1,041
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Trends in artificial aroma sensing by means of electronic nose technologies to advance dairy production – a review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ali, Z., W. T. O’Hare, and B. J. Theaker. 2003. Detection of bacterial contaminated milk by means of a quartz crystal microbalance based electronic nose. Journal of Thermal Analysis and Calorimetry 71 (1):155–61. . :1022274419166. doi: 10.1023/A:1022274419166.
  • Amari, A., N. E. Bari, and B. Bouchikhi. 2009. Conception and development of a portable electronic nose system for classification of raw milk using principal component analysis approach. Sensors & Transducers 102 (3):33–44. http://www.sensorsportal.com.
  • Ampuero, S., and J. O. Bosset. 2003. The electronic nose applied to dairy products: A review. Sensors and Actuators B: Chemical 94 (1):1–12. https://doi.org/10.1016/S0925-4005. (03)00321-6. doi: 10.1016/S0925-4005(03)00321-6.
  • Aouadi, B., J. L. Zinia Zaukuu, F. Vitális, Z. Bodor, O. Fehér, Z. Gillay, G. Bazar, and Z. Kovacs. 2020. Historical evolution and food control achievements of near infrared spectroscopy, electronic nose, and electronic tongue—Critical overview. Sensors 20 (19):5479–42. doi: 10.3390/s20195479.
  • Banerjee, M. B., T. N. Chatterjee, R. B. Roy, B. Tudu, R. Bandyopadhyay, and N. Bhattacharyya. 2016. Multivariate preprocessing techniques towards optimising response of fused sensor from electronic nose and electronic tongue. International Conference on Computing, Communication and Automation (ICCCA), Noida, 949–54. : doi: 10.1109/CCAA.2016.7813875.
  • Bedoui, S., R. Faleh, H. Samet, and A. Kachouri. 2013. Electronic nose system and principal component analysis technique for gases identification. 2013 10th International Multi-Conference on Systems, Signals and Devices, SSD 2013, 1–6. Tunisia: IEEE. doi: 10.1109/SSD.2013.6564152.
  • Benedetti, S., N. Sinelli, S. Buratti, and M. Riva. 2005. Shelf life of crescenza cheese as measured by electronic nose. Journal of Dairy Science 88 (9):3044–51. . (05)72985-4. doi: 10.3168/jds.S0022-0302(05)72985-4.
  • Biolatto, A., G. Grigioni, M. Irurueta, A. M. Sancho, M. Taverna, and N. Pensel. 2007. Seasonal variation in the odour characteristics of whole milk powder. Food Chemistry 103 (3):960–7. doi: 10.1016/j.foodchem.2006.09.050.
  • Bliss, P. J., T. J. Schulz, T. Senger, and R. B. Kaye. 1996. Odour measurement — Factors affecting olfactometry panel performance. Water Science and Technology 34 (3-4):549–56. doi: 10.1016/0273-1223(96)00595-1.
  • Boeker, P. 2014. On ‘electronic nose’ methodology.” Sensors and Actuators B: Chemical 204:2–17. doi: 10.1016/j.snb.2014.07.087.
  • Buttry, D. A., and M. D. Ward. 1992. Measurement of interfaclal processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chemical Reviews 92 (6):1355–79. doi: 10.1021/cr00014a006.
  • Chen, C., K. Li, M. Duan, and K. Li. 2017. Extreme learning machine and its applications in big data processing. Big data analytics for sensor-network collected intelligence. Amsterdam, Netherlands: Elsevier Inc. doi: 10.1016/B978-0-12-809393-1.00006-4.
  • Cheng, H. 2010. Volatile flavor compounds in yogurt: A review. Critical Reviews in Food Science and Nutrition 50 (10):938–50. doi: 10.1080/10408390903044081.
  • Contreras, J., J. Murray, S. Tolley, J. Oliphant, H. Tolley, S. Lammert, E. Lee, D. Later, and M. Lee. 2008. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. Journal of the American Society for Mass Spectrometry 19 (10):1425–34. doi: 10.1016/j.jasms.2008.06.022.
  • Da Ré, A. F., L. G. Gurgel, G. Buffon, W. E. R. Moura, D. C. G. M. Vidor, and M. A. P. Maahs. 2018. Tobacco influence on taste and smell: Systematic review of the literature. International Archives of Otorhinolaryngology 22 (1):81–7. . doi: 10.1055/s-0036-1597921.
  • Demarigny, Y., E. Legrand, J. Sanchez, A. Hallier, N. Laurent, S. Slimani, T. Livache, and D. Picque. 2021. Utilisation of a portable electronic nose, NeOse Pro, to follow the microbial fermentation of a yoghurt. Food and Nutrition Sciences 12 (01):90–105. doi: 10.4236/fns.2021.121008.
  • Drake, M. A., P. D. Gerard, J. P. Kleinhenz, and W. J. Harper. 2003. Application of an electronic nose to correlate with descriptive sensory analysis of aged cheddar cheese. LWT - Food Science and Technology 36 (1):13–20. https://doi.org/10.1016/S0023-6438. (02)00216-5. doi: 10.1016/S0023-6438(02)00216-5.
  • Eriksson, Å., K. Persson Waller, K. Svennersten-Sjaunja, J. E. Haugen, F. Lundby, and O. Lind. 2005. Detection of mastitic milk using a gas-sensor array system (electronic nose). International Dairy Journal 15 (12):1193–201. doi: 10.1016/j.idairyj.2004.12.012.
  • Falchero, L., G. Sala, A. Gorlier, G. Lombardi, M. Lonati, and G. Masoero. 2009. Electronic nose analysis of milk from cows grazing on two different alpine vegetation types. The Journal of Dairy Research 76 (3):365–71. doi: 10.1017/S0022029909004105.
  • Gao, F., F. Boussaid, W. Xuan, C. Y. Tsui, and A. Bermak. 2018. Dual transduction surface acoustic wave gas sensor for VOC discrimination. IEEE Electron Device Letters 39 (12):1920–3. doi: 10.1109/LED.2018.2874821.
  • Gao, F., W. Xuan, A. Bermak, F. Boussaid, C. Y. Tsui, and J. Luo. 2019. Dual transduction on a single sensor for gas identification. Sensors and Actuators B: Chemical 278:21–7. doi: 10.1016/j.snb.2018.09.029.
  • Gardener, J., and P. Bartlett. 1999. Electronic noses, principles and application. New York, NY: Oxford University Press.
  • Gardner, J. W., and P. N. Bartlett. 1994. A brief history of of electronic noses. Sensors and Actuators, B: Chemical 18 (1-3):210–1. doi: 10.1016/0925-4005(94)87085-3.
  • Gómez, A. H., J. Wang, G. Hu, and A. Garcıa Pereira. 2006. Electronic nose technique potential monitoring mandarin maturity. Sensors and Actuators B: Chemical 113 (1):347–53. doi: 10.1016/j.snb.2005.03.090.
  • Gromski, P. S., E. Correa, A. A. Vaughan, D. C. Wedge, M. L. Turner, and R. Goodacre. 2014. A comparison of different chemometrics approaches for the robust classification of electronic nose data. Analytical and Bioanalytical Chemistry 406 (29):7581–90. doi: 10.1007/s00216-014-8216-7.
  • Gutiérrez-Méndez, N., B. Vallejo-Cordoba, A. F. González-Córdova, G. V. Nevárez-Moorillón, and B. Rivera-Chavira. 2008. Evaluation of aroma generation of Lactococcus lactis with an electronic nose and sensory analysis. Journal of Dairy Science 91 (1):49–57. doi: 10.3168/jds.2007-0193.
  • Haddi, Z., F. Annanouch, A. Amari, A. Hadoune, B. Bouchikhi, and N. E. Bari. 2010. Application of a portable electronic nose device to discriminate and identify cheeses with known percentages of cow’s and goat’s milk. Proceedings of IEEE Sensors, 771–74. doi: 10.1109/ICSENS.2010.5690762.
  • Hadjipanayiotou, M. 1995. Composition of ewe, goat and cow milk and of colostrum of ewes and goats. Small Ruminant Research 18 (3):255–62. https://doi.org/10.1016/0921-4488. (95)00697-3. doi: 10.1016/0921-4488(95)00697-3.
  • Hines, E. L., P. Boilot, J. W. Gardner, and M. A. Gongora. 2006. Pattern analysis for electronic noses. In Handbook of machine olfaction, ed. T. C. Pearce, S. S. Schiffman, H. T. Nagle, and J. W. Gardner, 133–160, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Hower, D. 2015. The science of sensory evaluation: An ethnographic critique. In The Social Life of Materials, ed. A. Drazer and S. Küchler, 81–97. London: Bloomsbury.
  • Kang, H., S. Y. Cho, J. Ryu, J. Choi, H. Ahn, H. Joo, and H. T. Jung. 2020. Multiarray nanopattern electronic nose (e-nose) by high-resolution top-down nanolithography. Advanced Functional Materials 30 (27):2002486. doi: 10.1002/adfm.202002486.
  • Kang, N. K., T. Sun Jun, Y. S. Yang, and Y. S. Kim. 2014. Analysis of volatile flavor compounds in milk using electronic nose system. Journal of Sensor Science and Technology 23 (5):320–5. doi: 10.5369/JSST.2014.23.5.320.
  • Kauer, J. S., and J. White. 2009. Electronic nose. Encyclopedia of neuroscience, 871–877. doi: 10.1016/B978-008045046-9.01694-6..
  • Khoshgoftaar, T. M., J. Van Hulse, and A. Napolitano. 2010. Supervised neural network modeling: An empirical investigation into learning from imbalanced data with labeling errors. IEEE Transactions on Neural Networks 21 (5):813–30. doi: 10.1109/TNN.2010.2042730.
  • Korel, F., and M. Ö. Balaban. 2002. Microbial and sensory assessment of milk with an electronic nose. Journal of Food Science 67 (2):758–64. doi: 10.1111/j.1365-2621.2002.tb10672.x.
  • Kovacs, Z., Z. Bodor, J.-L. Zinia Zaukuu, T. Kaszab, G. Bazar, T. Tóth, and C. Mohácsi-Farkas. 2020a. Electronic nose for monitoring odor changes of Lactobacillus species during milk fermentation and rapid selection of probiotic candidates. Foods 9 (11):1539–16. doi: 10.3390/foods9111539.
  • Kovacs, Z., D. Szöllősi, J.-L Z. Zaukuu, Z. Bodor, F. Vitális, B. Aouadi, V. Zsom-Muha, and Z. Gillay. 2020b. Factors influencing the long-term stability of electronic tongue and application of improved drift correction methods. Biosensors 10 (7):74. doi: 10.3390/bios10070074.
  • Labreche, S., S. Bazzo, S. Cade, and E. Chanie. 2005. Shelf life determination by electronic nose: Application to milk. Sensors and Actuators B: Chemical 106 (1):199–206. doi: 10.1016/j.snb.2004.06.027.
  • Larmond, E. 1997. Laboratory methods for sensory evaluation of foods, 1–1637. Ottawa, Canada: Department of Agriculture Publication.
  • Lavine, B. K., and J. Workman. 2008. Chemometrics. Analytical Chemistry 80 (12):4519–31. doi: 10.1021/ac800728t.
  • Leary, P. E., B. W. Kammrath, K. J. Lattman, and G. L. Beals. 2019. Deploying portable gas chromatography-mass spectrometry (GC-MS) to military users for the identification of toxic chemical agents in theater. Applied Spectroscopy 73 (8):841–58. doi: 10.1177/0003702819849499.
  • Li, Z., J. R. Askim, and K. S. Suslick. 2019. The optoelectronic nose: Colorimetric and fluorometric sensor arrays. Chemical Reviews 119 (1):231–92. doi: 10.1021/acs.chemrev.8b00226.
  • Liu, M., M. Wang, J. Wang, and D. Li. 2013. Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sensors and Actuators B: Chemical 177:970–80. doi: 10.1016/j.snb.2012.11.071.
  • Llobet, E. 2020. Advanced nanomaterials for inexpensive gas microsensors. Amsterdem: Elsevier Inc.
  • Llobet, E., E. L. Hines, J. W. Gardner, P. N. Bartlett, and T. T. Mottram. 1999. Fuzzy ARTMAP based electronic nose data analysis. Sensors and Actuators B: Chemical 61 (1-3):183–9. https://doi.org/10.1016/S0925-4005. (99)00288-9. doi: 10.1016/S0925-4005(99)00288-9.
  • Loutfi, A., S. Coradeschi, G. Kumar Mani, P. Shankar, and J. Bosco Balaguru Rayappan. 2015. Electronic noses for food quality: A review. Journal of Food Engineering 144:103–11. doi: 10.1016/j.jfoodeng.2014.07.019.
  • Magan, N., A. Pavlou, and I. Chrysanthakis. 2001. Milk-sense: A volatile sensing system recognizes spoilage bacteria and yeasts in milk. Sensors and Actuators B: Chemical 72 (1):28–34. https://doi.org/10.1016/S0925-4005. (00)00621-3. doi: 10.1016/S0925-4005(00)00621-3.
  • Marilley, L., S. Ampuero, T. Zesiger, and M. G. Casey. 2004. Screening of aroma-producing lactic acid bacteria with an electronic nose. International Dairy Journal 14 (10):849–56. doi: 10.1016/j.idairyj.2004.02.013.
  • Martens, H. 2015. Quantitative big data: Where chemometrics can contribute. Journal of Chemometrics 29 (11):563–81. doi: 10.1002/cem.2740.
  • Martens, H., and E. Stark. 1991. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 9 (8):625–35. doi: 10.1016/0731-7085(91)80188-F.
  • Martinelli, E., C. Falconi, A. D’Amico, and C. Di Natale. 2002. Preprocessing of electronic nose data by independent component analysis. Proceedings of IEEE Sensors 1 (2):1339–42. doi: 10.1109/icsens.2002.1037313..
  • Mortazavian, A. M., K. Rezaei, and S. Sohrabvandi. 2009. Application of advanced instrumental methods for yogurt analysis. Critical Reviews in Food Science and Nutrition 49 (2):153–63. doi: 10.1080/10408390701764807.
  • Mottram, D. S., and J. S. Elmore. 2003. Sensory evaluation | Aroma. Encyclopedia of Food Sciences and Nutrition :5174–80. doi: 10.1016/b0-12-227055-x/01068-3.
  • Naes, T., T. Isaksson, T. Fearn, and T. Davies. 2002. Multivariate calibration and classification. Chichester, UK: NIR Publictions.
  • Navrátil, M., C. Cimander, and C. F. Mandenius. 2004. On-line multisensor monitoring of yogurt and filmjölk fermentations on production scale. Journal of Agricultural and Food Chemistry 52 (3):415–20. doi: 10.1021/jf0304876.
  • Nishanth, K. J., and V. Ravi. 2016. Probabilistic neural network based categorical data imputation. Neurocomputing 218:17–25. doi: 10.1016/j.neucom.2016.08.044.
  • Pearce, T. C, S. S Schiffman, H. T Nagle, and J. W Gardener, eds. 2006. Handbook of machine olfaction: Electronic nose technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
  • Peelle, J. E. 2019. Age-related sensory deficits and their consequences. In The handbook of cognitive aging: A life course perspective, ed. A. K. Thomas and A. Gutchess, 2–19. Cambridge, UK: Cambridge University Press. doi: 10.31234/OSF.IO/3CPTQ.
  • Persaud, K., and G. Dodd. 1982. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299 (5881):352–5. doi: 10.1038/299352a0.
  • Peryam, D. R., and N. F. Girardot. 1952. Advanced taste test method. Food Engineering 24 (194):58–61.
  • Pu, D., Y. Zhang, H. Zhang, B. Sun, F. Ren, H. Chen, and Y. Tang. 2020. Characterization of the key aroma compounds in traditional hunan smoke-cured pork leg (Larou, THSL) by aroma extract dilution analysis (AEDA), odor activity value (OAV), and sensory evaluation experiments. Foods 9 (4):413–6. doi: 10.3390/foods9040413.
  • Qu, X. 2007. Multivariate data analysis. Technometrics 49 (1):103–4. doi: 10.1198/tech.2007.s455.
  • Santonico, M., P. Pittia, G. Pennazza, E. Martinelli, M. Bernabei, R. Paolesse, A. D’Amico, D. Compagnone, and C. D. Natale. 2008. Study of the aroma of artificially flavoured custards by chemical sensor array fingerprinting. Sensors and Actuators B: Chemical 133 (1):345–51. doi: 10.1016/j.snb.2008.02.053.
  • Sberveglieri, V., M. Bhandari, E. Núñez Carmona, G. Betto, and G. Sberveglieri. 2016. A novel MOS nanowire gas sensor device (S3) and GC-MS-based approach for the characterization of grated Parmigiano Reggiano cheese. Biosensors 6 (4):60. doi: 10.3390/bios6040060.
  • Scott, S. M., D. James, and Z. Ali. 2006. Data analysis for electronic nose systems. Microchimica Acta 156 (3-4):183–207. doi: 10.1007/s00604-006-0623-9.
  • Shiokawa, S., and J. Kondoh. 2004. Surface acoustic wave sensors. Japanese Journal of Applied Physics 43 (5B):2799–802. doi: 10.1143/JJAP.43.2799.
  • Sørhaug, T., and L. Stepaniak. 1997. Psychrotrophs and their enzymes in milk and dairy products: Quality aspects. Trends in Food Science & Technology 8 (2):35–41. https://doi.org/10.1016/S0924-2244. (97)01006-6. doi: 10.1016/S0924-2244(97)01006-6.
  • Štefániková, J., V. Nagyová, M. Hynšt, V. Vietoris, P. Martišová, and Ľ. Nagyová. 2019. Application of electronic nose for determination of Slovak cheese authentication based on aroma profile. Potravinarstvo Slovak Journal of Food Sciences 13 (1):262–7. doi: 10.5219/1076.
  • Tian, H., H. Liu, Y. He, B. Chen, L. Xiao, Y. Fei, G. Wang, H. Yu, and C. Chen. 2020. Combined application of electronic nose analysis and back-propagation neural network and random forest models for assessing yogurt flavor acceptability. Journal of Food Measurement and Characterization 14 (1):573–83. doi: 10.1007/s11694-019-00335-w.
  • Tian, H., Y. Shen, H. Yu, Y. He, and C. Chen. 2017. Effects of 4 probiotic strains in coculture with traditional starters on the flavor profile of yogurt. Journal of Food Science 82 (7):1693–701. doi: 10.1111/1750-3841.13779.
  • Tian, H., X. Xu, X. Sun, C. Chen, and H. Yu. 2020. Evaluation of the perceptual interaction among key aroma compounds in milk fan by gas chromatography − olfactometry, odor threshold, and sensory analyses. Journal of Dairy Science 103 (7):5863–73. doi: 10.3168/jds.2019-17880.
  • Tominaga, Y. 1999. Comparative study of class data analysis with PCA-LDA, SIMCA, PLS, ANNs, and k-NN. Chemometrics and Intelligent Laboratory Systems 49 (1):105–15. https://doi.org/10.1016/S0169-7439. (99)00034-9. doi: 10.1016/S0169-7439(99)00034-9.
  • Tóth, T., P. J. Mwau, G. Bázár, G. Andrássy-Baka, H. Hingyi, É. Csavajda, and L. Varga. 2019. Effect of feed supplementation based on extruded linseed meal and fish oil on composition and sensory properties of raw milk and ultra-high temperature treated milk. International Dairy Journal 99:104552. doi: 10.1016/j.idairyj.2019.104552.
  • Trihaas, J., L. Vognsen, and P. V. Nielsen. 2005. Electronic nose: New tool in modelling the ripening of Danish Blue cheese. International Dairy Journal 15 (6-9):679–91. doi: 10.1016/j.idairyj.2004.07.023.
  • Tuorila, H., and E. Monteleone. 2009. Sensory food science in the changing society: Opportunities, needs, and challenges. Trends in Food Science & Technology 20 (2):54–62. doi: 10.1016/j.tifs.2008.10.007.
  • Wang, B., S. Xu, and D. W. Sun. 2010. Application of the electronic nose to the identification of different milk flavorings. Food Research International 43 (1):255–62. doi: 10.1016/j.foodres.2009.09.018.
  • Yong, Y., W. Wenkai, and Y. Huichun. 2014. Drift elimination method of electronic nose signals based on independent component analysis coupled with wavelet energy threshold value. Transactions of the Chinese Society of Agricultural Engineering 30 (24):325–30.
  • Yu, H., J. Wang, and Y. Xu. 2007. Identification of adulterated milk using electronic nose. Sensors and Materials 19 (5):275–85.
  • Zhang, L., and F. Tian. 2014. Performance study of multilayer perceptrons in a low-cost electronic nose. IEEE Transactions on Instrumentation and Measurement 63 (7):1670–9. doi: 10.1109/TIM.2014.2298691.
  • Zhang, S., C. Xie, C. Fan, Q. Zhang, and Q. Zhan. 2007. An alternate method of hierarchical classification for e-nose: Combined fisher discriminant analysis and modified Sammon mapping. Sensors and Actuators B: Chemical 127 (2):399–405. doi: 10.1016/j.snb.2007.04.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.