1,374
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Tea polyphenols (TP): a promising natural additive for the manufacture of multifunctional active food packaging films

, , ORCID Icon, & ORCID Icon

References

  • Abdollahzadeh, E., A. Nematollahi, and H. Hosseini. 2021. Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: A review. Trends in Food Science & Technology 110:291–303. doi: 10.1016/j.tifs.2021.01.084.
  • Alizadeh-Sani, M., E. Mohammadian, J. W. Rhim, and S. M. Jafari. 2020. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality. Trends in Food Science & Technology 105:93–144. doi: 10.1016/j.tifs.2020.08.014.
  • Aljawish, A., L. Muniglia, A. Klouj, J. Jasniewski, J. Scher, and S. Desobry. 2016. Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocolloids 60:551–8. doi: 10.1016/j.foodhyd.2016.04.032.
  • Arakawa, H., M. Maeda, S. Okubo, and T. Shimamura. 2004. Role of hydrogen peroxide in bactericidal action of catechin. Biological & Pharmaceutical Bulletin 27 (3):277–81. doi: 10.1248/bpb.27.277.
  • Ashrafi, A., M. Jokar, and A. M. Nafchi. 2018. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. International Journal of Biological Macromolecules 108:444–54. doi: 10.1016/j.ijbiomac.2017.12.028.
  • Atarés, L., and A. Chiralt. 2016. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology 48:51–62. doi: 10.1016/j.tifs.2015.12.001.
  • Bansal, S., S. Choudhary, M. Sharma, S. S. Kumar, S. Lohan, V. Bhardwaj, N. Syan, and S. Jyoti. 2013. Tea: A native source of antimicrobial agents. Food Research International 53 (2):568–84. doi: 10.1016/j.foodres.2013.01.032.
  • Benbettaïeb, N., T. Karbowiak, and F. Debeaufort. 2019. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Critical Reviews in Food Science and Nutrition 59 (7):1137–53. doi: 10.1080/10408398.2017.1393384.
  • Biao, Y., C. Yuxuan, T. Qi, Y. Ziqi, Z. Yourong, D. J. McClements, and C. Chongjiang. 2019. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels. Food Hydrocolloids 97:105197. doi: 10.1016/j.foodhyd.2019.105197.
  • Carina, D., S. Sharma, A. K. Jaiswal, and S. Jaiswal. 2021. Seaweeds polysaccharides in active food packaging: A review of recent progress. Trends in Food Science & Technology 110:559–72. doi: 10.1016/j.tifs.2021.02.022.
  • Chanphai, P., P. Bourassa, C. D. Kanakis, P. A. Tarantilis, M. G. Polissiou, and H. A. Tajmir-Riahi. 2018. Review on the loading efficacy of dietary tea polyphenols with milk proteins. Food Hydrocolloids 77:322–8. doi: 10.1016/j.foodhyd.2017.10.008.
  • Chaturvedula, V. S. P., and I. Prakash. 2011. The aroma, taste, color and bioactive constituents of tea. Journal of Medicinal Plants Research 5 (11):2110–24.
  • Chenwei, C., T. Zhipeng, M. Yarui, Q. Weiqiang, Y. Fuxin, M. Jun, and X. Jing. 2018. Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly (vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Progress in Organic Coatings 123:176–84. doi: 10.1016/j.porgcoat.2018.07.001.
  • Chen, J., A. Wu, M. Yang, Y. Ge, P. Pristijono, J. Li, B. Xu, and H. Mi. 2021. Characterization of sodium alginate-based films incorporated with thymol for fresh-cut apple packaging. Food Control 126:108063. doi: 10.1016/j.foodcont.2021.108063.
  • Chen, C. W., J. Xie, F. X. Yang, H. L. Zhang, Z. W. Xu, J. L. Liu, and Y. J. Chen. 2018. Development of moisture‐absorbing and antioxidant active packaging film based on poly(vinyl alcohol) incorporated with green tea extract and its effect on the quality of dried eel. Journal of Food Processing and Preservation 42 (1):e13374. doi: 10.1111/jfpp.13374.
  • Chiu, P. E., and L. S. Lai. 2010. Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. International Journal of Food Microbiology 139 (1–2):23–30. doi: 10.1016/j.ijfoodmicro.2010.01.010.
  • Dainelli, D., N. Gontard, D. Spyropoulos, E. Zondervan-van den Beuken, and P. Tobback. 2008. Active and intelligent food packaging: Legal aspects and safety concerns. Trends in Food Science & Technology 19:S103–S112. doi: 10.1016/j.tifs.2008.09.011.
  • de Carvalho, A. P. A., and C. A. C. Junior. 2020. Green strategies for active food packagings: A systematic review on active properties of graphene-based nanomaterials and biodegradable polymers. Trends in Food Science & Technology 103:130–43. doi: 10.1016/j.tifs.2020.07.012.
  • de Souza, A. G., N. M. A. Dos Santos, R. F. da Silva Torin, and D. dos Santos Rosa. 2020. Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. International Journal of Biological Macromolecules 164:1737–47. doi: 10.1016/j.ijbiomac.2020.07.226.
  • Dehghani, S., S. V. Hosseini, and J. M. Regenstein. 2018. Edible films and coatings in seafood preservation: A review. Food Chemistry 240:505–13. doi: 10.1016/j.foodchem.2017.07.034.
  • Dou, L., B. Li, K. Zhang, X. Chu, and H. Hou. 2018. Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. International Journal of Biological Macromolecules 118 (Pt B):1377–83. doi: 10.1016/j.ijbiomac.2018.06.121.
  • Feng, M., L. Yu, P. Zhu, X. Zhou, H. Liu, Y. Yang, J. Zhou, C. Gao, X. Bao, and P. Chen. 2018. Development and preparation of active starch films carrying tea polyphenol. Carbohydrate Polymers 196:162–7. doi: 10.1016/j.carbpol.2018.05.043.
  • Friedman, M. 2007. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular Nutrition & Food Research 51 (1):116–34. doi: 10.1002/mnfr.200600173.
  • Gao, H. X., Z. He, Q. Sun, Q. He, and W. C. Zeng. 2019. A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydrate Polymers 215:1–7. doi: 10.1016/j.carbpol.2019.03.029.
  • Giménez, B., A. L. De Lacey, E. Pérez-Santín, M. E. López-Caballero, and P. Montero. 2013. Release of active compounds from agar and agar–gelatin films with green tea extract. Food Hydrocolloids 30 (1):264–71. doi: 10.1016/j.foodhyd.2012.05.014.
  • Huang, H., Z. Ge, J. Limwachiranon, L. Li, W. Li, and Z. Luo. 2017. UV-C treatment affects browning and starch metabolism of minimally processed lily bulb. Postharvest Biology and Technology 128:105–11. doi: 10.1016/j.postharvbio.2017.02.010.
  • Huang, T. W., H. T. Lu, Y. C. Ho, K. Y. Lu, P. Wang, and F. L. Mi. 2021. A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. Materials Science and Engineering: C 118:111396. doi: 10.1016/j.msec.2020.111396.
  • Jairath, G., P. K. Singh, R. S. Dabur, M. Rani, and M. Chaudhari. 2015. Biogenic amines in meat and meat products and its public health significance: A review. Journal of Food Science and Technology 52 (11):6835–46. doi: 10.1007/s13197-015-1860-x.
  • Jamróz, E., P. Kulawik, P. Krzyściak, K. Talaga-Ćwiertnia, and L. Juszczak. 2019. Intelligent and active furcellaran-gelatin films containing green or pu-erh tea extracts: Characterization, antioxidant and antimicrobial potential. International Journal of Biological Macromolecules 122:745–57. doi: 10.1016/j.ijbiomac.2018.11.008.
  • Jeszka-Skowron, M., M. Krawczyk, and A. Zgoła-Grześkowiak. 2015. Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. Journal of Food Composition and Analysis 40:70–7. doi: 10.1016/j.jfca.2014.12.015.
  • Jeya, J., M. Chandrasekaran, S. P. Venkatesan, V. Sriram, J. G. Britto, G. Mageshwaran, and R. B. Durairaj. 2020. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends in Food Science & Technology 100:210–22. doi: 10.1016/j.tifs.2020.04.014.
  • Khan, N., and H. Mukhtar. 2007. Tea polyphenols for health promotion. Life Sciences 81 (7):519–33. doi: 10.1016/j.lfs.2007.06.011.
  • Kuai, L., F. Liu, Y. Ma, H. D. Goff, and F. Zhong. 2020. Regulation of nano-encapsulated tea polyphenol release from gelatin films with different Bloom values. Food Hydrocolloids 108:106045. doi: 10.1016/j.foodhyd.2020.106045.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology 97:196–209. doi: 10.1016/j.tifs.2020.01.002.
  • Lei, Y., H. Wu, C. Jiao, Y. Jiang, R. Liu, D. Xiao, J. Lu, Z. Zhang, G. Shen, and S. Li. 2019. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids 94:128–35. doi: 10.1016/j.foodhyd.2019.03.011.
  • Liang, J., H. Yan, P. Puligundla, X. Gao, Y. Zhou, and X. Wan. 2017. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids 69:286–92. doi: 10.1016/j.foodhyd.2017.01.041.
  • Li, J. H., J. Miao, J. L. Wu, S. F. Chen, and Q. Q. Zhang. 2014. Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocolloids. 37:166–73. doi: 10.1016/j.foodhyd.2013.10.015.
  • Liu, Y., S. Wang, W. Lan, and W. Qin. 2019. Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. Ultrasonics Sonochemistry 51:386–94. doi: 10.1016/j.ultsonch.2018.07.043.
  • Li, D., X. Zhang, L. Li, M. S. Aghdam, X. Wei, J. Liu, Y. Xu, and Z. Luo. 2019. Elevated CO2 delayed the chlorophyll degradation and anthocyanin accumulation in postharvest strawberry fruit. Food Chemistry 285:163–70. doi: 10.1016/j.foodchem.2019.01.150.
  • López de Dicastillo, C., C. Nerín, P. Alfaro, R. Catalá, R. Gavara, and P. Hernández-Muñoz. 2011. Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. Journal of Agricultural and Food Chemistry 59 (14):7832–40. doi: 10.1021/jf201246g.
  • Luo, Z., Y. Wang, L. Jiang, and X. Xu. 2015. Effect of nano-CaCO3-LDPE packaging on quality and browning of fresh-cut yam. Lwt - Food Science and Technology 60 (2):1155–61. doi: 10.1016/j.lwt.2014.09.021.
  • Maroufi, L. Y., M. Ghorbani, and M. Tabibiazar. 2020. A gelatin-based film reinforced by covalent interaction with oxidized guar gum containing green tea extract as an active food packaging system. Food and Bioprocess Technology 13 (9):1633–44. doi: 10.1007/s11947-020-02509-7.
  • Marquardt, K. C., and R. R. Watson. 2014. Polyphenols and public health. In Polyphenols in human health and disease, ed. R. R. Watson, S. Zibadi, and V. R. Preedy, 9–15. Cambridge, MA: Academic Press.
  • Medina-Jaramillo, C., O. Ochoa-Yepes, C. Bernal, and L. Famá. 2017. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydrate Polymers 176:187–94. doi: 10.1016/j.carbpol.2017.08.079.
  • Mir, S. A., B. N. Dar, A. A. Wani, and M. A. Shah. 2018. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends in Food Science & Technology 80:141–54. doi: 10.1016/j.tifs.2018.08.004.
  • Mo, X., X. Peng, X. Liang, S. Fang, H. Xie, J. Chen, and Y. Meng. 2021. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocolloids 113:106506. doi: 10.1016/j.foodhyd.2020.106506.
  • Mohammadi, A., S. M. Jafari, A. F. Esfanjani, and S. Akhavan. 2016. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry 190:513–9. doi: 10.1016/j.foodchem.2015.05.115.
  • Mostafavi, F. S., and D. Zaeim. 2020. Agar-based edible films for food packaging applications - A review. International Journal of Biological Macromolecules 159:1165–76. doi: 10.1016/j.ijbiomac.2020.05.123.
  • Nibir, Y. M., A. F. Sumit, A. A. Akhand, N. Ahsan, and M. S. Hossain. 2017. Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pacific Journal of Tropical Biomedicine 7 (4):352–7. doi: 10.1016/j.apjtb.2017.01.005.
  • Nie, X., Y. Gong, N. Wang, and X. Meng. 2015. Preparation and characterization of edible myofibrillar protein-based film incorporated with grape seed procyanidins and green tea polyphenol. Lwt - Food Science and Technology 64 (2):1042–6. doi: 10.1016/j.lwt.2015.07.006.
  • Nilsuwan, K., S. Benjakul, and T. Prodpran. 2018. Properties and antioxidative activity of fish gelatin-based film incorporated with epigallocatechin gallate. Food Hydrocolloids 80:212–21. doi: 10.1016/j.foodhyd.2018.01.033.
  • Nilsuwan, K., P. Guerrero, K. de la Caba, S. Benjakul, and T. Prodpran. 2019. Properties of fish gelatin films containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids 97:105236. doi: 10.1016/j.foodhyd.2019.105236.
  • Nilsuwan, K., P. Guerrero, K. de la Caba, S. Benjakul, and T. Prodpran. 2020. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocolloids. 105:105792. doi: 10.1016/j.foodhyd.2020.105792.
  • Omar-Aziz, M., F. Khodaiyan, M. S. Yarmand, M. Mousavi, M. Gharaghani, J. F. Kennedy, and S. S. Hosseini. 2020. Combined effects of octenylsuccination and beeswax on pullulan films: Water-resistant and mechanical properties. Carbohydrate Polymers 255:117471. doi: 10.1016/j.carbpol.2020.117471.
  • Peng, Y., Q. Wang, J. Shi, Y. Chen, and X. Zhang. 2020. Optimization and release evaluation for tea polyphenols and chitosan composite films with regulation of glycerol and Tween. Food Science and Technology 40 (1):162–70. doi: 10.1590/fst.34718.
  • Peng, Y., Y. Wu, and Y. Li. 2013. Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules 59:282–9. doi: 10.1016/j.ijbiomac.2013.04.019.
  • Priyadarshi, R., S. M. Kim, and J. W. Rhim. 2021. Pectin/pullulan blend films for food packaging: Effect of blending ratio. Food Chemistry 347:129022.
  • Puligundla, P., C. Mok, S. Ko, J. Liang, and N. Recharla. 2017. Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols. Journal of Functional Foods 34:139–51. doi: 10.1016/j.jff.2017.04.023.
  • Roy, S., and J. W. Rhim. 2020. Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules 148:666–76. doi: 10.1016/j.ijbiomac.2020.01.204.
  • Ruan, C., Y. Zhang, J. Wang, Y. Sun, X. Gao, G. Xiong, and J. Liang. 2019. Preparation and antioxidant activity of sodium alginate and carboxymethyl cellulose edible films with epigallocatechin gallate. International Journal of Biological Macromolecules 134:1038–44. doi: 10.1016/j.ijbiomac.2019.05.143.
  • Seydim, A. C., G. Sarikus-Tutal, and E. Sogut. 2020. Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packaging and Shelf Life 26:100567. doi: 10.1016/j.fpsl.2020.100567.
  • Shao, X., H. Sun, R. Jiang, and Y. Yu. 2020. Physical and antibacterial properties of corn distarch phosphate/carboxymethyl cellulose composite films containing tea polyphenol. Journal of Food Processing and Preservation 44 (4):e14401. doi: 10.1111/jfpp.14401.
  • Shimamura, T., W. H. Zhao, and Z. Q. Hu. 2007. Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infective Agents in Medicinal Chemistry 6 (1):57–62. doi: 10.2174/187152107779314124.
  • Siripatrawan, U., and B. R. Harte. 2010. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24 (8):770–5. doi: 10.1016/j.foodhyd.2010.04.003.
  • Sun, J., H. Jiang, M. Li, Y. Lu, Y. Du, C. Tong, J. Pang, and C. Wu. 2020. Preparation and characterization of multifunctional konjac glucomannan/carboxymethyl chitosan biocomposite films incorporated with epigallocatechin gallate. Food Hydrocolloids 105:105756. doi: 10.1016/j.foodhyd.2020.105756.
  • Theerawitayaart, W., T. Prodpran, S. Benjakul, K. Nilsuwan, and K. de la Caba. 2020. Storage stability of fish gelatin films by molecular modification or direct incorporation of oxidized linoleic acid: Comparative studies. Food Hydrocolloids 113:106481.
  • Umaraw, P., P. E. Munekata, A. K. Verma, F. J. Barba, V. P. Singh, P. Kumar, and J. M. Lorenzo. 2020. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science & Technology 98:10–24. doi: 10.1016/j.tifs.2020.01.032.
  • Visioli, F., C. A. De La Lastra, C. Andres-Lacueva, M. Aviram, C. Calhau, A. Cassano, M. D'Archivio, A. Faria, G. Favé, V. Fogliano, et al. 2011. Polyphenols and human health: A prospectus. Critical Reviews in Food Science and Nutrition 51 (6):524–46. doi: 10.1080/10408391003698677.
  • Wang, X., Y. Xie, H. Ge, L. Chen, J. Wang, S. Zhang, Y. Guo, Z. Li, and X. Feng. 2018. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose. Carbohydrate Polymers 179:207–20. doi: 10.1016/j.carbpol.2017.09.087.
  • Wildermuth, S. R., E. E. Young, and L. M. Were. 2016. Chlorogenic acid oxidation and its reaction with sunflower proteins to form Green-Colored Complexes. Comprehensive Reviews in Food Science and Food Safety 15 (5):829–43. doi: 10.1111/1541-4337.12213.
  • Wu, J., S. Chen, S. Ge, J. Miao, J. Li, and Q. Zhang. 2013. Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocolloids 32 (1):42–51. doi: 10.1016/j.foodhyd.2012.11.029.
  • Wu, H., Y. Lei, R. Zhu, M. Zhao, J. Lu, D. Xiao, C. Jiao, Z. Zhang, G. Shen, and S. Li. 2019. Preparation and characterization of bioactive edible packaging films based on pomelo peel flours incorporating tea polyphenol. Food Hydrocolloids 90:41–9. doi: 10.1016/j.foodhyd.2018.12.016.
  • Xiang, H. X., S. H. Chen, Y. H. Cheng, Z. Zhou, and M. F. Zhu. 2013. Structural characteristics and enhanced mechanical and thermal properties of full biodegradable tea polyphenol/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) composite films. Express Polymer Letters 7 (9):778–86. doi: 10.3144/expresspolymlett.2013.75.
  • Xiao, J., C. Gu, D. Zhu, Y. Huang, Y. Luo, and Q. Zhou. 2020. Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. LWT-Food Science and Technology 140:110809.
  • Xu, T., C. Gao, X. Feng, M. Huang, Y. Yang, X. Shen, and X. Tang. 2019. Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum Arabic polyelectrolyte complexed films. Carbohydrate Polymers 217:116–25. doi: 10.1016/j.carbpol.2019.03.084.
  • Yang, H. J., J. H. Lee, J. H. Lee, and K. B. Song. 2015. Characterization of a corn fiber protein film containing green tea extract. Journal of Applied Biological Chemistry 58 (2):145–51. doi: 10.3839/jabc.2015.025.
  • Yang, H. J., J. H. Lee, M. Won, and K. B. Song. 2016. Antioxidant activities of distiller dried grains with solubles as protein films containing tea extracts and their application in the packaging of pork meat. Food Chemistry 196:174–9. doi: 10.1016/j.foodchem.2015.09.020.
  • Ye, J., S. Wang, W. Lan, W. Qin, and Y. Liu. 2018. Preparation and properties of polylactic acid-tea polyphenol-chitosan composite membranes. International Journal of Biological Macromolecules 117:632–9. doi: 10.1016/j.ijbiomac.2018.05.080.
  • Zhang, W., J. Cao, X. Fan, and W. Jiang. 2020a. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends in Food Science & Technology 99:531–41. doi: 10.1016/j.tifs.2020.03.024.
  • Zhang, W., and W. Jiang. 2019. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology 92:71–80. doi: 10.1016/j.tifs.2019.08.012.
  • Zhang, W., and W. Jiang. 2020. Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method. International Journal of Biological Macromolecules 155:1252–61. doi: 10.1016/j.ijbiomac.2019.11.093.
  • Zhang, W., H. Jiang, J. Cao, and W. Jiang. 2021a. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables. Trends in Food Science & Technology 113:355–65. doi: 10.1016/j.tifs.2021.05.009.
  • Zhang, W., H. Jiang, J. Cao, and W. Jiang. 2021b. UV-C treatment controls brown rot in postharvest nectarine by regulating ROS metabolism and anthocyanin synthesis. Postharvest Biology and Technology 180:111613. doi: 10.1016/j.postharvbio.2021.111613.
  • Zhang, W., X. Li, and W. Jiang. 2020b. Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. International Journal of Biological Macromolecules 154:1205–14. doi: 10.1016/j.ijbiomac.2019.10.275.
  • Zhang, L. H., and Q. Shen. 2020. Fully green poly (vinyl alcohol)/tea polyphenol composites and super anti‐ultraviolet and‐bacterial properties. Macromolecular Materials and Engineering 305 (3):1900669. doi: 10.1002/mame.201900669.
  • Zhang, Y., B. K. Simpson, and M. J. Dumont. 2018. Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Bioscience 26:88–95. doi: 10.1016/j.fbio.2018.09.011.
  • Zhang, C., G. Sun, J. Li, and L. Wang. 2020c. A green strategy for maintaining intelligent response and improving antioxidant properties of κ-carrageenan-based film via cork bark extractive addition. Food Hydrocolloids. 113:106470. doi: 10.1016/j.foodhyd.2020.106470.
  • Zhang, W., Y. Zhang, J. Cao, and W. Jiang. 2020d. Improving the performance of edible food packaging films by using nanocellulose as an additive. International Journal of Biological Macromolecules 166:288–96. doi: 10.1016/j.ijbiomac.2020.10.185.
  • Zhou, Y., T. Xu, Y. Zhang, C. Zhang, Z. Lu, F. Lu, and H. Zhao. 2019. Effect of tea polyphenols on curdlan/chitosan blending film properties and its application to chilled meat preservation. Coatings 9 (4):262. doi: 10.3390/coatings9040262.
  • Zhu, M. X., C. X. Huang, H. Y. Lan, Y. Liu, Z. J. Li, and H. Du. 2018. Effect of tea polyphenols on properties of chitosan/polyvinyl alcohol composite films. Packaging Engineering 39:110–4.
  • Zhu, Y., D. Li, T. Belwal, L. Li, H. Chen, T. Xu, and Z. Luo. 2019. Effect of nano-SiOx/chitosan complex coating on the physicochemical characteristics and preservation performance of green tomato. Molecules 24 (24):4552. doi: 10.3390/molecules24244552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.