997
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Phytochemistry of ginsenosides: Recent advancements and emerging roles

, , , , &

References

  • Aba, P. E., and I. U. Asuzu. 2018. Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. Indian Journal of Natural Products and Resources 9:85–96.
  • Achnine, L., D. V. Huhman, M. A. Farag, L. W. Sumner, J. W. Blount, and R. A. Dixon. 2005. Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. The Plant Journal: For Cell and Molecular Biology 41 (6):875–87. doi: 10.1111/j.1365-313X.2005.02344.x.
  • Ali, M. B., E. J. Hahn, and K. Y. Paek. 2006. Copper-induced changes in the growth, oxidative metabolism, and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Reports 25 (10):1122–32. doi: 10.1007/s00299-006-0174-x.
  • Arnold, P. A., L. E. Kruuk, and A. B. Nicotra. 2019. How to analyse plant phenotypic plasticity in response to a changing climate. The New Phytologist 222 (3):1235–41. doi: 10.1111/nph.15656.
  • Bae, E. A., S. Y. Park, and D. H. Kim. 2000. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biological & Pharmaceutical Bulletin 23 (12):1481–5. doi: 10.1248/bpb.23.1481.
  • Bae, K. H., Y. E. Choi, C. G. Shin, Y. Y. Kim, and Y. S. Kim. 2006. Enhanced ginsenoside productivity by combination of ethephon and methyl jasmoante in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures. Biotechnology Letters 28 (15):1163–6. doi: 10.1007/s10529-006-9071-1.
  • Baek, S.-H., O.-N. Bae, and J.-H. Park. 2012. Recent methodology in ginseng analysis. Journal of Ginseng Research 36 (2):119–134. doi: 10.5142/jgr.2012.36.2.119.
  • Baek, S.-H., B. Shin, N. J. Kim, S.-Y. Chang, and J. H. Park. 2017. Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo. Journal of Ginseng Research 41 (3):233–9. doi: 10.1016/j.jgr.2016.03.008.
  • Barbieri, R., E. Coppo, A. Marchese, M. Daglia, E. Sobarzo-Sánchez, S. F. Nabavi, and S. M. Nabavi. 2017. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research 196:44–68. doi: 10.1016/j.micres.2016.12.003.
  • Berini, J. L., S. A. Brockman, A. D. Hegeman, P. B. Reich, R. Muthukrishnan, R. A. Montgomery, and J. D. Forester. 2018. Combinations of abiotic factors differentially alter production of plant secondary metabolites in five woody plant species in the boreal-temperate transition zone. Frontiers of Plant Science 9:1257.
  • Bernards, M. A., L. F. Yousef, and R. W. Nicol. 2006. The Allelopathic potential of ginsenosides. In Allelochemicals: Biological control of plant pathogens and diseases. Disease management of fruits and vegetables, ed. Mukerji K. Inderjit, vol. 2, pp. 157–75. Dordrecht: Springer.
  • Bernhardt, R. 2006. Cytochromes P450 as versatile biocatalysts. Journal of Biotechnology 124 (1):128–45. doi: 10.1016/j.jbiotec.2006.01.026.
  • Biswas, T., A. Kalra, A. K. Mathur, R. K. Lal, M. Singh, and A. Mathur. 2016. Elicitors' influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Applied Microbiology and Biotechnology 100 (11):4909–22. doi: 10.1007/s00253-015-7264-z.
  • Chan, P. C., and P. P. Fu. 2007. Toxicity of Panax ginseng – An herbal medicine and dietary supplement. Journal of Food and Drug Analysis 15 (4):416–27. doi: 10.38212/2224-6614.2397.
  • Chan, T. W. D., P. P. H. But, S. W. Cheng, I. M. Y. Kwok, F. W. Lau, and H. X. Xu. 2000. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Analytical Chemistry 72 (6):1281–7. doi: 10.1021/ac990819z.
  • Chang, Y., W. J. Huang, L. T. Tien, and S. J. Wang. 2008. Ginsenosides Rg1 and Rb1 enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes). European Journal of Pharmacology 578 (1):28–36. doi: 10.1016/j.ejphar.2007.09.023.
  • Chen, J., Y. Ying, R. Xiaoku, G. Na, D. Deqiang. 2018. Metabolomics analysis based on a UP LC-Q-TOF-MS metabolomics approach to compare Lin-Xia-Shan-Shen and garden ginseng. RSC Advances 8 (53):30616–23. doi: 10.1039/C8RA04823A.
  • Chen, F., Y. Sun, S.-L. Zheng, Y. Qin, D. J. McClements, J.-N. Hu, and Z.-Y. Deng. 2017. Antitumor and immunomodulatory effects of ginsenoside Rh2 and its octyl ester derivative in H22 tumor-bearing mice. Journal of Functional Foods 32:382–90. doi: 10.1016/j.jff.2017.03.013.
  • Chen, R. J., T. Y. Chung, F. Y. Li, N. H. Lin, and J. T. Tzen. 2009. Effect of sugar positions in ginsenosides and their inhibitory potency on Na+/K+-ATPase activity. Acta Pharmacologica Sinica 30 (1):61–9. doi: 10.1038/aps.2008.6.
  • Chen, S., R. Feng, X. Lin, T. Liang, and Q. He. 2021. Determination of nine ginsenosides in health foods by solid extraction phase-ultra performance liquid chromatography-tandem mass spectrometry. Chinese Journal of Chromatography 39:526–33.
  • Chen, W., L. Kui, G. Zhang, S. Zhu, J. Zhang, X. Wang, M. Yang, H. Huang, Y. Liu, Y. Wang, et al. 2017. Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng. Molecular Plant 10 (6):899–902. doi: 10.1016/j.molp.2017.02.010.
  • Chen, W., P. Balan, and D. G. Popovich. 2020. Comparison of ginsenoside components of various tissues of New Zealand forest-grown Asian ginseng (Panax Ginseng) and American ginseng (Panax Quinquefolium L. Biomolecules 10 (3):372. doi: 10.3390/biom10030372.
  • Chen, Y., M. Nose, and Y. Ogihara. 1987. Alkaline cleavage of ginsenosides. Chemical & Pharmaceutical Bulletin 35 (4):1653–5. doi: 10.1248/cpb.35.1653.
  • Cheng, S. Y., P.-L. Show, B. F. Lau, J.-S. Chang, and T. C. Ling. 2019. New prospects for modified algae in heavy metal adsorption. Trends in Biotechnology 37 (11):1255–68. doi: 10.1016/j.tibtech.2019.04.007.
  • Choi, H.-S., S. Y. Kim, Y. Park, E. Y. Jung, and H. J. Suh. 2014. Enzymatic transformation of ginsenosides in Korean Red Ginseng (Panax ginseng Meyer) extract prepared by Spezyme and Optidex. Journal of Ginseng Research 38 (4):264–9. doi: 10.1016/j.jgr.2014.05.005.
  • Christensen, L. P. 2009. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Advances in Food & Nutrition Research 55:1–99.
  • Christensen, L. P., and K. Brandt. 2006. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. Journal of Pharmaceutical and Biomedical Analysis 41 (3):683–93. doi: 10.1016/j.jpba.2006.01.057.
  • Chu, L. L., J. A. V. Montecillo, and H. Bae. 2020. Recent advances in the metabolic engineering of yeasts for ginsenoside biosynthesis. Frontiers in Bioengineering and Biotechnology 8:139. doi: 10.3389/fbioe.2020.00139.
  • Chuang, W. C., H. K. Wu, S. J. Sheu, S. H. Chiou, H. C. Chang, and Y. P. A. Chen. 1995. A comparative study on commercial samples of ginseng radix. Planta Medica 61 (5):459–65. doi: 10.1055/s-2006-958137.
  • Clerici, M. T. P. S., and L. B. Carvalho-Silva. 2011. Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Research International 44 (7):1658–70. doi: 10.1016/j.foodres.2011.04.020.
  • Corthout, J., T. Naessens, S. Apers, and A. Vlietinck. 1999. Quantitative determination of ginsenosides from Panax ginseng roots and ginseng preparations by thin layer chromatography–densitometry. Journal of Pharmaceutical and Biomedical Analysis 21 (1):187–92. doi: 10.1016/S0731-7085(99)00109-0.
  • Cui, J. F., M. Garle, E. Lund, I. Bjorkhem, and P. Eneroth. 1993. Analysis of ginsenosides by chromatography and mass spectrometry: Release of 20 S-protopanaxadiol and 20 S-protopanaxatriol for quantitation. Analytical Biochemistry 210 (2):411–7. doi: 10.1006/abio.1993.1215.
  • Cui, L., S. Yao, X. Dai, Q. Yin, Y. Liu, X. Jiang, Y. Wu, Y. Qian, Y. Pang, L. Gao, et al. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). Journal of Experimental Botany 67 (8):2285–97. doi: 10.1093/jxb/erw053.
  • Dai, Z., B. Wang, Y. Liu, M. Shi, D. Wang, X. Zhang, T. Liu, L. Huang, and X. Zhang. 2014. Producing aglycons of ginsenosides in bakers' yeast. Scientific Reports 4:3698. doi: 10.1038/srep03698.
  • Dai, Z., Y. Liu, X. Zhang, M. Shi, B. Wang, D. Wang, L. Huang, and X. Zhang. 2013. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metabolic Engineering 20:146–56. doi: 10.1016/j.ymben.2013.10.004.
  • Danieli, B., L. Falcone, D. Monti, S. Riva, S. Gebhardt, and M. Schubert-Zsilavecz. 2001. Regioselective enzymatic glycosylation of natural polyhydroxylated compounds: Galactosylation and glucosylation of protopanaxatriol ginsenosides1. The Journal of Organic Chemistry 66 (1):262–9. doi: 10.1021/jo001424e.
  • Dellas, N., S. T. Thomas, G. Manning, and J. P. Noel. 2013. Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2:e00672. doi: 10.7554/eLife.00672.
  • Deng, B., Z. Huang, F. Ge, D. Liu, R. Lu, and C. Chen. 2017. An AP2/ERF Family transcription factor PnERF1 raised the biosynthesis of saponins in Panax notoginseng. Journal of Plant Growth Regulation 36 (3):691–701. doi: 10.1007/s00344-017-9672-z.
  • Du, Y., M. Fu, Y. T. Wang, and Z. Dong. 2018. Neuroprotective effects of ginsenoside Rf on amyloid-β-induced neurotoxicity in vitro and in vivo. Journal of Alzheimer's Disease 64 (1):309–22. doi: 10.3233/JAD-180251.
  • Durr, I. F., and H. Rudney. 1960. The reduction of beta-hydroxy-beta-methyl-glutaryl coenzyme A to mevalonic acid. The Journal of Biological Chemistry 235 (9):2572–8. doi: 10.1016/S0021-9258(19)76915-4.
  • Eisenreich, W., A. Bacher, D. Arigoni, and F. Rohdich. 2004. Biosynthesis of isoprenoids via the non-mevalonate pathway. Cellular and Molecular Life Sciences : CMLS 61 (12):1401–26. doi: 10.1007/s00018-004-3381-z.
  • Farh, M. E. A., Y. J. Kim, R. Abbai, P. Singh, K. H. Jung, Y. J. Kim, and D. C. Yang. 2020. Pathogenesis strategies and regulation of ginsenosides by two species of Ilyonectria in Panax ginseng: Power of speciation. Journal of Ginseng Research 44 (2):332–40. doi: 10.1016/j.jgr.2019.02.001.
  • Favel, A., M. D. Steinmetz, P. Regli, E. Vidal-Ollivier, R. Elias, and G. Balansard. 1994. In vitro antifungal activity of triterpenoid saponins. Planta Medica 60 (1):50–3. doi: 10.1055/s-2006-959407.
  • Ferguson, J. J., and H. Jr., Rudney. 1959. The biosynthesis of beta-hydroxy-beta-methyl glutaryl coenzyme A in yeast. I. Identification and purification of the hydroxy methyl glutaryl coenzyme condensing enzyme. Journal of Biological Chemistry 234 (5):1072–5. doi: 10.1016/S0021-9258(18)98132-9.
  • Fernández-Moriano, C., E. González-Burgos, I. Iglesias, R. Lozano, and M. P. Gómez-Serranillos. 2017. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLOS One 12 (8):e0182933. doi: 10.1371/journal.pone.0182933.
  • Fournier, A. R., J. T. A. Proctor, L. Gauthier, S. Khanizadeh, A. Bélanger, A. Gosselin, and M. Dorais. 2003. Understory light and root ginsenosides in forest-grown Panax quinquefolius. Phytochemistry 63 (7):777–82. doi: 10.1016/S0031-9422(03)00346-7.
  • Fu, Y., Z. H. Yin, L. P. Wu, and C. R. Yin. 2016. Biotransformation of ginsenoside Rb1 to ginsenoside C-K by endophytic fungus Arthrinium sp. GE 17-18 isolated from Panax ginseng. Letters in Applied Microbiology 63 (3):196–201. doi: 10.1111/lam.12606.
  • Fuzzati, N. 2004. Analysis methods of ginsenosides. Journal of Chromatography B 812 (1–2):119–33. doi: 10.1016/S1570-0232(04)00645-2.
  • Gantait, S., M. Mitra, and J. T. Chen. 2020. Biotechnological interventions for ginsenosides production. Biomolecules 10 (4):538. doi: 10.3390/biom10040538.
  • Gao, Q., and J. Zheng. 2018. Ginsenoside Rh2 inhibits prostate cancer cell growth through suppression of microRNA-4295 that activates CDKN1A. Cell Proliferation 51 (3):e12438. doi: 10.1111/cpr.12438.
  • Gao, Y., Q. Liu, P. Zang, X. Li, Q. Ji, Z. He, Y. Zhao, H. Yang, X. Zhao, and L. Zhang. 2015. An endophytic bacterium isolated from Panax ginseng C.A. Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochemistry Letters 11:132–8. doi: 10.1016/j.phytol.2014.12.007.
  • Gao, Y., G. Wang, T. Wang, G. Li, J. Lin, L. Sun, X. Wu, X. Sun, H. Wang, C. Li, et al. 2020. A 26-week 20(S)-ginsenoside Rg3 oral toxicity study in Beagle dogs. Regulatory Toxicology and Pharmacology 110:104522. doi: 10.1016/j.yrtph.2019.104522.
  • Geraldi, A., F. Ni’matuzahroh, C. H. Cui, T. T. Nguyen, and S. C. Kim. 2020. Enzymatic biotransformation of ginsenoside Rb1 by recombinant β-glucosidase of bacterial isolates from Indonesia. Biocatalysis and Agricultural Biotechnology 23:101449. doi: 10.1016/j.bcab.2019.101449.
  • Guo, W., Z. Li, M. Yuan, G. Chen, Q. Li, H. Xu, and X. Yang. 2020. Molecular insight into stereoselective ADME characteristics of C20-24 epimeric epoxides of protopanaxadiol by docking analysis. Biomolecules 10 (1):112. doi: 10.3390/biom10010112.
  • Gupta, R., Y. Wang, G. K. Agrawal, R. Rakwal, I. H. Jo, K. H. Bang, and S. T. Kim. 2015. Time to dig deep into the plant proteome: A hunt for low-abundance proteins. Frontiers in Plant Science 6:22–3. doi: 10.3389/fpls.2015.00022.
  • Ha, J., Y. S. Shim, D. Seo, K. Kim, M. Ito, and H. Nakagawa. 2013. Determination of 22 ginsenosides in ginseng products using ultra-high-performance liquid chromatography. Journal of Chromatographic Science 51 (4):355–60. doi: 10.1093/chromsci/bms148.
  • Halder, M., S. Sarkar, and S. Jha. 2019. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Engineering in Life Sciences 19 (12):880–95. doi: 10.1002/elsc.201900058.
  • Han, B. H., M. H. Park, Y. N. Han, L. K. Woo, U. Sankawa, S. Yahara, and O. Tanaka. 1982. Degradation of ginseng saponins under mild acidic conditions. Planta Medica 44 (3):146–9. doi: 10.1055/s-2007-971425.
  • Han, M., S. Fu, J. Q. Gao, and X. L. Fang. 2009. Evaluation of intestinal absorption of ginsenoside Rg1 incorporated in microemulison using parallel artificial membrane permeability assay. Biological and Pharmaceutical Bulletin 32 (6):1069–74. doi: 10.1248/bpb.32.1069.
  • Han, J. Y., J. G. In, Y. S. Kwon, and Y. E. Choi. 2010. Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71 (1):36–46. doi: 10.1016/j.phytochem.2009.09.031.
  • Han, J. Y., H. J. Kim, Y. S. Kwon, and Y. E. Choi. 2011. The Cyt P450 Enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng. Plant & Cell Physiology 52 (12):2062–73. doi: 10.1093/pcp/pcr150.
  • Han, J. Y., S. H. Baek, H. J. Jo, D. W. Yun, and Y. E. Choi. 2019. Genetically modified rice produces ginsenoside aglycone (protopanaxadiol). Planta 250 (4):1103–10. doi: 10.1007/s00425-019-03204-4.
  • Hasegawa, H. 2004. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Metabolic activation of ginsenoside: Deglycosylation by intestinal bacteria and esterification with fatty acid. Journal of Pharmacological Sciences 95 (2):153–7. doi: 10.1254/jphs.fmj04001x4.
  • Hemmerlin, A., J. F. Hoeffler, O. Meyer, D. Tritsch, I. A. Kagan, C. Grosdemange-Billiard, M. Rohmer, and T. J. Bach. 2003. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. The Journal of Biological Chemistry 278 (29):26666–76. doi: 10.1074/jbc.M302526200.
  • Hiruma, K. 2019. Roles of Plant-derived secondary metabolites during interactions with pathogenic and beneficial microbes under conditions of environmental stress. Microorganisms 7 (9):362. doi: 10.3390/microorganisms7090362.
  • Hoeffler, J. F., A. Hemmerlin, C. Grosdemange-Billiard, T. J. Bach, and M. Rohmer. 2002. Isoprenoid biosynthesis in higher plants and in Escherichia coli: On the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. The Biochemical Journal 366 (Pt 2):573–83. doi: 10.1042/BJ20020337.
  • Hong, S. H., H. J. Hwang, J. W. Kim, J. A. Kim, Y. B. Lee, E. Roh, K. M. Choi, S. H. Baik, and H. Y. Yoo. 2020. Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism. Journal of Ginseng Research 44 (4):664–71. doi: 10.1016/j.jgr.2019.08.006.
  • Hu, Y., J. Xue, J. Min, L. Qin, J. Zhang, and L. Dai. 2020. Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions. Journal of Biotechnology 309:107–12. doi: 10.1016/j.jbiotec.2020.01.003.
  • Huang, C., and J. J. Zhong. 2013. Elicitation of ginsenoside biosynthesis in cell cultures of Panax ginseng by vanadate. Process Biochemistry 48 (8):1227–34. doi: 10.1016/j.procbio.2013.05.019.
  • Huang, C., Z. G. Qian, and J. J. Zhong. 2013. Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N,N'-dicyclohexylcarbodiimide elicitation. Journal of Biotechnology 165 (1):30–6. doi: 10.1016/j.jbiotec.2013.02.012.
  • Huang, X., N. Li, Y. Pu, T. Zhang, and B. Wang. 2019. Neuroprotective effects of ginseng phytochemicals: Recent perspectives. Molecules 24 (16):2939. doi: 10.3390/molecules24162939.
  • Huang, Z., J. Lin, Z. Cheng, M. Xu, M. Guo, X. Huang, Z. Yang, and J. Zheng. 2015. Production of oleanane-type sapogenin in transgenic rice via expression of β-amyrin synthase gene from Panax japonicus C. A. Mey. BMC Biotechnology 15:45. doi: 10.1186/s12896-015-0166-4.
  • In, G., H. K. Seo, H. W. Park, and K. H. Jang. 2017. A metabolomic approach for the discrimination of red ginseng root parts and targeted validation. Molecules 22 (3):471. doi: 10.3390/molecules22030471.
  • Irfan, M., Y. S. Kwak, C. K. Han, S. H. Hyun, and M. H. Rhee. 2020. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions. Journal of Ginseng Research 44 (4):538–43. doi: 10.1016/j.jgr.2020.03.001.
  • Ivanov, D. A., and M. A. Bernards. 2012. Ginsenosidases and the pathogenicity of Pythium irregulare. Phytochemistry 78:44–53. doi: 10.1016/j.phytochem.2012.02.024.
  • Jamwal, K., S. Bhattacharya, and S. Puri. 2018. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants 9:26–38. doi: 10.1016/j.jarmap.2017.12.003.
  • Jegal, J., E. J. Jeong, and M. H. Yang. 2019. A review of the different methods applied in ginsenoside extraction from Panax ginseng and Panax quinquefolius roots. Natural Product Communications 14 (9):1934578X1986839. doi: 10.1177/1934578X19868393.
  • Jeon, B. M., J. I. Baek, M. S. Kim, S. C. Kim, and C. Cui. 2020. Characterization of a novel ginsenoside MT1 produced by an enzymatic transrhamnosylation of protopanaxatriol-type ginsenosides Re. Biomolecules 10 (4):525. doi: 10.3390/biom10040525.
  • Jeong, G. T., D. H. Park, H. W. Ryu, B. Hwang, J. C. Woo, D. Kim, and S. W. Kim. 2005. Production of antioxidant compounds by culture of Panax ginseng C.A. Meyer hairy roots: I. Enhanced production of secondary metabolite in hairy root cultures by elicitation. Applied Biochemistry and Biotechnology 124 (1–3):1147–57. doi: 10.1385/ABAB:124:1-3:1147.
  • Jeong, Y., M. Hwang, C. Hong, D. S. Yoo, J. S. Kim, D. Y. Kim, and K. W. Lee. 2020. Anti-hyperglycemic and hypolipidemic effects of black ginseng extract containing increased Rh4, Rg5, and Rk1 content in muscle and liver of type 2 diabetic db/db mice. Food Science and Biotechnology 29 (8):1101–12. doi: 10.1007/s10068-020-00753-3.
  • Jiang, J., X. Sun, M. Akther, M.-L. Lian, L.-H. Quan, S. Koppula, J. H. Han, S. R. Kopalli, T. B. Kang, and K. H. Lee. 2020. Ginsenoside metabolite 20(S)-protopanaxatriol from Panax ginseng attenuates inflammation-mediated NLRP3 inflammasome activation. Journal of Ethnopharmacology 251:112564. doi: 10.1016/j.jep.2020.112564.
  • Jiang, M., J. Liu, X. Quan, L. Quan, and S. Wu. 2016. Different chilling stresses stimulated the accumulation of different types of ginsenosides in Panax ginseng cells. Acta Physiologiae Plantarum 38 (8):210. doi: 10.1007/s11738-016-2210-y.
  • Jiang, Z., L. Tu, W. Yang, Y. Zhang, T. Hu, B. Ma, Y. Lu, X. Cui, J. Gao, X. Wu, et al. 2020. The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Communications 2 (1):100113. doi: 10.1016/j.xplc.2020.100113.
  • Jin, X., L. Y. Zhu, H. Shen, J. Xu, S. L. Li, X. B. Jia, H. Cai, B. C. Cai, and R. Yan. 2012. Influence of sulphur-fumigation on the quality of white ginseng: A quantitative evaluation of major ginsenosides by high performance liquid chromatography. Food Chemistry 135 (3):1141–7. doi: 10.1016/j.foodchem.2012.05.116.
  • Jo, I.-H., J. Lee, C. Hong, D. Lee, W. Bae, S.-G. Park, Y. Ahn, Y. Kim, J. Kim, J. Lee, et al. 2017. Isoform sequencing provides a more comprehensive view of the Panax ginseng transcriptome. Genes 8 (9):228. doi: 10.3390/genes8090228.
  • Jochum, G. M., K. W. Mudge, and R. B. Thomas. 2007. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). American Journal of Botany 94 (5):819–26. doi: 10.3732/ajb.94.5.819.
  • Jung, J. H., H. Y. Kim, H. Seok Kim, and S. H. Jung. 2020. Transcriptome analysis of Panax ginseng response to high light stress. Journal of Ginseng Research 44 (2):312–20. doi: 10.1016/j.jgr.2018.12.009.
  • Jung, S., W. Kim, S. C. Park, J. Jeong, M. K. Park, S. Lim, Y. Lee, W. T. Im, J. H. Lee, G. Choi, et al. 2014. Two ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant and Cell Physiology 55 (12):2177–88. doi: 10.1093/pcp/pcu147.
  • Kamal, M., M. Arif, and T. Jawaid. 2017. Adaptogenic medicinal plants utilized for strengthening the power of resistance during chemotherapy–a review. Oriental Pharmacy and Experimental Medicine 17 (1):1–18. doi: 10.1007/s13596-016-0254-6.
  • Kang, K. B., M. Jayakodi, Y. S. Lee, V. B. Nguyen, H.-S. Park, H. J. Koo, I. Y. Choi, D. H. Kim, Y. J. Chung, B. Ryu, et al. 2018. Identification of candidate UDP-glycosyltransferases involved in protopanaxadiol-type ginsenoside biosynthesis in Panax ginseng. Scientific Reports 8 (1):11744. doi: 10.1038/s41598-018-30262-7.
  • Kee, J. Y., Y. D. Jeon, D. S. Kim, Y. H. Han, J. Park, D.-H. Youn, S. J. Kim, K. S. Ahn, J. Y. Um, and S. H. Hong. 2017. Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro. Journal of Ginseng Research 41 (2):134–43. doi: 10.1016/j.jgr.2016.02.003.
  • Kevers, C., P. Jacques, T. Gaspar, P. Thonart, and J. Dommes. 2004. Comparative titration of ginsenosides by different techniques in commercial ginseng products and callus cultures. Journal of Chromatographic Science 42 (10):554–8. doi: 10.1093/chromsci/42.10.554.
  • Khan, S., A. Tosun, and Y. S. Kim. 2015. Ginsenosides as food supplements and their potential role in immunological and neurodegenerative disorders. In Bioactive nutraceuticals and dietary supplements in neurological and brain disease, ed. R. Watson and V. Preedy, pp. 303–9. London: Academic press.
  • Khare, E., J. Mishra, and N. K. Arora. 2018. Multifaceted interactions between endophytes and plant: Developments and prospects. Frontiers in Microbiology 9:2732. doi: 10.3389/fmicb.2018.02732.
  • Kim, H., J. H. Lee, J. E. Kim, Y. S. Kim, C. H. Ryu, H. J. Lee, H. M. Kim, H. Jeon, H. J. Won, J. Y. Lee, et al. 2018. Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability. Journal of Ginseng Research 42 (3):361–9. doi: 10.1016/j.jgr.2017.12.003.
  • Kim, J. E., I. S. Jang, B. H. Sung, S. C. Kim, and J. Y. Lee. 2018. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae. Scientific Reports 8 (1):15820. doi: 10.1038/s41598-018-34210-3.
  • Kim, J. H., Y. S. Yi, M. Y. Kim, and J. Y. Cho. 2017. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. Journal of Ginseng Research 41 (4):435–43. doi: 10.1016/j.jgr.2016.08.004.
  • Kim, M.-S., S.-J. Jeon, S. J. Youn, H. Lee, Y.-J. Park, D.-O. Kim, B.-Y. Kim, W. Kim, and M.-Y. Baik. 2019. Enhancement of minor ginsenosides contents and antioxidant capacity of American and Canadian ginsengs (Panax quinquefolius) by puffing. Antioxidants 8 (11):527. doi: 10.3390/antiox8110527.
  • Kim, N., K. Kim, B. Y. Choi, D. Lee, Y.-S. Shin, K.-H. Bang, S. W. Cha, J. W. Lee, H. K. Choi, D. S. Jang, et al. 2011. Metabolomic approach for age discrimination of Panax ginseng using UPLC-Q-Tof MS. Journal of Agricultural and Food Chemistry 59 (19):10435–41. doi: 10.1021/jf201718r.
  • Kim, N. H., M. Jayakodi, S. C. Lee, B. S. Choi, W. Jang, J. Lee, H. H. Kim, N. E. Waminal, M. Lakshmanan, B. van Nguyen, et al. 2018. Genome and evolution of the shade-requiring medicinal herb Panax ginseng. Plant Biotechnology Journal 16 (11):1904–17. doi: 10.1111/pbi.12926.
  • Kim, O. T., K. H. Bang, Y. C. Kim, D. Y. Hyun, M. Y. Kim, and S. W. Cha. 2009. Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell, Tissue and Organ Culture (PCTOC) 98 (1):25–33. doi: 10.1007/s11240-009-9535-9.
  • Kim, S. W., C. W. Min, R. Gupta, I. H. Jo, K. H. Bang, Y. C. Kim, K. H. Kim, and S. T. Kim. 2014. Proteomics analysis of early salt-responsive proteins in ginseng (Panax ginseng C. A. Meyer) leaves. Korean Journal of Medicinal Crop Science 22 (5):398–404. doi: 10.7783/KJMCS.2014.22.5.398.
  • Kim, S. W., R. Gupta, C. W. Min, S. H. Lee, Y. E. Cheon, Q. F. Meng, J. W. Jang, C. E. Hong, J. Y. Lee, I. C. Jo, et al. 2019. Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. Journal of Ginseng Research 43 (1):143–53. doi: 10.1016/j.jgr.2018.09.005.
  • Kim, S. W., R. Gupta, S. H. Lee, C. W. Min, G. K. Agrawal, R. Rakwal, J. B. Kim, I. H. Jo, S. Y. Park, J. K. Kim, et al. 2016. An integrated biochemical, proteomics, and metabolomics approach for supporting medicinal value of Panax ginseng fruits. Frontiers in Plant Science 7:1–14. doi: 10.3389/fpls.2016.00994.
  • Kim, S. W., S. H. Lee, C. W. Min, I. H. Jo, K. H. Bang, D. Y. Hyun, G. K. Agrawal, R. Rakwal, S. M. Zargar, R. Gupta, et al. 2017. Ginseng (Panax sp.) proteomics: An update. Applied Biological Chemistry 60 (3):311–20. doi: 10.1007/s13765-017-0283-y.
  • Kim, Y. J., D. Zhang, and D. C. Yang. 2015. Biosynthesis and biotechnological production of ginsenosides. Biotechnology Advances 33 (6 Pt 1):717–35. doi: 10.1016/j.biotechadv.2015.03.001.
  • Kim, Y. J., N. Yamabe, P. Choi, J. W. Lee, J. Ham, and K. S. Kang. 2013. Efficient thermal deglycosylation of ginsenoside Rd and its contribution to the improved anticancer activity of ginseng. Journal of Agricultural and Food Chemistry 61 (38):9185–91. doi: 10.1021/jf402774d.
  • Kim, Y. J., O. R. Lee, J. Y. Oh, M. G. Jang, and D. C. Yang. 2014a. Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme a reductase encoding genes in triterpene saponin-producing ginseng. Plant Physiology 165 (1):373–87. doi: 10.1104/pp.113.222596.
  • Kim, Y. J., J. N. Jeon, M. G. Jang, J. Y. Oh, W. S. Kwon, S. K. Jung, and D. C. Yang. 2014b. Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. Journal of Ginseng Research 38 (1):66–72. doi: 10.1016/j.jgr.2013.11.001.
  • Kim, Y. S., E. C. Yeung, E. J. Hahn, and K. Y. Paek. 2007. Combined effects of phytohormone, indole-3-butyric acid, and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of Panax ginseng C.A. Meyer. Biotechnology Letters 29 (11):1789–92. doi: 10.1007/s10529-007-9442-2.
  • Kim, Y. S., E. J. Hahn, H. N. Murthy, and K. Y. Paek. 2004. Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate. Biotechnology Letters 26 (21):1619–22. doi: 10.1007/s10529-004-3183-2.
  • Kim, Y. S., J. Y. Han, S. Lim, H. J. Kim, M. H. Lee, and Y. E. Choi. 2012. Overexpressing Arabidopsis jasmonic acid carboxyl methyltransferase (AtJMT) results in stimulation of root growth and ginsenoside heterogeneity in Panax ginseng. Pancreas 5:28–32.
  • Ko, S. R., K. J. Choi, K. Uchida, and Y. Suzuki. 2003. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1 from protopanaxatriol-type ginseng saponin mixture. Planta Medica 69 (3):285–6. doi: 10.1055/s-2003-38476.
  • Kochan, E., E. Balcerczak, A. Lipert, G. Szymańska, and P. Szymczyk. 2018. Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor. Industrial Crops and Products 115:182–93. doi: 10.1016/j.indcrop.2018.02.036.
  • Kochan, E., P. Szymczyk, Ł. Kuźma, A. Lipert, and G. Szymańska. 2017. Yeast extract stimulates ginsenoside production in hairy root cultures of American ginseng cultivated in shake flasks and nutrient sprinkle bioreactors. Molecules 22 (6):880. doi: 10.3390/molecules22060880.
  • Kochan, E., P. Szymczyk, Ł. Kuźma, and G. Szymańska. 2016. Nitrogen and phosphorus as the factors affecting ginsenoside production in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiologiae Plantarum 38 (6):149. doi: 10.1007/s11738-016-2168-9.
  • Ku, S. 2016. Finding and producing probiotic glycosylases for the biocatalysis of ginsenosides: A mini review. Molecules 21 (5):645. doi: 10.3390/molecules21050645.
  • Kurian, G. A., R. Rajagopal, S. Vedantham, and M. Rajesh. 2016. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: Revisited. Oxidative Medicine and Cellular Longevity 2016:1656450. doi: 10.1155/2016/1656450.
  • Kuzuyama, T., and H. Seto. 2012. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proceedings of the Japan Academy, Series B 88 (3):41–52. doi: 10.2183/pjab.88.41.
  • Kwon, S. W., S. B. Han, I. H. Park, J. M. Kim, M. K. Park, and J. H. Park. 2001. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. Journal of Chromatography A 921 (2):335–9. doi: 10.1016/S0021-9673(01)00869-X.
  • Lahiani, M. H., S. Eassa, C. Parnell, Z. Nima, A. Ghosh, A. S. Biris, and M. V. Khodakovskaya. 2017. Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity. Nanotechnology 28 (1):015101. doi: 10.1088/0957-4484/28/1/015101.
  • Le, K. C., W. T. Im, K. Y. Paek, and S. Y. Park. 2018. Biotic elicitation of ginsenoside metabolism of mutant adventitious root culture in Panax ginseng. Applied Microbiology and Biotechnology 102 (4):1687–97. doi: 10.1007/s00253-018-8751-9.
  • Le, K.-C., T.-T. Ho, J.-D. Lee, K.-Y. Paek, and S.-Y. Park. 2020. Colchicine mutagenesis from long-term cultured adventitious roots increases biomass and ginsenoside production in wild ginseng (Panax ginseng Mayer). Agronomy 10 (6):785. doi: 10.3390/agronomy10060785.
  • Le, T. H. V., S. Y. Lee, G. J. Lee, N. K. Nguyen, J. H. Park, and M. D. Nguyen. 2015. Effects of steaming on saponin compositions and anti-proliferative activity of Vietnamese ginseng. Journal of Ginseng Research 39 (3):274–8. doi: 10.1016/j.jgr.2015.01.006.
  • Lee, J. W., B.-R. Choi, Y.-C. Kim, D. J. Choi, Y.-S. Lee, G.-S. Kim, N.-I. Baek, S.-Y. Kim, and D. Y. Lee. 2017. Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of Panax ginseng by UPLC-QTOF/MS. Molecules 22 (12):2147. doi: 10.3390/molecules22122147.
  • Lee, J., and K. W. Mudge. 2013a. Water deficit affects plant and soil water status, plant growth, and ginsenoside contents in American ginseng. Horticulture, Environment, and Biotechnology 54 (6):475–83. doi: 10.1007/s13580-013-0090-2.
  • Lee, J., and K. W. Mudge. 2013b. Gypsum effects on plant growth, nutrients, ginsenosides, and their relationship in American ginseng. Horticulture, Environment, and Biotechnology 54 (3):228–35. doi: 10.1007/s13580-013-0029-7.
  • Lee, J., H. Han, X. Yuan, E. Park, J. Lee, and J.-H. Kim. 2021. A rapid, simultaneous and quantitative analysis of 26 ginsenosides in white and red Panax ginseng using LC–MS/MS. Applied Biological Chemistry 64 (1):13. doi: 10.1186/s13765-020-00588-w.
  • Lee, M. K., H. Park, and C. H. Lee. 1987. Effect of growth conditions on saponin content and ginsenoside pattern of Panax ginseng. Korean Journal of Ginseng Research 11:233–51.
  • Lee, M.-H., J.-H. Jeong, J.-W. Seo, C.-G. Shin, Y.-S. Kim, J.-G. In, D. C. Yang, J. S. Yi, and Y.-E. Choi. 2004. Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant & Cell Physiology 45 (8):976–84. doi: 10.1093/pcp/pch126.
  • Lee, S. J., W. G. Ko, J. H. Kim, J. H. Sung, C. K. Moon, and B. H. Lee. 2000. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochemical Pharmacology 60 (5):677–85. doi: 10.1016/S0006-2952(00)00362-2.
  • Leong, H. Y., P. L. Show, M. H. Lim, C. W. Ooi, and T. C. Ling. 2017. Natural red pigments from plants and their health benefits: A review. Food Reviews International 34 (5):463–82. doi: 10.1080/87559129.2017.1326935.
  • Leung, K. W., and A. S. Wong. 2010. Pharmacology of ginsenosides: A literature review. Chinese Medicine 5:20. doi: 10.1186/1749-8546-5-20.
  • Li, J., S. Liu, J. Wang, J. Li, D. Liu, J. Li, and W. Gao. 2016. Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng C. A. Mey. Journal of Biotechnology 239:106–14. doi: 10.1016/j.jbiotec.2016.10.011.
  • Li, J. F., H. H. Shao, Y. M. Bi, X. L. Jiao, X. M. Zhang, and W. W. Gao. 2020. Effects of nutrients deficiency on growth and saponin accumulation of American ginseng. China Journal of Chinese Materia Medica 45:1866–72.
  • Li, L., X. Chen, D. Li, and D. Zhong. 2011. Identification of 20(S)-protopanaxadiol metabolites in human liver microsomes and human hepatocytes. Drug Metabolism and Disposition: The Biological Fate of Chemicals 39 (3):472–83. doi: 10.1124/dmd.110.036723.
  • Li, T. S. H., and G. Mazza. 1999. Correlations between leaf and soil mineral concentrations and ginsenoside contents in American ginseng. HortScience 34 (1):85–7. doi: 10.21273/HORTSCI.34.1.85.
  • Li, W., and J. F. Fitzloff. 2002. HPLC analysis of ginsenosides in the roots of Asian ginseng (Panax ginseng) and north American ginseng (Panax quinquefolius) with in-line photodiode array and evaporative light scattering detection. Journal of Liquid Chromatography & Related Technologies 25 (1):29–41. doi: 10.1081/JLC-100108537.
  • Li, W., C. Gu, H. Zhang, D. V. C. Awang, J. F. Fitzloff, H. H. S. Fong, and R. B. van Breemen. 2000. Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng C. A. Meyer (Asian ginseng) and Panax quinquefolius L. (North American ginseng). Analytical Chemistry 72 (21):5417–22. doi: 10.1021/ac000650l.
  • Li, X., X. Cheng, B. Liao, J. Xu, X. Han, J. Zhang, Z. Lin, and L. Hu. 2020. Spatial protein expression of panax ginseng by in-depth proteomic analysis for ginsenoside biosynthesis and transportation. Journal of Ginseng Research 45 (1):58–65. doi: 10.1016/j.jgr.2020.01.009.
  • Li, Z., and G. E. Ji. 2017. Effects of various ginsenosides and ginseng root and ginseng berry on the activity of pancreatic lipase. Food Science and Biotechnology 26 (3):767–73. doi: 10.1007/s10068-017-0090-6.
  • Li, Z., Y. Jiang, Y. Zu, X. Mei, L. Qin, and B. Li. 2020. Effects of lime application on activities of related enzymes and protein expression of saponin metabolism of Panax notoginseng under cadmium stress. Polish Journal of Environmental Studies 29 (6):4199–211. doi: 10.15244/pjoes/120514.
  • Liang, H., Z. Hu, T. Zhang, T. Gong, J. Chen, P. Zhu, Y. Li, and J. Yang. 2017. Production of a bioactive unnatural ginsenoside by metabolically engineered yeasts based on a new UDP-glycosyltransferase from Bacillus subtilis. Metabolic Engineering 44:60–9. doi: 10.1016/j.ymben.2017.07.008.
  • Lim, W., K. W. Mudge, and J. W. Lee. 2006. Effect of water stress on ginsenoside production and growth of American ginseng. HortTechnology 16 (3):517–22. doi: 10.21273/HORTTECH.16.3.0517.
  • Liu, H., J. Yang, F. Du, X. Gao, X. Ma, Y. Huang, F. Xu, W. Niu, F. Wang, Y. Mao, et al. 2009. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metabolism and Disposition: The Biological Fate of Chemicals 37 (12):2290–8. doi: 10.1124/dmd.109.029819.
  • Liu, H., J. Zhao, R. Fu, C. Zhu, and D. Fan. 2019. The ginsenoside Rk3 exerts anti-esophageal cancer activity in vitro and in vivo by mediating apoptosis and autophagy through regulation of the PI3K/Akt/mTOR pathway. PLOS One 14 (5):e0216759. doi: 10.1371/journal.pone.0216759.
  • Liu, J., Y. Liu, Y. Wang, A. Abozeid, Y.-G. Zu, and Z.-H. Tang. 2017a. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. Journal of Pharmaceutical and Biomedical Analysis 135:176–85. doi: 10.1016/j.jpba.2016.12.026.
  • Liu, J., Y. Liu, Y. Wang, A. Abozeid, Y.-G. Zu, X.-N. Zhang, and Z.-H. Tang. 2017b. GC-MS metabolomic analysis to reveal the metabolites and biological pathways involved in the developmental stages and tissue response of Panax ginseng. Molecules 22 (3):496. doi: 10.3390/molecules22030496.
  • Liu, T., T. Luo, X. Guo, X. Zou, D. Zhou, S. Afrin, G. Li, Y. Zhang, R. Zhang, and Z. Luo. 2019. PgMYB2, a MeJA-responsive transcription factor, positively regulates the dammarenediol synthase gene expression in Panax Ginseng. International Journal of Molecular Sciences 20 (9):2219. doi: 10.3390/ijms20092219.
  • Liu, Z., C. Z. Wang, X. Y. Zhu, J. Y. Wan, J. Zhang, W. Li, C. C. Ruan, and C. S. Yuan. 2017. Dynamic changes in neutral and acidic ginsenosides with different cultivation ages and harvest seasons: Identification of chemical characteristics for Panax ginseng quality control. Molecules 22 (5):734. doi: 10.3390/molecules22050734.
  • Lombard, J., and D. Moreira. 2011. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Molecular Biology and Evolution 28 (1):87–99. doi: 10.1093/molbev/msq177.
  • Lu, H., X. Zhou, H. H. Kwok, M. Dong, Z. Liu, P. Y. Poon, X. Luan, and R. Ngok-Shun Wong. 2017. Ginsenoside-Rb1-mediated anti-angiogenesis via regulating PEDF and miR-33a through the activation of PPAR-γ pathway. Frontiers in Pharmacology 8:783. doi: 10.3389/fphar.2017.00783.
  • Lü, J. M., Q. Yao, and C. Chen. 2009. Ginseng compounds: An update on their molecular mechanisms and medical applications. Current Vascular Pharmacology 7 (3):293–302. doi: 10.2174/157016109788340767.
  • Lui, J. H., and E. J. Staba. 1980. The ginsenosides of various ginseng plants and selected products. Journal of Natural Products 43 (3):340–6. doi: 10.1021/np50009a004.
  • Luo, H., C. Sun, Y. Sun, Q. Wu, Y. Li, J. Song, Y. Niu, X. Cheng, H. Xu, C. Li, et al. 2011. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 12 (Suppl 5):S5. doi: 10.1186/1471-2164-12-S5-S5.
  • Luque de Castro, M. D., and L. E. Garcı́a-Ayuso. 1998. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Analytica Chimica Acta 369 (1–2):1–10. doi: 10.1016/S0003-2670(98)00233-5.
  • Ma, R., L. Sun, X. Chen, B. Mei, G. Chang, M. Wang, and D. Zhao. 2016. Proteomic analyses provide novel insights into plant growth and ginsenoside biosynthesis in forest cultivated Panax ginseng (F. Ginseng). Frontiers in Plant Science 7:1. doi: 10.3389/fpls.2016.00001.
  • Ma, R., L. Sun, X. Chen, R. Jiang, H. Sun, and D. Zhao. 2013. Proteomic changes in different growth periods of ginseng roots. Plant Physiology and Biochemistry: PPB 67:20–32. doi: 10.1016/j.plaphy.2013.02.023.
  • Ma, R., R. Jiang, X. Chen, D. Zhao, T. Li, and L. Sun. 2019. Proteomics analyses revealed the reduction of carbon- and nitrogen-metabolism and ginsenoside biosynthesis in the red-skin disorder of Panax ginseng. Functional Plant Biology: FPB 46 (12):1123–33. doi: 10.1071/FP18269.
  • Marsik, P., L. Langhansova, M. Dvorakova, P. Cigler, M. Hruby, and T. Vanek. 2014. Increased ginsenosides production by elicitation of in vitro cultivated Panax ginseng adventitious roots. Journal of Medicinal and Aromatic Plants 3:1.
  • Minard, K. I., and L. McAlister-Henn. 2005. Sources of NADPH in yeast vary with carbon source. The Journal of Biological Chemistry 280 (48):39890–6. doi: 10.1074/jbc.M509461200.
  • Miziorko, H. M. 2011. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Archives of Biochemistry and Biophysics 505 (2):131–43. doi: 10.1016/j.abb.2010.09.028.
  • Mohanan, P., S. Subramaniyam, R. Mathiyalagan, and D. C. Yang. 2018. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. Journal of Ginseng Research 42 (2):123–32. doi: 10.1016/j.jgr.2017.01.008.
  • My, P. L. T., H. T. K. My, N. T. X. Phuong, T. D. Dat, V. H. Thanh, H. M. Nam, M. T. Phong, and N. H. Hieu. 2020. Optimization of enzyme-assisted extraction of ginsenoside Rb1 from Vietnamese Panax notoginseng (BURK.) F.H. Chen roots and anticancer activity examination of the extract. Separation Science and Technology 56 (10):1687–98. doi: 10.1080/01496395.2020.1795676.
  • Nicol, R. W., J. A. Traquair, and M. A. Bernards. 2002. Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Canadian Journal of Botany 80 (5):557–62. doi: 10.1139/b02-034.
  • Nováková, L., L. Matysová, and P. Solich. 2006. Advantages of application of UPLC in pharmaceutical analysis. Talanta 68 (3):908–18. doi: 10.1016/j.talanta.2005.06.035.
  • Oh, J. Y., Y.-J. Kim, M.-G. Jang, S. C. Joo, W.-S. Kwon, S.-Y. Kim, S.-K. Jung, and D.-C. Yang. 2014. Investigation of ginsenosides in different tissues after elicitor treatment in Panax ginseng. Journal of Ginseng Research 38 (4):270–7. doi: 10.1016/j.jgr.2014.04.004.
  • Palazón, J., R. M. Cusidó, M. Bonfill, A. Mallol, E. Moyano, C. Morales, and M. T. Piñol. 2003. Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiology and Biochemistry 41 (11–12):1019–25. doi: 10.1016/j.plaphy.2003.09.002.
  • Park, C.-S., M.-H. Yoo, K.-H. Noh, and D.-K. Oh. 2010. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Applied Microbiology and Biotechnology 87 (1):9–19. doi: 10.1007/s00253-010-2567-6.
  • Park, H. J., Y. S. Choi, and J. M. Kim. 2014. A study of accuracy assessment of digital elevation model in the Greenland. Journal of Korea Spatial Information Society 22 (4):59–65. doi: 10.12672/ksis.2014.22.4.059.
  • Park, H., and M. K. Lee. 1993. Assessment of traditional quality criteria of Panax ginseng by biological active compounds. Acta Horticulturae 332 (332):137–44. doi: 10.17660/ActaHortic.1993.332.18.
  • Park, H.-W., G. In, S.-T. Han, M.-W. Lee, S.-Y. Kim, K.-T. Kim, B. G. Cho, G. H. Han, and I.-M. Chang. 2013. Simultaneous determination of 30 ginsenosides in Panax ginseng preparations using ultra performance liquid chromatography. Journal of Ginseng Research 37 (4):457–67. doi: 10.5142/jgr.2013.37.457.
  • Park, M. K., J. H. Park, S. B. Han, Y. G. Shin, and I. H. Park. 1996. High-performance liquid chromatographic analysis of ginseng saponins using evaporative light scattering detection. Journal of Chromatography A 736:77–81.
  • Park, S. E., C. S. Na, S. A. Yoo, S. H. Seo, and H. S. Son. 2017. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. Journal of Ginseng Research 41 (1):36–42. doi: 10.1016/j.jgr.2015.12.008.
  • Park, S.-U., D.-J. Ahn, H.-J. Jeon, T.-R. Kwon, H.-S. Lim, B.-S. Choi, K.-H. Baek, and H.-H. Bae. 2012. Increase in the contents of ginsenosides in raw ginseng roots in response to exposure to 450 and 470 nm light from light-emitting diodes. Journal of Ginseng Research 36 (2):198–204. doi: 10.5142/jgr.2012.36.2.198.
  • Parmenter, G., and R. Littlejohn. 2000. Effect of shade on growth and photosynthesis of Panax ginseng. New Zealand Journal of Crop and Horticultural Science 28 (4):255–69. doi: 10.1080/01140671.1997.9514147.
  • Pereira, C., L. Barros, and I. C. Ferreira. 2016. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. Journal of the Science of Food and Agriculture 96 (4):1068–84. doi: 10.1002/jsfa.7446.
  • Phillips, D. R., J. M. Rasbery, B. Bartel, and S. P. Matsuda. 2006. Biosynthetic diversity in plant triterpene cyclization. Current Opinion in Plant Biology 9 (3):305–14. doi: 10.1016/j.pbi.2006.03.004.
  • Prakash, B., A. Kumar, P. P. Singh, and L. S. Songachan. 2020. Antimicrobial and antioxidant properties of phytochemicals. In Functional and preservative properties of phytochemicals, ed. B. Prakash, 1–45. Academic press.
  • Qi, L. W., C. Z. Wang, G. J. Du, Z. Y. Zhang, T. Calway, and C. S. Yuan. 2011. Metabolism of ginseng and its interactions with drugs. Current Drug Metabolism 12 (9):818–22. doi: 10.2174/138920011797470128.
  • Quan, K., Q. Liu, J.-Y. Wan, Y.-J. Zhao, R.-Z. Guo, R. N. Alolga, P. Li, and L.-W. Qi. 2015. Rapid preparation of rare ginsenosides by acid transformation and their structure-activity relationships against cancer cells. Scientific Reports 5:8598. doi: 10.1038/srep08598.
  • Quan, L. H., J. W. Min, S. Sathiyamoorthy, D. U. Yang, Y. J. Kim, and D. C. Yang. 2012. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase. Biotechnology Letters 34 (5):913–7. doi: 10.1007/s10529-012-0849-z.
  • Rahimi, S., B. S. R. Devi, A. Khorolragchaa, Y. J. Kim, J. H. Kim, S. K. Jung, and D. C. Yang. 2014. Effect of salicylic acid and yeast extract on the accumulation of jasmonic acid and sesquiterpenoids in Panax ginseng adventitious roots. Russian Journal of Plant Physiology 61 (6):811–7. doi: 10.1134/S1021443714060156.
  • Rahimi, S., Y.-J. Kim, B. S. R. Devi, J. Y. Oh, S.-Y. Kim, W.-S. Kwon, and D.-C. Yang. 2015. Sodium nitroprusside enhances the elicitation power of methyl jasmonate for ginsenoside production in Panax ginseng roots. Research on Chemical Intermediates 42 (4):2937–51. doi: 10.1007/s11164-015-2188-x.
  • Rahimi, S., Y.-J. Kim, J. Sukweenadhi, D. Zhang, and D.-C. Yang. 2016. PgLOX6 encoding a lipoxygenase contributes to jasmonic acid biosynthesis and ginsenoside production in Panax ginseng. Journal of Experimental Botany 67 (21):6007–19. doi: 10.1093/jxb/erw358.
  • Rambabu, K., G. Bharath, F. Banat, P. L. Show, and H. H. Cocoletzi. 2019. Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules 126:1234–43. doi: 10.1016/j.ijbiomac.2018.12.196.
  • Ren, G., and F. Chen. 1999. Simultaneous quantification of ginsenosides in American ginseng (Panax quinquefolium) root powder by visible/near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry 47 (7):2771–5. doi: 10.1021/jf9812477.
  • Rohdich, F., F. Zepeck, P. Adam, S. Hecht, J. Kaiser, R. Laupitz, T. Grawert, S. Amslinger, W. Eisenreich, A. Bacher, et al. 2003. The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: Studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proceedings of the National Academy of Sciences of the United States of America 100 (4):1586–91. doi: 10.1073/pnas.0337742100.
  • Saraf, M., U. Pandya, and A. Thakkar. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research 169 (1):18–29. doi: 10.1016/j.micres.2013.08.009.
  • Seemann, M., B. Tse Sum Bui, M. Wolff, M. Miginiac-Maslow, and M. Rohmer. 2006. Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Letters 580 (6):1547–52. doi: 10.1016/j.febslet.2006.01.082.
  • Shangguan, D., H. Han, R. Zhao, Y. Zhao, S. Xiong, and G. Liu. 2001. New method for high-performance liquid chromatographic separation and fluorescence detection of ginsenosides. Journal of Chromatography A 910 (2):367–72. doi: 10.1016/S0021-9673(00)01208-5.
  • Shao, J.-W., J.-L. Jiang, J.-J. Zou, M.-Y. Yang, F.-M. Chen, Y.-J. Zhang, and L. Jia. 2020. Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. Journal of Functional Foods 64:103630. doi: 10.1016/j.jff.2019.103630.
  • Shi, Z.-Y., J.-Z. Zeng, and A. S. T. Wong. 2019. Chemical structures and pharmacological profiles of ginseng saponins. Molecules 24 (13):2443. doi: 10.3390/molecules24132443.
  • Shibuya, M., K. Nishimura, N. Yasuyama, and Y. Ebizuka. 2010. Identification and characterization of glycosyltransferases involved in the biosynthesis of soyasaponin I in Glycine max. FEBS Letters 584 (11):2258–64. doi: 10.1016/j.febslet.2010.03.037.
  • Shim, J.-S., O.-R. Lee, Y.-J. Kim, J.-H. Lee, J.-H. Kim, D.-Y. Jung, J.-G. In, B.-S. Lee, and D.-C. Yang. 2010. Overexpression of PgSQS1 increases ginsenoside production and negatively affects ginseng growth rate in Panax ginseng. Journal of Ginseng Research 34 (2):98–103. doi: 10.5142/jgr.2010.34.2.098.
  • Shin, B. K., S. W. Kwon, and J. H. Park. 2015. Chemical diversity of ginseng saponins from Panax ginseng. Journal of Ginseng Research 39 (4):287–98. doi: 10.1016/j.jgr.2014.12.005.
  • Shin, K. C., and D. K. Oh. 2016. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Critical Reviews in Biotechnology 36 (6):1036–49. doi: 10.3109/07388551.2015.1083942.
  • Song, H. H., D. Y. Kim, S. Woo, H. K. Lee, and S. R. Oh. 2013. An approach for simultaneous determination for geographical origins of Korean Panax ginseng by UPLC-QTOF/MS coupled with OPLS-DA models. Journal of Ginseng Research 37 (3):341–8. doi: 10.5142/jgr.2013.37.341.
  • Song, H., K.-W. Song, and S.-P. Hong. 2020. Simultaneous quantification of six nonpolar ginsenosides in white ginseng by reverse-phase high-performance liquid chromatography coupled with integrated pulsed amperometric detection. Journal of Ginseng Research 44 (4):563–9. doi: 10.1016/j.jgr.2019.07.002.
  • Song, X., H. Wu, Z. Yin, M. Lian, and C. Yin. 2017. Endophytic bacteria isolated from Panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22:837.
  • Sritularak, B., O. Morinaga, C. S. Yuan, Y. Shoyama, and H. Tanaka. 2009. Quantitative analysis of ginsenosides Rb1, Rg1, and Re in American ginseng berry and flower samples by ELISA using monoclonal antibodies. Journal of Natural Medicines 63 (3):360–3. doi: 10.1007/s11418-009-0332-x.
  • Sun, J., Z. Shao, H. Zhao, N. Nair, F. Wen, J.-H. Xu, and H. Zhao. 2012. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and Bioengineering 109 (8):2082–92. doi: 10.1002/bit.24481.
  • Sun, Y., Y. Niu, J. Xu, Y. Li, H. Luo, Y. Zhu, M. Liu, Q. Wu, J. Song, C. Sun, et al. 2013. Discovery of WRKY transcription factors through transcriptome analysis and characterization of a novel methyl jasmonate-inducible PqWRKY1 gene from Panax quinquefolius. Plant Cell, Tissue and Organ Culture (PCTOC) 114 (2):269–77. doi: 10.1007/s11240-013-0323-1.
  • Tanaka, H., N. Fukuda, and Y. Shoyama. 2007. Eastern blotting and immunoaffinity concentration using monoclonal antibody for ginseng saponins in the field of traditional Chinese medicines. Journal of Agricultural and Food Chemistry 55 (10):3783–7. doi: 10.1021/jf063457m.
  • Tansakul, P., M. Shibuya, T. Kushiro, and Y. Ebizuka. 2006. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Letters 580 (22):5143–9. doi: 10.1016/j.febslet.2006.08.044.
  • Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metabolism and Disposition: The Biological Fate of Chemicals 31 (8):1065–71. doi: 10.1124/dmd.31.8.1065.
  • Tewari, R. K., and K. Paek. 2011. Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots. Journal of Plant Growth Regulation 30 (4):396–404. doi: 10.1007/s00344-011-9202-3.
  • Thanh, N. T., H. N. Murthy, K. W. Yu, E. J. Hahn, and K. Y. Paek. 2005. Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Applied Microbiology and Biotechnology 67 (2):197–201. doi: 10.1007/s00253-004-1759-3.
  • Tian, Y., Y. Lu, J. Xie, Y. Cheng, R. Qi, Y. Wu, and S. Zhang. 2009. Rapid determination of ginsenoside, and in ginseng samples by capillary electrophoresis. Analytical Methods: Advancing Methods and Applications 1 (3):203–7. doi: 10.1039/b9ay00043g.
  • Tung, N. H., N. Fukuda, H. Tanaka, and Y. Shoyama. 2013. Determination and isolation of ginsenosides from araliaceous plants by using eastern blotting fingerprinting. Natural Products Chemistry and Research 1:107.
  • Vanhaelen-Fastré, R. J., M. L. Faes, and M. H. Vanhaelen. 2000. High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. Journal of Chromatography A 868 (2):269–76. doi: 10.1016/S0021-9673(99)01253-4.
  • Vazquez, I., and L. F. Aguera-Ortiz. 2002. Herbal products and serious side effects: A case of ginseng-induced manic episode. Acta Psychiatrica Scandinavica 105:76–7.
  • Velu, G., V. Palanichamy, and A. P. Rajan. 2018. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In Bioorganic phase in natural food: An overview, ed. S. Roopan and G. Madhumitha, 135–56. Cham: Springer. doi: 10.1007/978-3-319-74210-6_8.
  • Wang, J.-R.,L. F. Yau,R. Zhang,Y. Xia,J. Ma,H. M. Ho,P. Hu,M. Hu,L. Liu, andZ.-H. Jiang. 2014. Transformation of ginsenosides from notoginseng by artificial gastric juice can increase cytotoxicity toward cancer cells. Journal of Agricultural and Food Chemistry 62 (12):2558–73. doi:10.1021/jf405482s. 24555416
  • Wang, J., L. Tian, M. N. Khan, L. Zhang, Q. Chen, Y. Zhao, Q. Yan, L. Fu, and J. Liu. 2018. Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-κB mediated epithelial-mesenchymal transition and stemness. Cancer Letters 415:73–85. doi: 10.1016/j.canlet.2017.11.037.
  • Wang, P., W. Wei, W. Ye, X. Li, W. Zhao, C. Yang, C. Li, X. Yan, and Z. Zhou. 2019b. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discovery 5:5. doi: 10.1038/s41421-018-0075-5.
  • Wang, S. H., W. X. Liang, J. Lu, L. Yao, J. Wang, and W. Y. Gao. 2020. Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. Chinese Herbal Medicines 12 (3):257–64. doi: 10.1016/j.chmed.2020.02.003.
  • Wang, S., R. Zou, F. Wu, S. Bian, Y. Xin, T. He, W. Wang, and Z. Qiu. 2021. HPLC–MS/MS analysis and study on the adsorption/desorption characteristics of ginsenosides on anion-exchange macroporous resins. Chromatographia 84 (5):441–53. doi: 10.1007/s10337-021-04017-y.
  • Wang, S., W. Liang, L. Yao, J. Wang, and W. Gao. 2019. Effect of temperature on morphology, ginsenosides biosynthesis, functional genes, and transcriptional factors expression in Panax ginseng adventitious roots. Journal of Food Biochemistry 43 (4):e12794. doi: 10.1111/jfbc.12794.
  • Wang, Y., B. X. Wang, T. H. Liu, M. Minami, T. Nagata, and T. Ikejima. 2000. Metabolism of ginsenoside Rg (1) by intestinal bacteria II. Immunological activity of ginsenoside Rg (1) and Rh-1. Acta Pharmacologica Sinica 21:792–6.
  • Washida, D., K. Shimomura, M. Takido, and S. Kitanaka. 2004. Auxins affected ginsenoside production and growth of hairy roots in Panax Hybrid. Biological & Pharmaceutical Bulletin 27 (5):657–60. doi: 10.1248/bpb.27.657.
  • Wei, W., P. Wang, Y. Wei, Q. Liu, C. Yang, G. Zhao, J. Yue, X. Yan, and Z. Zhou. 2015. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Molecular Plant 8 (9):1412–24. doi: 10.1016/j.molp.2015.05.010.
  • Wu, X.-H., M.-Z. Fan, X.-F. Li, X.-C. Piao, R. Gao, and M.-L. Lian. 2020. Involvement of putrescine, nitric oxide, and hydrogen peroxide in methyl jasmonate-induced ginsenoside synthesis in adventitious root cultures of Panax ginseng C.A. Meyer. Journal of Plant Growth Regulation. doi: 10.1007/s00344-020-10199-w.
  • Wu, Y., S. Xu, X. Gao, M. Li, D. Li, and W. Lu. 2019. Enhanced protopanaxadiol production from xylose by engineered Yarrowia lipolytica. Microbial Cell Factories 18 (1):83. doi: 10.1186/s12934-019-1136-7.
  • Xia, H., Z. Zhang, X. Jin, Q. Hu, X. Chen, and X. Jia. 2013. A novel drug-phospholipid complex enriched with micelles: Preparation and evaluation in vitro and in vivo. International Journal of Nanomedicine 8:545–54. doi: 10.2147/IJN.S39526.
  • Xu, J., Y. Chu, B. Liao, S. Xiao, Q. Yin, R. Bai, H. Su, L. Dong, X. Li, J. Qian, et al. 2017. Panax ginseng genome examination for ginsenoside biosynthesis. Gigascience 6 (11):1–15. doi: 10.1093/gigascience/gix093.
  • Xu, X., X. Hu, S. J. Neill, J. Fang, and W. Cai. 2005. Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant & Cell Physiology 46 (6):947–54. doi: 10.1093/pcp/pci103.
  • Xue, L., Z. He, X. Bi, W. Xu, T. Wei, S. Wu, and S. Hu. 2019. Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genomics 20 (1):383. doi: 10.1186/s12864-019-5718-x.
  • Xue, P., X. Yang, L. Zhao, Z. Hou, R. Zhang, F. Zhang, and G. Ren. 2020. Relationship between antimicrobial activity and amphipathic structure of ginsenosides. Industrial Crops and Products 143:111929. doi: 10.1016/j.indcrop.2019.111929.
  • Yang, E.-J., T.-H. Kim, K.-C. Shin, and D.-K. Oh. 2018. Complete conversion of all typical glycosylated protopanaxatriol ginsenosides to aglycon protopanaxatriol by combined bacterial β-glycosidases. AMB Express 8 (1):8. doi: 10.1186/s13568-018-0543-1.
  • Yang, H., X. Piao, L. Zhang, S. Song, and Y. Xu. 2018. Ginsenosides from the stems and leaves of Panax ginseng show antifeedant activity against Plutella xylostella (Linnaeus). Industrial Crops and Products 124:412–7. doi: 10.1016/j.indcrop.2018.07.054.
  • Yang, L., S. J. Xu, C. J. Liu, and Z. J. Su. 2009. In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry. Analytical and Bioanalytical Chemistry 395 (5):1441–51. doi: 10.1007/s00216-009-3121-1.
  • Yang, L., Y. H. Deng, S. J. Xu, and X. Zeng. 2007. In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. Journal of Chromatography B 854 (1–2):77–84. doi: 10.1016/j.jchromb.2007.04.014.
  • Yang, M., X. Zhang, Y. Xu, X. Mei, B. Jiang, J. Liao, Z. Yin, J. Zheng, Z. Zhao, L. Fan, et al. 2015. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLOS One 10 (2):e0118555. doi: 10.1371/journal.pone.0118555.
  • Yang, Z., A. Chen, H. Sun, Y. Ye, and W. Fang. 2007. Ginsenoside Rd elicits Th1 and Th2 immune responses to ovalbumin in mice. Vaccine 25 (1):161–9. doi: 10.1016/j.vaccine.2006.05.075.
  • Yao, L., J. Wang, J. Sun, J. He, K.-Y. Paek, S.-Y. Park, L. Huang, and W. Gao. 2020. A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynthesis by activating squalene epoxidase transcription in Panax ginseng. Industrial Crops and Products 154:112671. doi: 10.1016/j.indcrop.2020.112671.
  • Ying Ying Tang, D., K. Shiong Khoo, K. Wayne Chew, Y. Tao, S.-H. Ho, and P. Loke Show. 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology 304:122997. doi: 10.1016/j.biortech.2020.122997.
  • Ying, A., Q.-T. Yu, L. Guo, W.-S. Zhang, J.-F. Liu, Y. Li, H. Song, P. Li, L. W. Qi, Y. Z. Ge, et al. 2018. Structural–activity relationship of ginsenosides from steamed ginseng in the treatment of erectile dysfunction. The American Journal of Chinese Medicine 46 (1):137–55. doi: 10.1142/S0192415X18500088.
  • Yokota, S., Y. Onohara, and Y. Shoyama. 2011. Immunofluorescence and immunoelectron microscopic localization of medicinal substance, Rb1, in several plant parts of Panax ginseng. Current Drug Discovery Technologies 8 (1):51–9. doi: 10.2174/157016311794519938.
  • Yu, K., F. Chen, and C. Li. 2012. Absorption, disposition, and pharmacokinetics of saponins from chinese medicinal herbs: What do we know and what do we need to know more? Current Drug Metabolism 13 (5):577–98. doi: 10.2174/1389200211209050577.
  • Yu, K.-W., H. N. Murthy, E.-J. Hahn, and K.-Y. Paek. 2005. Ginsenoside production by hairy root cultures of Panax ginseng: Influence of temperature and light quality. Biochemical Engineering Journal 23 (1):53–6. doi: 10.1016/j.bej.2004.07.001.
  • Yu, K.-W., W. Gao, E.-J. Hahn, and K.-Y. Paek. 2002. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng. Biochemical Engineering Journal 11 (2–3):211–5. doi: 10.1016/S1369-703X(02)00029-3.
  • Yu, K.-W., W.-Y. Gao, S.-H. Son, and K.-Y. Paek. 2000. Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng C. A. Meyer). In Vitro Cellular & Developmental Biology - Plant 36 (5):424–8. doi: 10.1007/s11627-000-0077-4.
  • Yu, S., X. Zhou, F. Li, C. Xu, F. Zheng, J. Li, H. Zhao, Y. Dai, S. Liu, and Y. Feng. 2017. Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Scientific Reports 7 (1):138. doi: 10.1038/s41598-017-00262-0.
  • Yu, Y., W.-B. Zhang, X.-Y. Li, X.-C. Piao, J. Jiang, and M.-L. Lian. 2016. Pathogenic fungal elicitors enhance ginsenoside biosynthesis of adventitious roots in Panax quinquefolius during bioreactor culture. Industrial Crops and Products 94:729–35. doi: 10.1016/j.indcrop.2016.09.058.
  • Zhang, B., X. Zhang, C. Zhang, Q. Shen, G. Sun, and X. Sun. 2019b. Notoginsenoside R1 protects db/db Mice against diabetic nephropathy via upregulation of Nrf2-Mediated HO-1 Expression. Molecules 24 (2):247. doi: 10.3390/molecules24020247.
  • Zhang, F., S. Tang, L. Zhao, X. Yang, Y. Yao, Z. Hou, and P. Xue. 2021. Stem-leaves of Panax as a rich and sustainable source of less polar ginsenosides: Comparison of ginsenosides from Panax Ginseng, American Ginseng and Panax notoginseng prepared by heating & acid treatment. Journal of Ginseng Research 45 (1):163–75. doi: 10.1016/j.jgr.2020.01.003.
  • Zhang, G., Q. Cao, J. Liu, B. Liu, J. Li, and C. Li. 2015. Refactoring β-amyrin synthesis in Saccharomyces cerevisiae. AIChE Journal 61 (10):3172–9. doi: 10.1002/aic.14950.
  • Zhang, H., H. Yang, Y. Wang, Y. Gao, and L. Zhang. 2013. The response of ginseng grown on farmland to foliar-applied iron, zinc, manganese and copper. Industrial Crops and Products 45:388–94. doi: 10.1016/j.indcrop.2012.12.047.
  • Zhang, J.-Y., T.-W. Bae, K.-H. Boo, H.-J. Sun, I.-J. Song, C.-H. Pham, M. Ganesan, D.-H. Yang, H.-G. Kang, S.-M. Ko, et al. 2011. Ginsenoside production and morphological characterization of wild ginseng (Panax ginseng Meyer) mutant lines induced by γ-irradiation ((60)Co) of Adventitious Roots. Journal of Ginseng Research 35 (3):283–93. doi: 10.5142/jgr.2011.35.3.283.
  • Zhang, T., M. Han, L. Yang, Z. Han, L. Cheng, Z. Sun, and L. Yang. 2019a. The effects of environmental factors on ginsenoside biosynthetic enzyme gene expression and saponin abundance. Molecules 24 (1):14. doi: 10.3390/molecules24010014.
  • Zhang, X., F. Ge, B. Deng, T. Shah, Z. Huang, D. Liu, and C. Chen. 2017. Molecular cloning and characterization of PnbHLH1 transcription factor in Panax notoginseng. Molecules (Basel, Switzerland) 22:1268.
  • Zhang, X., G. Chen, L. Wen, F. Yang, A.-l. Shao, X. Li, W. Long, and L. Mu. 2013. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: In vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences 48 (4–5):595–603. doi: 10.1016/j.ejps.2013.01.007.
  • Zhao, S., L. Wang, L. Liu, Y. Liang, Y. Sun, and J. Wu. 2014. Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Reports 33 (3):393–400. doi: 10.1007/s00299-013-1538-7.
  • Zheng, M. M., F. X. Xu, Y. J. Li, X. Z. Xi, X. W. Cui, C. C. Han, and X. L. Zhang. 2017. Study on transformation of ginsenosides in different methods. BioMed Research International 2017:8601027. doi: 10.1155/2017/8601027.
  • Zheng, M., Y. Xin, Y. Li, F. Xu, X. Xi, H. Guo, X. Cui, H. Cao, X. Zhang, and C. Han. 2018. Ginsenosides: A potential neuroprotective agent. BioMed Research International 2018:8174345. doi: 10.1155/2018/8174345.
  • Zhou, S. S., J. D. Xu, H. Zhu, H. Shen, J. Xu, Q. Mao, S. L. Li, and R. Yan. 2014. Simultaneous determination of original, degraded ginsenosides and aglycones by ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for quantitative evaluation of Du-Shen-Tang, the decoction of ginseng. Molecules (Basel, Switzerland) 19 (4):4083–104. doi: 10.3390/molecules19044083.
  • Zhu, F., B. Du, and B. Xu. 2018. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Critical Reviews in Food Science and Nutrition 58 (8):1260–70. doi: 10.1080/10408398.2016.1251390.
  • Zhu, Q., D.-K. Li, D.-Z. Zhou, Z.-L. Ye, and W.-Y. Liu. 2014. Study on hydrolysis kinetics of ginsenoside-Ro in alkaline medium and structural analysis of its hydrolyzate. Zhongguo Zhongyao Zazhi 39:867–72.
  • Zou, J., H. Su, C. Zou, X. Liang, and Z. Fei. 2020. Ginsenoside Rg3 suppresses the growth of gemcitabine-resistant pancreatic cancer cells by upregulating lncRNA-CASC2 and activating PTEN signaling. Journal of Biochemical and Molecular Toxicology 34 (6):e22480. doi: 10.1002/jbt.22480.
  • Zu, Y., X. Mei, B. Li, T. Li, Q. Li, L. Qin, and Z. Yang. 2020. Effects of calcium application on the yields of flavonoids and saponins in Panax notoginseng under cadmium stress. International Journal of Environmental Analytical Chemistry. doi: 10.1080/03067319.2020.1781835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.