1,737
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum)

, , , , , , , ORCID Icon, ORCID Icon, , , , , , ORCID Icon, & ORCID Icon show all

References

  • Almuhayawi, M. S., A. H. A. Hassan, M. Abdel-Mawgoud, G. Khamis, S. Selim, S. K. Al Jaouni, and H. AbdElgawad. 2021. Laser light as a promising approach to improve the nutritional value, antioxidant capacity and anti-inflammatory activity of flavonoid-rich buckwheat sprouts. Food Chemistry 345:128788. doi: 10.1016/j.foodchem.2020.128788.
  • Alshannaq, A., and J. H. Yu. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health 14 (6):632. doi: 10.3390/ijerph14060632.
  • Bhinder, S., A. Kaur, B. Singh, M. P. Yadav, and N. Singh. 2020. Proximate composition, amino acid profile, pasting and process characteristics of flour from different Tartary buckwheat varieties. Food Research International 130:108946. doi: 10.1016/j.foodres.2019.108946.
  • Bhinder, S., B. Singh, A. Kaur, N. Singh, M. Kaur, S. Kumari, and M. P. Yadav. 2019. Effect of infrared roasting on antioxidant activity, phenolic composition and Maillard reaction products of Tartary buckwheat varieties. Food Chemistry 285:240–51. doi: 10.1016/j.foodchem.2019.01.141.
  • Borovaya, S. A., and A. G. Klykov. 2020. Some aspects of flavonoid biosynthesis and accumulation in buckwheat plants. Plant Biotechnology Reports 14 (2):213–25. doi: 10.1007/s11816-020-00614-9.
  • Chen, S., H. Li, Y. Liu, Z. Zhu, and Q. Wei. 2017. Quercitrin extracted from Tartary buckwheat alleviates imiquimod-induced psoriasis-like dermatitis in mice by inhibiting the Th17 cell response. Journal of Functional Foods 38:9–19. doi: 10.1016/j.jff.2017.08.034.
  • Chen, S., L. Wu, H. Zhu, L. Yao, and L. Wang. 2021. Effects of processing methods on phenolic compositions, anti-oxidant activities and α-glucosidase inhibitory ability of two buckwheat varieties. Chemical Papers 75 (3):1029–39. doi: 10.1007/s11696-020-01356-2.
  • Chen, Y., L. Qin, A. Wen, M. Mazhar, H. Wang, and Y. Zhu. 2021. Three-solvent extracting method comprehensively evaluates phenolics profile and antioxidant activities of Tartary buckwheat. Journal of Food Processing and Preservation 45 (1):1–10. doi: 10.1111/jfpp.15020.
  • Cheng, F., L. Han, Y. Xiao, C. Pan, Y. Li, X. Ge, Y. Zhang, S. Yan, and M. Wang. 2019. D-chiro-inositol ameliorates high fat diet-induced hepatic steatosis and insulin resistance via PKCε-PI3K/AKT pathway. Journal of Agricultural and Food Chemistry 67 (21):5957–67. doi: 10.1021/acs.jafc.9b01253.
  • China National Intellectual Property Administration. 2021. Accessed March 30, 2021. http://epub.cnipa.gov.cn/.
  • Chitarrini, G., C. Nobili, F. Pinzari, A. Antonini, P. De Rossi, A. Del Fiore, S. Procacci, V. Tolaini, V. Scala, M. Scarpari, et al. 2014. Buckwheat achenes antioxidant profile modulates Aspergillus flavus growth and aflatoxin production. International Journal of Food Microbiology 189:1–10. doi: 10.1016/j.ijfoodmicro.2014.07.029.
  • Choi, S. Y., J. Y. Choi, J. M. Lee, S. Lee, and E. J. Cho. 2015. Tartary buckwheat on nitric oxide-induced inflammation in RAW264.7 macrophage cells. Food & Function 6 (8):2664–70. doi: 10.1039/c5fo00639b.
  • Cui, X., J. Du, J. Li, and Z. Wang. 2018. Inhibitory site of α-hairpinin peptide from Tartary buckwheat has no effect on its antimicrobial activities. Acta Biochimica et Biophysica Sinica 50 (4):408–16. doi: 10.1093/abbs/gmy015.
  • Dzah, C. S., Y. Duan, H. Zhang, D. A. Authur, and H. Ma. 2020. Ultrasound-, subcritical water- and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells. Food Research International 137:109598. doi: 10.1016/j.foodres.2020.109598.
  • Dziadek, K., A. Kopeć, E. Piątkowska, T. Leszczyńska, E. Pisulewska, R. Witkowicz, B. Bystrowska, and R. Francik. 2018. Identification of polyphenolic compounds and determination of antioxidant activity in extracts and infusions of buckwheat leaves. European Food Research and Technology 244 (2):333–43. doi: 10.1007/s00217-017-2959-2.
  • Fok, J., F. Kette, W. Smith, A. Smith, A. Ahmadie, R. Heddle, and P. Hissaria. 2015. Buckwheat allergy: An emerging problem in Australia. Internal Medicine Journal 45:6.
  • Fok, J. S., F. Kette, W. B. Smith, A. Smith, A. Ahmadie, R. Heddle, and P. Hissaria. 2019. Buckwheat allergy in Australia. Internal Medicine Journal 49 (12):1552–1553. doi: 10.1111/imj.14660.
  • García-Pérez, P., M. Ayuso, E. Lozano-Milo, C. Pereira, M. I. Dias, M. Ivanov, R. C. Calhelha, M. Soković, I. C. F. R. Ferreira, L. Barros, et al. 2021. Phenolic profiling and in vitro bioactivities of three medicinal Bryophyllum plants. Industrial Crops and Products 162:113241. doi: 10.1016/j.indcrop.2021.113241.
  • Geiselhart, S., C. Nagl, P. Dubiela, A. C. Pedersen, M. Bublin, C. Radauer, C. Bindslev-Jensen, K. Hoffmann-Sommergruber, and C. G. Mortz. 2018. Concomitant sensitization to legumin, Fag e 2 and Fag e 5 predicts buckwheat allergy. Clinical and Experimental Allergy 48 (2):217–224. doi: 10.1111/cea.13068.
  • Giménez-Bastida, J. A., and H. Zieliński. 2015. Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry 63 (36):7896–7913. doi: 10.1021/acs.jafc.5b02498.
  • Guo, X., K. Zhu, H. Zhang, and H. Yao. 2010. Anti-tumor activity of a novel protein obtained from tartary buckwheat. International Journal of Molecular Sciences 11 (12):5201–5211. doi: 10.3390/ijms11125201.
  • He, Q., Z. X. Guo, Y. Cao, M. Yang, and S. Yao. 2021. Selective separation of main flavonoids by combinational use of ionic liquid-loaded microcapsules from crude extract of Tartary buckwheat. Food Chemistry 362:130255. doi: 10.1016/j.foodchem.2021.130255.
  • Hou, Z., Y. Hu, X. Yang, and W. Chen. 2017. Antihypertensive effects of Tartary buckwheat flavonoids by improvement of vascular insulin sensitivity in spontaneously hypertensive rats. Food Function 8 (11):4217–4228. doi: 10.1039/c7fo00975e.
  • Hu, Y., Z. Hou, R. Yi, Z. Wang, P. Sun, G. Li, X. Zhao, and Q. Wang. 2017. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice. Food & Function 8 (8):2803–2816. doi: 10.1039/c7fo00359e.
  • Hu, Y., Y. Zhao, D. Ren, J. Guo, Y. Luo, and X. Yang. 2015. Hypoglycemic and hepatoprotective effects of D-chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice. Food & Function 6 (12):3760–3769. doi: 10.1039/C5FO00612K.
  • Hu, Y., Y. Zhao, L. Yuan, and X. Yang. 2015. Protective effects of tartary buckwheat flavonoids on high TMAO diet-induced vascular dysfunction and liver injury in mice. Food & Function 6 (10):3359–3372. doi: 10.1039/C5FO00581G.
  • Huang, S., Y. Ma, D. Sun, J. Fan, and S. Cai. 2017. In vitro DNA damage protection and anti-inflammatory effects of Tartary buckwheats (Fagopyrum tataricum L. Gaertn) fermented by filamentous fungi. International Journal of Food Science & Technology 52 (9):2006–2017. doi: 10.1111/ijfs.13474.
  • Huang, Y. F., L. X. Peng, Y. Liu, Z. F. Zhang, L. Y. Lv, and G. Zhao. 2013. Evaluation of essential and toxic elements concentrations in different parts of buckwheat. Czech Journal of Food Sciences 31 (No. 3):249–255. doi: 10.17221/148/2012-CJFS.
  • Huda, M. N., S. Lu, T. Jahan, M. Ding, R. Jha, K. Zhang, W. Zhang, M. I. Georgiev, S. U. Park, and M. Zhou. 2021. Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry 335:127653. doi: 10.1016/j.foodchem.2020.127653.
  • Hwang, D., M. J. Kang, C. W. Kang, and G. D. Kim. 2019. Kaempferol‑3‑O‑β‑rutinoside suppresses the inflammatory responses in lipopolysaccharide‑stimulated RAW264.7 cells via the NF‑κB and MAPK pathways. International Journal of Molecular Medicine 44 (6):2321–2328. doi: 10.3892/ijmm.2019.4381.
  • Ji, X., L. Han, F. Liu, S. Yin, Q. Peng, and M. Wang. 2019. A mini-review of isolation, chemical properties and bioactivities of polysaccharides from buckwheat (Fagopyrum Mill). International Journal of Biological Macromolecules 127:204–209. doi: 10.1016/j.ijbiomac.2019.01.043.
  • Jia, L., S. Huang, X. Yin, Y. Zan, Y. Guo, and L. Han. 2018. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sciences 208 (157):123–130. doi: 10.1016/j.lfs.2018.07.027.
  • Jiang, S., Q. Liu, Y. Xie, H. Zeng, L. Zhang, X. Jiang, and X. Chen. 2015. Separation of five flavonoids from tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) grains via off-line two dimensional high-speed counter-current chromatography. Food Chemistry 186:153–159. doi: 10.1016/j.foodchem.2014.08.120.
  • Jing, R., H. Q. Li, C. L. Hu, Y. P. Jiang, L. P. Qin, and C. J. Zheng. 2016. Phytochemical and pharmacological profiles of three Fagopyrum buckwheats. International Journal of Molecular Sciences 17 (4):589. doi: 10.3390/ijms17040589.
  • Joshi, D. C., K. Zhang, C. Wang, R. Chandora, M. Khurshid, J. Li, M. He, M. I. Georgiev, and M. Zhou. 2020. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances 39:107479. doi: 10.1016/j.biotechadv.2019.107479.
  • Katayama, S., D. Yamaguchi, Y. Suzuki, A. M. A. Athamneh, T. Mitani, R. Satoh, R. Teshima, Y. Mine, and S. Nakamura. 2018. Oral immunotherapy with a phosphorylated hypoallergenic allergen ameliorates allergic responses more effectively than intact allergen in a murine model of buckwheat allergy. Molecular Nutrition & Food Research 62 (21):1800303–8. doi: 10.1002/mnfr.201800303.
  • Keriene, I., A. Mankeviciene, S. Bliznikas, R. Cesnuleviciene, S. Janaviciene, D. Jablonskyte-Rasce, and S. Maiksteniene. 2016. The effect of buckwheat groats processing on the content of mycotoxins and phenolic compounds. CYTA - Journal of Food 14 (4):565–571. doi: 10.1080/19476337.2016.1176959.
  • Keriene, I., A. Mankeviciene, and R. Cesnuleviciene. 2018. Risk factors for mycotoxin contamination of buckwheat grain and its products. World Mycotoxin Journal 11 (4):519–529. doi: 10.3920/WMJ2018.2299.
  • Kim, S. Y., M. S. Lee, E. Chang, S. Jung, H. Ko, E. Lee, S. Lee, C. T. Kim, I. H. Kim, and Y. Kim. 2019. Tartary buckwheat extract attenuated the obesity-induced inflammation and increased muscle PGC-1a/SIRT1 expression in high fat diet-induced obese rats. Nutrients 11 (3):e654. doi: 10.3390/nu11030654.
  • Klepacka, J., and A. Najda. 2021. Effect of commercial processing on polyphenols and antioxidant activity of buckwheat seeds. International Journal of Food Science & Technology 56 (2):661–670. doi: 10.1111/ijfs.14714.
  • Kovač, M., M. Bulaić, J. Jakovljević, A. Nevistić, T. Rot, T. Kovač, I. D. Šarkanj, and B. Šarkanj. 2021. Mycotoxins, pesticide residues, and heavy metals analysis of Croatian cereals. Microorganisms 9 (2):e216. doi: 10.3390/microorganisms9020216.
  • Lee, C. C., W. H. Hsu, S. R. Shen, Y. H. Cheng, and S. C. Wu. 2012. Fagopyrum tataricum (Buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice. Experimental Diabetes Research 2012:e375673. doi: 10.1155/2012/375673.
  • Lee, C. C., S. R. Shen, Y. J. Lai, and S. C. Wu. 2013. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food & Function 4 (5):794–802. doi: 10.1039/c3fo30389f.
  • Lee, D. G., I. S. Jang, K. E. Yang, S. J. Yoon, S. Baek, J. Y. Lee, T. Suzuki, K. Y. Chung, S. H. Woo, and J. S. Choi. 2016. Effect of rutin from tartary buckwheat sprout on serum glucose-lowering in animal model of type 2 diabetes. Acta Pharmaceutica 66 (2):297–302. doi: 10.1515/acph-2016-0021.
  • Lee, J. M., K. H. Lee, Y. H. Yoon, E. J. Cho, and S. Lee. 2013. Identification of triterpenoids and flavonoids from the seeds of tartary buckwheat. Natural Product Sciences 19 (2):137–144.
  • Lee, M. S., Y. Shin, S. Jung, S. Y. Kim, Y. H. Jo, C. T. Kim, M. K. Yun, S. J. Lee, J. Sohn, H. J. Yu, et al. 2017. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules 22 (7):e1160. doi: 10.3390/molecules22071160.
  • Lee, S., J. Lee, H. Lee, and J. Sung. 2019. Relative protective activities of quercetin, quercetin-3-glucoside, and rutin in alcohol-induced liver injury. Journal of Food Biochemistry 43 (11):e13002. doi: 10.1111/jfbc.13002.
  • Lee, S. H., E. J. Lee, K. H. Min, G. Y. Hur, S. H. Lee, S. Y. Lee, J. H. Kim, C. Shin, J. J. Shim, K. H. In, et al. 2015. Quercetin enhances chemosensitivity to gemcitabine in lung cancer cells by inhibiting heat shock protein 70 expression. Clinical Lung Cancer 16 (6):e235–e243. doi: 10.1016/j.cllc.2015.05.006.
  • Li, F., X. Zhang, Y. Li, K. Lu, R. Yin, and J. Ming. 2017. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food & Function 8 (1):177–188. doi: 10.1039/c6fo01230b.
  • Li, J., P. Yang, Q. Yang, X. Gong, H. Ma, K. Dang, G. Chen, X. Gao, and B. Feng. 2019. Analysis of flavonoid metabolites in buckwheat leaves using UPLC-ESI-MS/MS. Molecules 24 (7):e1310. doi: 10.3390/molecules24071310.
  • Li, L., G. Lietz, and C. Seal. 2018. Buckwheat and CVD risk markers: A systematic review and meta-analysis. Nutrients 10 (5):e619. doi: 10.3390/nu10050619.
  • Li, P., X. Cui, Y. Li, and Z. Wang. 2011. Epitope mapping and identification on a 3D model built for the tartary buckwheat allergic protein TBb. Acta Biochimica et Biophysica Sinica 43 (6):441–447. doi: 10.1093/abbs/gmr036.
  • Li, W., X. Zhang, X. He, F. Li, J. Zhao, R. Yin, and J. Ming. 2020. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics. Food & Function 11 (5):4648–4658. doi: 10.1039/d0fo00493f.
  • Li, Y., S. Duan, H. Jia, C. Bai, L. Zhang, and Z. Wang. 2014. Flavonoids from tartary buckwheat induce G2/M cell cycle arrest and apoptosis in human hepatoma HepG2 cells. Acta Biochimica et Biophysica Sinica 46 (6):460–470. doi: 10.1093/abbs/gmu023.
  • Li, Z., Z. Li, Y. Huang, Y. Jiang, Y. Liu, W. Wen, H. Li, J. Shao, C. Wang, and X. Zhu. 2020. Antioxidant capacity, metal contents, and their health risk assessment of tartary buckwheat teas. ACS Omega 5 (17):9724–9732. doi: 10.1021/acsomega.9b04007.
  • Ling, A., X. Li, X. Hu, Z. Ma, K. Wu, H. Zhang, M. Hao, and S. Wei. 2018. Dynamic changes in polyphenol compounds, antioxidant activity, and PAL gene expression in different tissues of buckwheat during germination. Journal of the Science of Food and Agriculture 98 (15):5723–5730. doi: 10.1002/jsfa.9119.
  • Liu, Y., C. Cai, Y. Yao, and B. Xu. 2019. Alteration of phenolic profiles and antioxidant capacities of common buckwheat and tartary buckwheat produced in China upon thermal processing. Journal of the Science of Food and Agriculture 99 (12):5565–5576. doi: 10.1002/jsfa.9825.
  • Luo, X., Y. Fei, Q. Xu, T. Lei, X. Mo, Z. Wang, L. Zhang, X. Mou, and H. Li. 2020. Isolation and identification of antioxidant peptides from tartary buckwheat albumin (Fagopyrum tataricum Gaertn.) and their antioxidant activities. Journal of Food Science 85 (3):611–617. doi: 10.1111/1750-3841.15004.
  • Lv, L., Y. Xia, D. Zou, H. Han, Y. Wang, H. Fang, and M. Li. 2017. Fagopyrum tataricum (L.) Gaertn.: A review on its traditional uses, phytochemical and pharmacology. Food Science and Technology Research 23 (1):1–7. doi: 10.3136/fstr.23.1.
  • Mäki-Opas, I., M. Hämäläinen, L. J. Moilanen, R. Haavikko, T. J. Ahonen, S. Alakurtti, V. M. Moreira, K. Muraki, J. Yli-Kauhaluoma, and E. Moilanen. 2019. Pyrazine-fused triterpenoids block the TRPA1 ion channel in vitro and inhibit TRPA1-mediated acute inflammation in vivo. ACS Chemical Neuroscience 10 (6):2848–2857. doi: 10.1021/acschemneuro.9b00083.
  • Mansur, A. R., K. J. Kim, D.-B. Kim, M. Yoo, H. W. Jang, D.-O. Kim, and T. G. Nam. 2020. Matrix solid-phase dispersion extraction method for HPLC determination of flavonoids from buckwheat sprouts. LWT - Food Science and Technology 133:110121. doi: 10.1016/j.lwt.2020.110121.
  • Nam, T. G., T. G. Lim, B. H. Lee, S. Lim, H. Kang, S. H. Eom, M. Yoo, H. W. Jang, and D. O. Kim. 2017. Comparison of anti-inflammatory effects of flavonoid-rich common and tartary buckwheat sprout extracts in lipopolysaccharide-stimulated RAW 264.7 and peritoneal macrophages. Oxidative Medicine and Cellular Longevity 2017:9658030. doi: 10.1155/2017/9658030.
  • Němcová, L., J. Zima, J. Barek, and D. Janovská. 2011. Determination of resveratrol in grains, hulls and leaves of common and tartary buckwheat by HPLC with electrochemical detection at carbon paste electrode. Food Chemistry 126 (1):374–378. doi: 10.1016/j.foodchem.2010.10.108.
  • Nishimura, M., T. Ohkawara, Y. Sato, H. Satoh, T. Suzuki, K. Ishiguro, T. Noda, T. Morishita, and J. Nishihira. 2016. Effectiveness of rutin-rich Tartary buckwheat (Fagopyrum tataricum Gaertn.) ‘Manten-Kirari’ in body weight reduction related to its antioxidant properties: A randomised, double-blind, placebo-controlled study. Journal of Functional Foods 26:460–469. doi: 10.1016/j.jff.2016.08.004.
  • Norbäck, D., and G. Wieslander. 2021. A review on epidemiological and clinical studies on buckwheat allergy. Plants 10 (3):e607. doi: 10.3390/plants10030607.
  • Oh, J. W., B. Y. Pyun, J. T. Choung, K. M. Ahn, C. H. Kim, S. W. Song, J. A. Son, S. Y. Lee, and S. I. Lee. 2004. Epidemiological change of atopic dermatitis and food allergy in school-aged children in Korea between 1995 and 2000. Journal of Korean Medical Science 19 (5):716–723. doi: 10.3346/jkms.2004.19.5.716.
  • Park, B. I., J. Kim, K. Lee, T. Lim, and K. T. Hwang. 2019. Flavonoids in common and tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise. Journal of Food Science and Technology 56 (5):2712–2720. doi: 10.1007/s13197-019-03761-2.
  • Peng, L. x., Y. f Huang, Y. Liu, Z. f Zhang, L. y Lu, and G. Zhao. 2014. Evaluation of essential and toxic element concentrations in buckwheat by experimental and chemometric approaches. Journal of Integrative Agriculture 13 (8):1691–1698. doi: 10.1016/S2095-3119(13)60724-8.
  • Peng, L., Q. Zhang, Y. Zhang, Z. Yao, P. Song, L. Wei, G. Zhao, and Z. Yan. 2020. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Science & Nutrition 8 (1):199–213. doi: 10.1002/fsn3.1291.
  • Qiu, J., Z. Li, Y. Qin, Y. Yue, and Y. Liu. 2016. Protective effect of tartary buckwheat on renal function in type 2 diabetics: A randomized controlled trial. Therapeutics and Clinical Risk Management 12:1721–1727. doi: 10.2147/TCRM.S123008.
  • Qiu, J., Y. Liu, Y. Yue, Y. Qin, and Z. Li. 2016. Dietary tartary buckwheat intake attenuates insulin resistance and improves lipid profiles in patients with type 2 diabetes: A randomized controlled trial. Nutrition Research 36 (12):1392–1401. doi: 10.1016/j.nutres.2016.11.007.
  • Qin, W., T. S. Qian, J. J. Jiang, C. F. Lun, Y. Y. Ding, and H. M. Wang. 1992. The clinical observation of Tartary buckwheat for the treatment of diabetes. Chinese Journal of Endocrinology and Metabolism, 52–53.
  • Ramos-Romero, S., M. Hereu, L. Atienza, S. Amézqueta, J. Casas, S. Muñoz, I. Medina, B. Miralles-Pérez, M. Romeu, and J. L. Torres. 2020. The buckwheat iminosugar D-fagomine attenuates sucrose-induced steatosis and hypertension in rats. Molecular Nutrition & Food Research 64 (1):e1900564. doi: 10.1002/mnfr.201900564.
  • Ramos-Romero, S., M. Hereu, L. Atienza, J. Casas, N. Taltavull, M. Romeu, S. Amézqueta, G. Dasilva, I. Medina, and J. L. Torres. 2018. Functional effects of the buckwheat iminosugar D-fagomine on rats with diet-induced prediabetes. Molecular Nutrition & Food Research 62 (16):e1800373. doi: 10.1002/mnfr.201800373.
  • Ren, G., Y. Hu, J. Zhang, L. Zou, and G. Zhao. 2018. Determination of multi-class mycotoxins in tartary buckwheat by ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometry. Toxins 10 (1):e28. doi: 10.3390/toxins10010028.
  • Ren, Q., C. Wu, Y. Ren, and J. Zhang. 2013. Characterization and identification of the chemical constituents from tartary buckwheat (Fagopyrum tataricum Gaertn) by high performance liquid chromatography/photodiode array detector/linear ion trap FTICR hybrid mass spectrometry. Food Chemistry 136 (3-4):1377–1389. doi: 10.1016/j.foodchem.2012.09.052.
  • Ruan, J., Y. Zhou, J. Yan, M. Zhou, S. H. Woo, W. Weng, J. Cheng, and K. Zhang. 2020. Tartary buckwheat: An under-utilized edible and medicinal herb for food and nutritional security. Food Reviews International, 1–15. doi: 10.1080/87559129.2020.1734610.
  • Satoh, R., E. Jensen-Jarolim, and R. Teshima. 2020. Understanding buckwheat allergies for the management of allergic reactions in humans and animals. Breeding Science 70 (1):85–92. doi: 10.1270/jsbbs.19051.
  • Satoh, R., S. Koyano, K. Takagi, R. Nakamura, R. Teshima, and J. I. Sawada. 2008. Immunological characterization and mutational analysis of the recombinant protein BWp16, a major allergen in buckwheat. Biological & Pharmaceutical Bulletin 31 (6):1079–1085. doi: 10.1248/bpb.31.1079.
  • State Administration for Market Regulation. 2021. Accessed March 30, 2021. http://www.samr.gov.cn/tssps/index.html.
  • Sytar, O., W. Biel, I. Smetanska, and M. Brestic. 2018. Bioactive compounds and their biofunctional properties of different buckwheat germplasms for food processing. In Buckwheat germplasm in the world, ed. M. Zhou, I. Kreft, G. Suvorova, Y. Tang, and S. H. Woo, 191–204. San Diego, CA: Elsevier Inc. doi: 10.1016/b978-0-12-811006-5.00019-7.
  • Tao, T., D. Pan, Y. Y. Zheng, and T. J. Ma. 2019. Optimization of hydrolyzed crude extract from Tartary buckwheat protein and analysis of its hypoglycemic activity in vitro. IOP Conference Series: Earth and Environmental Science 295:032065. doi: 10.1088/1755-1315/295/3/032065.
  • Takahashi, Y., S. Ichikawa, Y. Aihara, and S. Yokota. 1998. Buckwheat allergy in 90,000 school children in Yokohama. Arerugi = [Allergy] 47 (1):26–33.
  • Tomotake, H., N. Yamamoto, H. Kitabayashi, A. Kawakami, J. Kayashita, H. Ohinata, H. Karasawa, and N. Kato. 2007. Preparation of tartary buckwheat protein product and its improving effect on cholesterol metabolism in rats and mice fed cholesterol-enriched diet. Journal of Food Science 72 (7):S528–S533. doi: 10.1111/j.1750-3841.2007.00474.x.
  • Walls, H. L., A. Peeters, J. Proietto, and J. J. McNeil. 2011. Public health campaigns and obesity—A critique. BMC Public Health 11 (1):136. doi: 10.1186/1471-2458-11-136.
  • Wang, M., J. R. Liu, J. M. Gao, J. W. Parry, and Y. M. Wei. 2009. Antioxidant activity of tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats. Journal of Agricultural and Food Chemistry 57 (11):5106–5112. doi: 10.1021/jf900194s.
  • Wang, X. T., Z. Y. Zhu, L. Zhao, H. Q. Sun, M. Meng, J. Y. Zhang, and Y. Zhang. 2016. Structural characterization and inhibition on α-D-glucosidase activity of non-starch polysaccharides from Fagopyrum tartaricum. Carbohydrate Polymers 153:679–685. doi: 10.1016/j.carbpol.2016.08.024.
  • Wieslander, G., N. Fabjan, M. Vogrincic, I. Kreft, C. Janson, U. Spetz-Nyström, B. Vombergar, C. Tagesson, P. Leanderson, and D. Norbäck. 2011. Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol: A double blind crossover study in day-care centre staffs. The Tohoku Journal of Experimental Medicine 225 (2):123–130. doi: 10.1620/tjem.225.123.
  • Wieslander, G., N. Fabjan, M. Vogrincic, I. Kreft, B. Vombergar, and D. Norbäck. 2012. Effects of common and tartary buckwheat consumption on mucosal symptoms, headache and tiredness: A double-blind crossover intervention study. Journal of Food, Agriculture & Environment 10 (2):107–110.
  • Wu, D., and A. I. Cederbaum. 2009. Oxidative stress and alcoholic liver disease. Seminars in Liver Disease 29 (2):141–154. doi: 10.1055/s-0029-1214370.
  • Wu, S. C., and B. H. Lee. 2011. Buckwheat polysaccharide exerts antiproliferative effects in THP-1 human leukemia cells by inducing differentiation. Journal of Medicinal Food 14 (1-2):26–33. doi: 10.1089/jmf.2010.1252.
  • Wu, W., Z. Li, F. Qin, and J. Qiu. 2021. Anti-diabetic effects of the soluble dietary fiber from tartary buckwheat bran in diabetic mice and their potential mechanisms. Food & Nutrition Research 65:e4998. doi: 10.29219/fnr.v65.4998.
  • Wu, W., L. Wang, J. Qiu, and Z. Li. 2018. The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells. Journal of Functional Foods 50 (17):137–146. doi: 10.1016/j.jff.2018.09.032.
  • Xiao, Y., C. Yang, H. N. Xu, J. Zhang, and L. F. Zhang. 2021. Study on the change of flavonoid glycosides to aglycones during the process of steamed bread containing tartary buckwheat flour and antioxidant, α-glucosidase inhibitory activities evaluation in vitro. LWT - Food Science and Technology 145:111527. doi: 10.1016/j.lwt.2021.111527.
  • Yan, J., X. C. Sun, Z. J. Xie, G. He, Y. Yi, C. Fang, and X. J. Gou. 2011. Purification and monosaccharide composition analysis of tartary buckwheat polysaccharides. Food Science 32 (19):33–36.
  • Yang, P. H., S. D. Shyur, M. J. Liu, and H. H. Chuang. 2018. Biphasic buckwheat anaphylaxis: Case report and systematic review. Asian Pacific Journal of Allergy and Immunology 36 (4):244–247. doi: 10.12932/AP-290317-0060.
  • Yang, Q., C. Luo, X. Zhang, Y. Liu, Z. Wang, P. Cacciamani, J. Shi, Y. Cui, C. Wang, B. Sinha, et al. 2020. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. American Journal of Translational Research 12 (1):70–89.
  • Yang, Z. H., C. Li, Y. Y. Li, and Z. H. Wang. 2013. Effects of Maillard reaction on allergenicity of buckwheat allergen Fag t 3 during thermal processing. Journal of the Science of Food and Agriculture 93 (6):1510–1515. doi: 10.1002/jsfa.5928.
  • Yao, Y., F. Shan, J. Bian, F. Chen, M. Wang, and G. Ren. 2008. D-chiro-inositol-enriched tartary buckwheat bran extract lowers the blood glucose level in KK-Ay mice. Journal of Agricultural and Food Chemistry 56 (21):10027–10031. doi: 10.1021/jf801879m.
  • Zhang, C., R. Zhang, Y. M. Li, N. Liang, Y. Zhao, H. Zhu, Z. He, J. Liu, W. Hao, R. Jiao, et al. 2017. Cholesterol-lowering activity of tartary buckwheat protein. Journal of Agricultural and Food Chemistry 65 (9):1900–1906. doi: 10.1021/acs.jafc.7b00066.
  • Zhang, X. Y., J. Chen, X. L. Li, K. Yi, Y. Ye, G. Liu, S. F. Wang, H. L. Hu, L. Zou, and Z. G. Wang. 2017. Dynamic changes in antioxidant activity and biochemical composition of tartary buckwheat leaves during Aspergillus niger fermentation. Journal of Functional Foods 32 (1):375–381. doi: 10.1016/j.jff.2017.03.022.
  • Zhao, J., L. Jiang, X. Tang, L. Peng, X. Li, G. Zhao, and L. Zhong. 2018. Chemical composition, antimicrobial and antioxidant activities of the flower volatile oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. Molecules 23 (1):e182. doi: 10.3390/molecules23010182.
  • Zheng, C., C. Hu, X. Ma, C. Peng, H. Zhang, and L. Qin. 2012. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn. Food Chemistry 132 (1):433–438. doi: 10.1016/j.foodchem.2011.11.017.
  • Zheng, G., X. Pan, Z. An, and Y. Wang. 1991. Preliminary observation of lipid-decreasing effects of compound Tartary buckwheat flour on NIDDM patients. Beijing Medical Journal 5:280.
  • Zhou, X. L., Z. D. Chen, Y. M. Zhou, R. H. Shi, and Z. J. Li. 2019. The effect of tartary buckwheat flavonoids in inhibiting the proliferation of MGC80-3 cells during seed germination. Molecules 24 (17):e3092. doi: 10.3390/molecules24173092.
  • Zhou, X. L., B. B. Yan, Y. Xiao, Y. M. Zhou, and T. Y. Liu. 2018. Tartary buckwheat protein prevented dyslipidemia in high-fat diet-fed mice associated with gut microbiota changes. Food and Chemical Toxicology 119:296–301. doi: 10.1016/j.fct.2018.02.052.
  • Zhou, Y., Y. Jiang, R. Shi, Z. Chen, Z. Li, Y. Wei, and X. Zhou. 2020. Structural and antioxidant analysis of Tartary buckwheat (Fagopyrum tartaricum Gaertn.) 13S globulin. Journal of the Science of Food and Agriculture 100 (3):1220–1229. doi: 10.1002/jsfa.10133.
  • Zhou, Y., S. Zhao, Y. Jiang, Y. Wei, and X. Zhou. 2019. Regulatory function of buckwheat-resistant starch supplementation on lipid profile and gut microbiota in mice fed with a high-fat diet. Journal of Food Science 84 (9):2674–2681. doi: 10.1111/1750-3841.14747.
  • Zhu, F. 2016. Chemical composition and health effects of tartary buckwheat. Food Chemistry 203:231–245. doi: 10.1016/j.foodchem.2016.02.050.
  • Zhu, F. 2021. Buckwheat proteins and peptides: Biological functions and food applications. Trends in Food Science & Technology 110:155–167. doi: 10.1016/j.tifs.2021.01.081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.