Indian black tiger shrimp Penaeus monodon. European Food Research and Technology 240 (3):509–515. doi: 10.1007/s00217-014-2349-y.
  • Kamath, S. D., M. R. Thomassen, S. R. Saptarshi, H. M. Nguyen, L. Aasmoe, B. E. Bang, and A. L. Lopata. 2014. Molecular and immunological approaches in quantifying the air-borne food allergen tropomyosin in crab processing facilities. International Journal of Hygiene and Environmental Health 217 (7):740–750. doi: 10.1016/j.ijheh.2014.03.006.
  • Kang, T. S. 2019. Rapid and simple identification of two closely-related snow crabs (Chionoecetes opilio and C. japonicus) by direct triplex PCR. LWT - Food Science and Technology 99:562–567. doi: 10.1016/j.lwt.2018.09.078.
  • Kim, M.-J., H.-I. Kim, J.-H. Kim, S.-M. Suh, and H.-Y. Kim. 2019. Rapid on-site detection of shrimp allergen tropomyosin using a novel ultrafast PCR system. Food Science and Biotechnology 28 (2):591–597. doi: 10.1007/s10068-018-0479-x.
  • Koizumi, D., K. Shirota, R. Akita, H. Oda, and H. Akiyama. 2014. Development and validation of a lateral flow assay for the detection of crustacean protein in processed foods. Food Chemistry 150:348–352. doi: 10.1016/j.foodchem.2013.10.130.
  • Kuehn, A., C. Hilger, C. Lehners-Weber, F. Codreanu-Morel, M. Morisset, C. Metz-Favre, G. Pauli, F. d. Blay, D. Revets, C. P. Muller, et al. 2013. Identification of enolases and aldolases as important fish allergens in cod, salmon and tuna: Component resolved diagnosis using parvalbumin and the new allergens. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 43 (7):811–822. doi: 10.1111/cea.12117.
  • Lequin, R. M. 2005. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry 51 (12):2415–2418. doi: 10.1373/clinchem.2005.051532.
  • López-Pedrouso, M., J. M. Lorenzo, M. Gagaoua, and D. Franco. 2020. Current trends in proteomic advances for food allergen analysis. Biology 9 (9):247. doi: 10.3390/biology9090247.
  • Lu, Y., T. Ohshima, and H. Ushio. 2004. Rapid detection of fish major allergen parvalbumin by surface plasmon resonance biosensor. Journal of Food Science 69 (8):C652–C658. doi: 10.1111/j.1750-3841.2004.tb18013.x.
  • Mafra, I., I. M. P. L. V. O. Ferreira, and M. B. P. P. Oliveira. 2008. Food authentication by PCR-based methods. European Food Research and Technology 227 (3):649–665. doi: 10.1007/s00217-007-0782-x.
  • Matricardi, P. M., J. Kleine-Tebbe, H. J. Hoffmann, R. Valenta, C. Hilger, S. Hofmaier, R. C. Aalberse, I. Agache, R. Asero, B. Ballmer-Weber, et al. 2016. EAACI molecular allergology user's guide. Pediatric Allergy and Immunology 27:1–250. doi: 10.1111/pai.12563.
  • Matsuo, H., T. Yokooji, and T. Taogoshi. 2015. Common food allergens and their IgE-binding epitopes. Allergology International: Official Journal of the Japanese Society of Allergology 64 (4):332–343. doi: 10.1016/j.alit.2015.06.009.
  • Mayer, W., M. Schuller, M. Viehauser, and R. Hochegger. 2019. Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology 245 (2):499–509. doi: 10.1007/s00217-018-3182-5.
  • McManus, A., W. Hunt, J. Storey, J. McManus, and S. Hilhorst. 2014. Perceptions and preference for fresh seafood in an Australian context. International Journal of Consumer Studies 38 (2):146–152. doi: 10.1111/ijcs.12076.
  • Mohamad, A., M. Rizwan, N. A. Keasberry, A. S. Nguyen, T. Dai Lam, and M. U. Ahmed. 2020. Gold-microrods/Pd-nanoparticles/polyaniline-nanocomposite-interface as a peroxidase-mimic for sensitive detection of tropomyosin. Biosensors & Bioelectronics 155:112108. doi: 10.1016/j.bios.2020.112108.
  • Moneret-Vautrin, D., M. Morisset, J. Flabbee, E. Beaudouin, and G. Kanny. 2005. Epidemiology of life-threatening and lethal anaphylaxis: a review . Allergy 60 (4):443–451. doi: 10.1111/j.1398-9995.2005.00785.x.
  • Morisset, D., D. Štebih, M. Milavec, K. Gruden, and J. Žel. 2013. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 8 (5):e62583. doi: 10.1371/journal.pone.0062583.
  • Pereira, R. N., J. Costa, R. M. Rodrigues, C. Villa, L. Machado, I. Mafra, and A. Vicente. 2020. Effects of ohmic heating on the immunoreactivity of β-lactoglobulin - a relationship towards structural aspects. Food & Function 11 (5):4002–4013. doi: 10.1039/c9fo02834j.
  • Pierboni, E., C. Rondini, M. Torricelli, L. Ciccone, G. R. Tovo, M. L. Mercuri, S. Altissimi, and N. Haouet. 2018. Digital PCR for analysis of peanut and soybean allergens in foods. Food Control 92:128–136. doi: 10.1016/j.foodcont.2018.04.039.
  • Pilolli, R., L. Monaci, and A. Visconti. 2013. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends in Analytical Chemistry 47:12–26. doi: 10.1016/j.trac.2013.02.005.
  • Prester, L. 2016. Seafood allergy, toxicity, and intolerance: A review. Journal of the American College of Nutrition 35 (3):271–283. doi: 10.1080/07315724.2015.1014120.
  • Rencova, E., D. Kostelnikova, and B. Tremlova. 2013. Detection of allergenic parvalbumin of Atlantic and Pacific herrings in fish products by PCR. Food Additives & Contaminants: Part A 30 (10):1679–1683. doi: 10.1080/19440049.2013.817024.
  • Ruethers, T., A. C. Taki, E. B. Johnston, R. Nugraha, T. T. K. Le, T. Kalic, T. R. McLean, S. D. Kamath, and A. L. Lopata. 2018. Seafood allergy: A comprehensive review of fish and shellfish allergens. Molecular Immunology 100:28–57. doi: 10.1016/j.molimm.2018.04.008.
  • Rustemeyer, T., I. M. Van Hoogstraten, B. M. E. Von Blomberg, and R. J. Scheper. 2020. Mechanisms of allergic contact dermatitis. Kanerva’s Occupational Dermatology:151–190. doi:10.1007/978-3-319-68617-2_14
  • Santaclara, F. J., and M. Espiñeira. 2017. Fast real-time PCR for the detection of crustacean allergens in Foods. In PCR, 63–171. Germany: Springer.
  • Sefah, K., D. Shangguan, X. Xiong, M. B. O'donoghue, and W. Tan. 2010. Development of DNA aptamers using Cell-SELEX. Nature Protocols 5 (6):1169–1185. doi: 10.1038/nprot.2010.66.
  • Shen, Y., M. J. Cao, Q. F. Cai, W. J. Su, H. L. Yu, W. W. Ruan, and G. M. Liu. 2011. Purification, cloning, expression and immunological analysis of Scylla serrata arginine kinase, the crab allergen. Journal of the Science of Food and Agriculture 91 (7):1326–1335. doi: 10.1002/jsfa.4322.
  • Shi, L., X. C. Wang, Y. Liu, and Y. Lu. 2011. Rapid detection of shellfish major allergen tropomyosin using superparamagnetic nanoparticle-based lateral flow immunoassay. Advanced Materials Research 311:436–445.
  • Sicherer, S. H., A. Muñoz-Furlong, and H. A. Sampson. 2004. Prevalence of seafood allergy in the United States determined by a random telephone survey. Journal of Allergy and Clinical Immunology 114 (1):159–165. doi: 10.1016/j.jaci.2004.04.018.
  • Sprague, M., M. B. Betancor, J. R. Dick, and D. R. Tocher. 2017. Nutritional evaluation of seafood, with respect to long-chain omega-3 fatty acids, available to UK consumers. Proceedings of the Nutrition Society 76 (OCE2):28–29. doi: 10.1017/S0029665117000945.
  • Suh, S.-M., M.-J. Kim, H.-I. Kim, H.-J. Kim, and H.-Y. Kim. 2020. A multiplex PCR assay combined with capillary electrophoresis for the simultaneous detection of tropomyosin allergens from oyster, mussel, abalone, and clam mollusk species. Food Chemistry 317:126451. doi: 10.1016/j.foodchem.2020.126451.
  • Sun, L., H. Lin, Z. Li, W. Sun, J. Wang, H. Wu, M. Ge, I. Ahmed, and T. R. Pavase. 2019. Development of a method for the quantification of fish major allergen parvalbumin in food matrix via liquid chromatography-tandem mass spectrometry with multiple reaction monitoring. Food Chemistry 276:358–365. doi: 10.1016/j.foodchem.2018.10.014.
  • Tabrizi, M. A., M. Shamsipur, R. Saber, S. Sarkar, and V. Ebrahimi. 2017. A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO2 nanocomposite. Biosensors and Bioelectronics 98:113–118. doi: 10.1016/j.bios.2017.06.040.
  • Tah, A., J. M. O. Cordero, X. Weng, and S. Neethirajan. 2018. Aptamer-based biosensor for food allergen determination using graphene oxide/gold nanocomposite on a paper-assisted analytical device. BioRxiv:343368. doi: 10.1101/343368
  • Temisak, S., W. Yenchum, J. Boonnil, K. Hongthong, and P. Morris. 2019. Development of a droplet digital Polymerase Chain Reaction assay for peanut detection of food allergens. Journal of Food Science and Agricultural Technology 5:223–228.
  • Unterberger, C., F. Luber, A. Demmel, K. Grünwald, I. Huber, K.-H. Engel, and U. Busch. 2014. Simultaneous detection of allergenic fish, cephalopods and shellfish in food by multiplex ligation-dependent probe amplification. European Food Research and Technology 239 (4):559–566. doi: 10.1007/s00217-014-2251-7.
  • Valasek, M. A., and J. J. Repa. 2005. The power of real-time PCR. Advances in Physiology Education 29 (3):151–159. doi: 10.1152/advan.00019.2005.
  • Van Do, T., S. Elsayed, E. Florvaag, I. Hordvik, and C. Endresen. 2005. Allergy to fish parvalbumins: Studies on the cross-reactivity of allergens from 9 commonly consumed fish. Journal of Allergy and Clinical Immunology 116 (6):1314–1320. doi: 10.1016/j.jaci.2005.07.033.
  • Wang, J., M. Ge, L. Sun, I. Ahmed, W. Li, H. Lin, H. Lin, and Z. Li. 2021. Quantification of crustacean tropomyosin in foods using high‐performance liquid chromatography–tandem mass spectrometry method. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.11177.
  • Wang, C., J. Huang, J. Xiang, Y. Sun, S. Lv, and J. Guo. 2012. Mass spectrometry identification and immune cross-reactivity of a minor shrimp allergen-sarcoplasmic calcium binding protein from Litopenaeus vannamei. Xi Bao yu Fen zi Mian yi Xue za Zhi = Chinese Journal of Cellular and Molecular Immunology 28 (8):811–814.
  • Wang, Y., Z. Li, H. Lin, P. N. Siddanakoppalu, J. Zhou, G. Chen, and Z. Yu. 2019. Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control 106:106714. doi: 10.1016/j.foodcont.2019.106714.
  • Wang, Y., Z. Rao, J. Zhou, L. Zheng, and L. Fu. 2019. A chiral assembly of gold nanoparticle trimer-based biosensors for ultrasensitive detection of the major allergen tropomyosin in shellfish. Biosensors & Bioelectronics 132:84–89. doi: 10.1016/j.bios.2019.02.038.
  • Werner, M. T., C. K. Faeste, and E. Egaas. 2007. Quantitative sandwich ELISA for the determination of tropomyosin from crustaceans in foods. Journal of Agricultural and Food Chemistry 55 (20):8025–8032. doi: 10.1021/jf070806j.
  • Yang, Y., Z.-W. Chen, B. K. Hurlburt, G.-L. Li, Y.-X. Zhang, D.-X. Fei, H.-W. Shen, M.-J. Cao, and G.-M. Liu. 2017. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao. Molecular Immunology 85:35–46. doi: 10.1016/j.molimm.2017.02.004.
  • Zagon, J., J. Schmidt, A. S. Schmidt, H. Broll, A. Lampen, T. Seidler, and A. Braeuning. 2017. A novel screening approach based on six real-time PCR systems for the detection of crustacean species in food. Food Control 79:27–34. doi: 10.1016/j.foodcont.2017.03.019.
  • Zeng, L., S. Song, Q. Zheng, P. Luo, X. Wu, and H. Kuang. 2019. Development of a sandwich ELISA and immunochromatographic strip for the detection of shrimp tropomyosin. Food and Agricultural Immunology 30 (1):606–619. doi: 10.1080/09540105.2019.1609912.
  • Zhang, H., Y. Lu, H. Ushio, and K. Shiomi. 2014. Development of sandwich ELISA for detection and quantification of invertebrate major allergen tropomyosin by a monoclonal antibody. Food Chemistry 150:151–157. doi: 10.1016/j.foodchem.2013.10.154.
  • Zhang, Y., Q. Wu, M. Sun, J. Zhang, S. Mo, J. Wang, X. Wei, and J. Bai. 2018. Magnetic-assisted aptamer-based fluorescent assay for allergen detection in food matrix. Sensors and Actuators B: Chemical 263:43–49. doi: 10.1016/j.snb.2018.02.098.
  • Zhang, Y., Q. Wu, X. Wei, J. Zhang, and S. Mo. 2017. DNA aptamer for use in a fluorescent assay for the shrimp allergen tropomyosin. Microchimica Acta 184 (2):633–639. doi: 10.1007/s00604-016-2042-x.
  • Zhou, J., Y. Wang, Y. Qian, T. Zhang, L. Zheng, and L. Fu. 2020. Quantification of shellfish major allergen tropomyosin by SPR biosensor with gold patterned Biochips. Food Control. 107:106547. doi: 10.1016/j.foodcont.2019.02.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.