2,839
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review

, ORCID Icon & ORCID Icon

References

  • Abdel‐Aal, E. S. M., H. Akhtar, I. Rabalski, and M. Bryan. 2014. Accelerated, microwave‐assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains. Journal of Food Science 79 (2):C138–C146. doi: 10.1111/1750-3841.12346.
  • Akay, S., I. Alpak, and O. Yesil‐Celiktas. 2011. Effects of process parameters on supercritical CO2 extraction of total phenols from strawberry (Arbutus unedo L.) fruits: An optimization study. Journal of Separation Science 34 (15):1925–31. doi: 10.1002/jssc.201100361.
  • Al-Weshahy, A., M. El-Nokety, M. Bakhete, and V. Rao. 2013. Effect of storage on antioxidant activity of freeze-dried potato peels. Food Research International 50 (2):507–12. doi: 10.1016/j.foodres.2010.12.014.
  • Ali, O.-H., H. Al-Sayed, N. Yasin, and E. Afifi. 2016. Effect of different extraction methods on stablity of anthocyanins extracted from red onion peels (Allium cepa) and its uses as food colorants. Bulletin of the National Nutrition Institute of Institute 47 (2):1–24. doi: 10.21608/bnni.2016.4218.
  • Almajano, M. P., R. Carbo, J. A. L. Jiménez, and M. H. Gordon. 2008. Antioxidant and antimicrobial activities of tea infusions. Food Chemistry 108 (1):55–63. doi: 10.1016/j.foodchem.2007.10.040.
  • Altuner, E. M., H. Alpas, Y. K. Erdem, and F. Bozoglu. 2006. Effect of high hydrostatic pressure on physicochemical and biochemical properties of milk. European Food Research and Technology 222 (3-4):392–6. doi: 10.1007/s00217-005-0072-4.
  • Andreasen, M. F., A.-K. Landbo, L. P. Christensen, Å. Hansen, and A. S. Meyer. 2001. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins. Journal of Agricultural and Food Chemistry 49 (8):4090–6. doi: 10.1021/jf0101758.
  • Asfaram, A., M. Arabi, A. Ostovan, H. Sadeghi, and M. Ghaedi. 2018. Simple and selective detection of quercetin in extracts of plants and food samples by dispersive-micro-solid phase extraction based on core–shell magnetic molecularly imprinted polymers. New Journal of Chemistry 42 (19):16144–53. doi: 10.1039/C8NJ03349H.
  • Asghari, J., B. Ondruschka, and M. Mazaheritehrani. 2011. Extraction of bioactive chemical compounds from the medicinal Asian plants by microwave irradiation. Journal of Medicinal Plants Research 5 (4):495–506.
  • Azmir, J., I. S. M. Zaidul, M. Rahman, K. Sharif, A. Mohamed, F. Sahena, M. Jahurul, K. Ghafoor, N. Norulaini, and A. Omar. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117 (4):426–36. doi: 10.1016/j.jfoodeng.2013.01.014.
  • Bagade, S. B., and M. Patil. 2021. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Critical Reviews in Analytical Chemistry 51 (2):138–49. doi: 10.1080/10408347.2019.1686966.
  • Bagherian, H., F. Z. Ashtiani, A. Fouladitajar, and M. Mohtashamy. 2011. Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing: Process Intensification 50 (11-12):1237–43. doi: 10.1016/j.cep.2011.08.002.
  • Barba, F. J., S. Brianceau, M. Turk, N. Boussetta, and E. Vorobiev. 2015. Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food and Bioprocess Technology 8 (5):1139–48. doi: 10.1007/s11947-015-1482-3.
  • Barba, F. J., Z. Zhu, M. Koubaa, A. S. Sant'Ana, and V. Orlien. 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science & Technology 49:96–109. doi: 10.1016/j.tifs.2016.01.006.
  • Barrales, F. M., P. Silveira, PdPM. Barbosa, A. R. Ruviaro, B. N. Paulino, G. M. Pastore, G. A. Macedo, and J. Martinez. 2018. Recovery of phenolic compounds from citrus by-products using pressurized liquids—An application to orange peel. Food and Bioproducts Processing 112:9–21. doi: 10.1016/j.fbp.2018.08.006.
  • Ben-Othman, S., I. Jõudu, and R. Bhat. 2020. Bioactives from agri-food wastes: Present insights and future challenges. Molecules 25 (3):510. doi: 10.3390/molecules25030510.
  • Bernal-Vicente, A., M. Ros, F. Tittarelli, F. Intrigliolo, and J. Pascual. 2008. Citrus compost and its water extract for cultivation of melon plants in greenhouse nurseries. Evaluation of nutriactive and biocontrol effects. Bioresource Technology 99 (18):8722–8. doi: 10.1016/j.biortech.2008.04.019.
  • Breil, C., A. Meullemiestre, M. Vian, and F. Chemat. 2016. Bio-based solvents for green extraction of lipids from oleaginous yeast biomass for sustainable aviation biofuel. Molecules 21 (2):196. doi: 10.3390/molecules21020196.
  • Bryant, G., and J. Wolfe. 1987. Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. The Journal of Membrane Biology 96 (2):129–39. doi: 10.1007/BF01869239.
  • Buzby, J. C., J. Hyman, H. Stewart, and H. F. Wells. 2011. The value of retail‐and consumer‐level fruit and vegetable losses in the United States. Journal of Consumer Affairs 45 (3):492–515. doi: 10.1111/j.1745-6606.2011.01214.x.
  • Caballo, C., M. D. Sicilia, and S. Rubio. 2017. Supramolecular solvents for green chemistry. In The application of green solvents in separation processes, ed. F. Pena-Pereira, M. Tobiszewski,111–37. Spain: Elsevier.
  • Caldas, T. W., K. E. Mazza, A. S. Teles, G. N. Mattos, A. I. S. Brígida, C. A. Conte-Junior, R. G. Borguini, R. L. Godoy, L. M. Cabral, and R. V. Tonon. 2018. Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products 111:86–91. doi: 10.1016/j.indcrop.2017.10.012.
  • Carabias-Martínez, R., E. Rodríguez-Gonzalo, P. Revilla-Ruiz, and J. Hernández-Méndez. 2005. Pressurized liquid extraction in the analysis of food and biological samples. Journal of Chromatography. A 1089 (1-2):1–17. doi: 10.1016/j.chroma.2005.06.072.
  • Cartea, M. E., M. Francisco, P. Soengas, and P. Velasco. 2010. Phenolic compounds in Brassica vegetables. Molecules (Basel, Switzerland) 16 (1):251–80. doi: 10.3390/molecules16010251.
  • Casazza, A. A., B. Aliakbarian, E. Sannita, and P. Perego. 2012. High‐pressure high‐temperature extraction of phenolic compounds from grape skins. International Journal of Food Science & Technology 47 (2):399–405. doi: 10.1111/j.1365-2621.2011.02853.x.
  • Cheigh, C.-I., E.-Y. Chung, and M.-S. Chung. 2012. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. Journal of Food Engineering 110 (3):472–7. doi: 10.1016/j.jfoodeng.2011.12.019.
  • Chemat, F. 2012. Microwave-assisted extraction for bioactive compounds. (Vol. 4)Springer Science & Business Media, France.
  • Chemat, F., M. Abert-Vian, A. S. Fabiano-Tixier, J. Strube, L. Uhlenbrock, V. Gunjevic, and G. Cravotto. 2019. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry 118:248–63. doi: 10.1016/j.trac.2019.05.037.
  • Chemat, F., and M. K. Khan. 2011. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry 18 (4):813–35.
  • Chemat, F., N. Rombaut, A. Meullemiestre, M. Turk, S. Perino, A.-S. Fabiano-Tixier, and M. Abert-Vian. 2017. Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies 41:357–77. doi: 10.1016/j.ifset.2017.04.016.
  • Chemat, F., N. Rombaut, A.-G. Sicaire, A. Meullemiestre, A.-S. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34:540–60. doi: 10.1016/j.ultsonch.2016.06.035.
  • Chemat, F., M. A. Vian, and G. Cravotto. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences 13 (7):8615–27. doi: 10.3390/ijms13078615.
  • Chemat, F., M. A. Vian, A.-S. Fabiano-Tixier, M. Nutrizio, A. R. Jambrak, P. E. Munekata, J. M. Lorenzo, F. J. Barba, A. Binello, and G. Cravotto. 2020. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry 22 (8):2325–53. doi: 10.1039/C9GC03878G.
  • Chen, M.-H., and T.-C. Huang. 2016. Volatile and nonvolatile constituents and antioxidant capacity of oleoresins in three Taiwan citrus varieties as determined by supercritical fluid extraction. Molecules 21 (12):1735. doi: 10.3390/molecules21121735.
  • Chen, R., S. Li, C. Liu, S. Yang, and X. Li. 2012. Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from Epimedium leaves. Process Biochemistry 47 (12):2040–50. doi: 10.1016/j.procbio.2012.07.022.
  • Chen, S., H. Chen, J. Tian, J. Wang, Y. Wang, and L. Xing. 2014. Enzymolysis-ultrasonic assisted extraction, chemical characteristics and bioactivities of polysaccharides from corn silk. Carbohydrate Polymers 101:332–41. doi: 10.1016/j.carbpol.2013.09.046.
  • Cheng, Z., H. Song, Y. Yang, Y. Liu, Z. Liu, H. Hu, and Y. Zhang. 2015. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. International Journal of Biological Macromolecules 76:161–8. doi: 10.1016/j.ijbiomac.2015.01.048.
  • Chhikara, N., K. Kushwaha, P. Sharma, Y. Gat, and A. Panghal. 2019. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry 272:192–200. doi: 10.1016/j.foodchem.2018.08.022.
  • Chiremba, C., L. W. Rooney, and T. Beta. 2012. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. Journal of Agricultural and Food Chemistry 60 (18):4735–42. doi: 10.1021/jf300279t.
  • Choi, I. S., E. J. Cho, J.-H. Moon, and H.-J. Bae. 2015. Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chemistry 188:537–42. doi: 10.1016/j.foodchem.2015.05.028.
  • Chuyen, H. V., M. H. Nguyen, P. D. Roach, J. B. Golding, and S. E. Parks. 2018. Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science & Nutrition 6 (1):189–96. doi: 10.1002/fsn3.546.
  • Ciriminna, R., A. Fidalgo, G. Avellone, C. Danzì, G. Timpanaro, M. Locatelli, D. Carnaroglio, F. Meneguzzo, L. M. Ilharco, and M. Pagliaro. 2019. Integral extraction of Opuntia ficus-indica peel bioproducts via microwave-assisted hydrodiffusion and hydrodistillation. ACS Sustainable Chemistry & Engineering 7 (8):7884–91. doi: 10.1021/acssuschemeng.9b00502.
  • Coelho, M., R. Pereira, A. S. Rodrigues, J. A. Teixeira, and M. E. Pintado. 2019. Extraction of tomato by-products’ bioactive compounds using ohmic technology. Food and Bioproducts Processing 117:329–39. doi: 10.1016/j.fbp.2019.08.005.
  • Coelho, M. I., R. N. C. Pereira, J. Teixeira, and M. E. Pintado. 2017. Valorization of tomato wastes: Influence of ohmic heating process on polyphenols extraction time. Archives of International Society of Antioxidants in Nutrition and Health (AISANH). International Society of Antioxidants in Nutrition and Health (ISANH) : 5(2) 37–40.
  • Corrales, M., A. F. García, P. Butz, and B. Tauscher. 2009. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering 90 (4):415–21. doi: 10.1016/j.jfoodeng.2008.07.003.
  • Corrales, M., S. Toepfl, P. Butz, D. Knorr, and B. Tauscher. 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innovative Food Science & Emerging Technologies 9 (1):85–91. doi: 10.1016/j.ifset.2007.06.002.
  • Cravotto, G., A. Binello, and L. Orio. 2011. Green extraction techniques. Agro Food Industry Hi-Tech 22:57–9.
  • Cravotto, G., L. Boffa, S. Mantegna, P. Perego, M. Avogadro, and P. Cintas. 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry 15 (5):898–902. doi: 10.1016/j.ultsonch.2007.10.009.
  • Cruz, M. V., A. Paiva, P. Lisboa, F. Freitas, V. D. Alves, P. Simões, S. Barreiros, and M. A. Reis. 2014. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresource Technology 157:360–3. doi: 10.1016/j.biortech.2014.02.013.
  • Ćujić, N., K. Šavikin, T. Janković, D. Pljevljakušić, G. Zdunić, and S. Ibrić. 2016. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chemistry 194:135–42. doi: 10.1016/j.foodchem.2015.08.008.
  • Da Silva, R. P., T. A. Rocha-Santos, and A. C. Duarte. 2016. Supercritical fluid extraction of bioactive compounds. TrAC Trends in Analytical Chemistry 76:40–51. doi: 10.1016/j.trac.2015.11.013.
  • de Andrade Lima, M., D. Charalampopoulos, and A. Chatzifragkou. 2018. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. The Journal of Supercritical Fluids 133:94–102. doi: 10.1016/j.supflu.2017.09.028.
  • Delazar, A., L. Nahar, S. Hamedeyazdan, and S. D. Sarker. 2012. Microwave-assisted extraction in natural products isolation. In Natural products isolation, ed. S. D. Sarker, L. Nahar, 89–115. United Kingdom: Springer.
  • Deo, S., and B. Sakhale. 2018. A review on potential of bioactive compounds obtained from processing waste of various fruits and vegetables. International Journal of Pure & Applied Bioscience 6 (5):680–6. doi: 10.18782/2320-7051.6742.
  • Dranca, F., and M. Oroian. 2016. Optimization of ultrasound-assisted extraction of total monomeric anthocyanin (TMA) and total phenolic content (TPC) from eggplant (Solanum melongena L.) peel. Ultrasonics Sonochemistry 31:637–46. doi: 10.1016/j.ultsonch.2015.11.008.
  • Duba, K. S., A. A. Casazza, H. B. Mohamed, P. Perego, and L. Fiori. 2015. Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food and Bioproducts Processing 94:29–38. doi: 10.1016/j.fbp.2015.01.001.
  • Ekezie, F.-G. C., D.-W. Sun, Z. Han, and J.-H. Cheng. 2017. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends in Food Science & Technology 67:58–69. doi: 10.1016/j.tifs.2017.05.014.
  • El-Malah, M., M. Hassanein, M. H. Areif, and E. Al-Amrousi. 2015. Utilization of Egyptian tomato waste as a potential source of natural antioxidants using solvents, microwave and ultrasound extraction methods. American Journal of Food Technology. 10:14–25.
  • El Darra, N., N. Grimi, E. Vorobiev, N. Louka, and R. Maroun. 2013. Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food and Bioprocess Technology 6 (5):1281–9. doi: 10.1007/s11947-012-0869-7.
  • El Kantar, S., N. Boussetta, N. Lebovka, F. Foucart, H. N. Rajha, R. G. Maroun, N. Louka, and E. Vorobiev. 2018. Pulsed electric field treatment of citrus fruits: Improvement of juice and polyphenols extraction. Innovative Food Science & Emerging Technologies 46:153–61. doi: 10.1016/j.ifset.2017.09.024.
  • FAO. 2017. QC. Accessed January 2018. http://www.fao.org/faostat/en/#data.
  • Farias, T. R., S. Rodrigues, and F. A. Fernandes. 2020. Effect of dielectric barrier discharge plasma excitation frequency on the enzymatic activity, antioxidant capacity and phenolic content of apple cubes and apple juice. Food Research International (Ottawa, Ont.) 136:109617. doi: 10.1016/j.foodres.2020.109617.
  • Ferarsa, S., W. Zhang, N. Moulai-Mostefa, L. Ding, M. Y. Jaffrin, and N. Grimi. 2018. Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing 109:19–28. doi: 10.1016/j.fbp.2018.02.006.
  • Fernandes, F. A., V. O. Santos, and S. Rodrigues. 2019. Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Research International (Ottawa, Ont.) 115:16–22. doi: 10.1016/j.foodres.2018.07.042.
  • Figueroa, J. G., I. Borrás‐Linares, J. Lozano‐Sánchez, R. Quirantes‐Piné, and A. Segura‐Carretero. 2018. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by‐product. Electrophoresis 39 (15):1908–16. doi: 10.1002/elps.201700379.
  • Gan, J., Z. Huang, Q. Yu, G. Peng, Y. Chen, J. Xie, S. Nie, and M. Xie. 2020. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocolloids 101:105549. doi: 10.1016/j.foodhyd.2019.105549.
  • García, P., C. Fredes, I. Cea, J. Lozano-Sánchez, F. J. Leyva-Jiménez, P. Robert, C. Vergara, and P. Jimenez. 2021. Recovery of bioactive compounds from pomegranate (Punica granatum L.) peel using pressurized liquid extraction. Foods 10 (2):203. doi: 10.3390/foods10020203.
  • Gardossi, L., P. B. Poulsen, A. Ballesteros, K. Hult, V. K. Svedas, D. Vasić-Racki, G. Carrea, A. Magnusson, A. Schmid, R. Wohlgemuth, et al. 2010. Guidelines for reporting of biocatalytic reactions. Trends in Biotechnology 28 (4):171–80. doi: 10.1016/j.tibtech.2010.01.001.
  • Gavahian, M., A. Farahnaky, M. Shavezipur, and S. Sastry. 2016. Ethanol concentration of fermented broth by ohmic-assisted hydrodistillation. Innovative Food Science & Emerging Technologies 35:45–51. doi: 10.1016/j.ifset.2016.04.001.
  • Ghosh, S., J. K. Chatterjee, B. Chalkroborty, and A. K. Hazra. 2019. Comparison of different aqueous extraction methods for optimum extraction of polyphenols and in-vitro anti-oxidant activity from pomegranate peel. Journal of Pharmacognosy and Phytochemistry 8:342–7.
  • Giacometti, J., D. Bursać Kovačević, P. Putnik, D. Gabrić, T. Bilušić, G. Krešić, V. Stulić, F. J. Barba, F. Chemat, G. Barbosa-Cánovas, et al. 2018. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International (Ottawa, Ont.) 113:245–62. doi: 10.1016/j.foodres.2018.06.036.
  • Gligor, O., A. Mocan, C. Moldovan, M. Locatelli, G. Crișan, and I. C. Ferreira. 2019. Enzyme-assisted extractions of polyphenols–A comprehensive review. Trends in Food Science & Technology 88:302–15. doi: 10.1016/j.tifs.2019.03.029.
  • Gorinstein, S., Z. Zachwieja, M. Folta, H. Barton, J. Piotrowicz, M. Zemser, M. Weisz, S. Trakhtenberg, and O. Màrtín-Belloso. 2001. Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. Journal of Agricultural and Food Chemistry 49 (2):952–7. doi: 10.1021/jf000947k.
  • Grassino, A. N., J. Halambek, S. Djaković, S. R. Brnčić, M. Dent, and Z. Grabarić. 2016. Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocolloids. 52:265–74. doi: 10.1016/j.foodhyd.2015.06.020.
  • Grassino, A. N., J. Ostojić, V. Miletić, S. Djaković, T. Bosiljkov, Z. Zorić, D. Ježek, S. R. Brnčić, and M. Brnčić. 2020. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies 64:102424. doi: 10.1016/j.ifset.2020.102424.
  • Guderjan, M., S. Töpfl, A. Angersbach, and D. Knorr. 2005. Impact of pulsed electric field treatment on the recovery and quality of plant oils. Journal of Food Engineering 67 (3):281–7. doi: 10.1016/j.jfoodeng.2004.04.029.
  • Gunwantrao, B. B., S. K. Bhausaheb, B. S. Ramrao, and K. S. Subhash. 2016. Antimicrobial activity and phytochemical analysis of orange (Citrus aurantium L.) and pineapple (Ananas comosus (L.) Merr.) peel extract. Annals of Phytomedicine: An International Journal 5 (2):156–60. doi: 10.21276/ap.2016.5.2.22.
  • Handa, S., S. Khanuja, G. Longo, and D. Rakesh. 2008. Extraction technologies for medicinal and aromatic plants: Earth. Environmental and Marine Sciences and Technologies. 1:21–25.
  • He, J.-Z., P. Shao, J.-H. Liu, and Q.-M. Ru. 2012. Supercritical carbon dioxide extraction of flavonoids from Pomelo (Citrus grandis (L.) Osbeck) peel and their antioxidant activity. International Journal of Molecular Sciences 13 (10):13065–78. doi: 10.3390/ijms131013065.
  • Hidayat, R., and P. Wulandari. 2021. Methods of extraction: Maceration, percolation and decoction. Eureka Herba Indonesia 2 (1):73–9.
  • Hodges, R. J., J. C. Buzby, and B. Bennett. 2011. Postharvest losses and waste in developed and less developed countries: Opportunities to improve resource use. The Journal of Agricultural Science 149 (S1):37–45. doi: 10.1017/S0021859610000936.
  • Hossain, M. B., I. Aguiló-Aguayo, J. G. Lyng, N. P. Brunton, and D. K. Rai. 2015. Effect of pulsed electric field and pulsed light pre-treatment on the extraction of steroidal alkaloids from potato peels. Innovative Food Science & Emerging Technologies 29:9–14. doi: 10.1016/j.ifset.2014.10.014.
  • Hou, Y. M., X. Y. Dong, H. Yu, S. Li, C. S. Ren, D. J. Zhang, and Z. L. Xiu. 2008. Disintegration of biomacromolecules by dielectric barrier discharge plasma in helium at atmospheric pressure. IEEE Transactions on Plasma Science 36 (4):1633–7. doi: 10.1109/TPS.2008.927630.
  • Howard, L., and N. Pandjaitan. 2008. Pressurized liquid extraction of flavonoids from spinach. Journal of Food Science 73 (3):C151–C157. doi: 10.1111/j.1750-3841.2007.00658.x.
  • Jaeschke, D. P., E. A. Merlo, G. D. Mercali, R. Rech, and L. D. F. Marczak. 2019. The effect of temperature and moderate electric field pre‐treatment on carotenoid extraction from Heterochlorella luteoviridis. International Journal of Food Science & Technology 54 (2):396–402. doi: 10.1111/ijfs.13950.
  • Jayathilakan, K., K. Sultana, K. Radhakrishna, and A. Bawa. 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology 49 (3):278–93. doi: 10.1007/s13197-011-0290-7.
  • Jerome, R. E., S. K. Singh, and M. Dwivedi. 2019. Process analytical technology for bakery industry: A review. Journal of Food Process Engineering 42 (5):e13143. doi: 10.1111/jfpe.13143.
  • Jiang, Z., R. Shi, H. Chen, and Y. Wang. 2019. Ultrasonic microwave-assisted extraction coupled with macroporous resin chromatography for the purification of antioxidant phenolics from waste jackfruit (Artocarpus heterophyllus Lam.) peels. Journal of Food Science and Technology 56 (8):3877–86. doi: 10.1007/s13197-019-03858-8.
  • Jittanit, W., K. Khuenpet, P. Kaewsri, N. Dumrongpongpaiboon, P. Hayamin, and K. Jantarangsri. 2017. Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innovative Food Science & Emerging Technologies 42:16–24. doi: 10.1016/j.ifset.2017.05.008.
  • Joana Gil‐Chávez, G., J. A. Villa, J. Fernando Ayala‐Zavala, J. Basilio Heredia, D. Sepulveda, E. M. Yahia, and G. A. González‐Aguilar. 2013. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Comprehensive Reviews in Food Science and Food Safety 12 (1):5–23. doi: 10.1111/1541-4337.12005.
  • Ju, Z. Y., and L. R. Howard. 2003. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. Journal of Agricultural and Food Chemistry 51 (18):5207–13. doi: 10.1021/jf0302106.
  • Junjian, R., F. Mingtao, L. Yahui, L. Guowei, Z. Zhengyang, and L. Jun. 2013. Optimisation of ultrasonic‐assisted extraction of polyphenols from apple peel employing cellulase enzymolysis. International Journal of Food Science & Technology 48 (5):910–7. doi: 10.1111/ijfs.12041.
  • Kehili, M., M. Kammlott, S. Choura, A. Zammel, C. Zetzl, I. Smirnova, N. Allouche, and S. Sayadi. 2017. Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food and Bioproducts Processing 102:340–9. doi: 10.1016/j.fbp.2017.02.002.
  • Khan, M. K., M. Abert-Vian, A.-S. Fabiano-Tixier, O. Dangles, and F. Chemat. 2010. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chemistry 119 (2):851–8. doi: 10.1016/j.foodchem.2009.08.046.
  • Khodaei, N., B. Fernandez, I. Fliss, and S. Karboune. 2016. Digestibility and prebiotic properties of potato rhamnogalacturonan I polysaccharide and its galactose-rich oligosaccharides/oligomers. Carbohydrate Polymers 136:1074–84. doi: 10.1016/j.carbpol.2015.09.106.
  • Kim, N., J. Ryang, B. Lee, C. Kim, and M.-S. Rhee. 2017. Continuous ohmic heating of commercially processed apple juice using five sequential electric fields results in rapid inactivation of Alicyclobacillus acidoterrestris spores. International Journal of Food Microbiology 246:80–4. doi: 10.1016/j.ijfoodmicro.2017.01.002.
  • King, J. W. 2014. Modern supercritical fluid technology for food applications. Annual Review of Food Science and Technology 5:215–38. doi: 10.1146/annurev-food-030713-092447.
  • Knirsch, M. C., C. A. Dos Santos, A. A. M. de Oliveira Soares, and T. C. V. Penna. 2010. Ohmic heating–A review. Trends in Food Science & Technology 21 (9):436–41. doi: 10.1016/j.tifs.2010.06.003.
  • Ko, M.-J., C.-I. Cheigh, S.-W. Cho, and M.-S. Chung. 2011. Subcritical water extraction of flavonol quercetin from onion skin. Journal of Food Engineering 102 (4):327–33. doi: 10.1016/j.jfoodeng.2010.09.008.
  • Kodal, S., and Z. Aksu. 2001. Optimization of carotene pigment production by Soxhlet extraction from waste orange peels. Food Chemistry 72 (2):145–71.
  • Koubaa, M., F. J. Barba, N. Grimi, H. Mhemdi, W. Koubaa, N. Boussetta, and E. Vorobiev. 2016. Recovery of colorants from red prickly pear peels and pulps enhanced by pulsed electric field and ultrasound. Innovative Food Science & Emerging Technologies 37:336–44. doi: 10.1016/j.ifset.2016.04.015.
  • Li, J., Y.-G. Zu, M. Luo, C.-B. Gu, C.-J. Zhao, T. Efferth, and Y.-J. Fu. 2013. Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn (Xanthoceras sorbifolia Bunge.) seed kernels and its quality evaluation. Food Chemistry 138 (4):2152–8. doi: 10.1016/j.foodchem.2012.12.011.
  • Li, S., D. Lei, Z. Zhu, J. Cai, M. Manzoli, L. Jicsinszky, G. Grillo, and G. Cravotto. 2021. Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment. Ultrasonics Sonochemistry 74:105568. doi: 10.1016/j.ultsonch.2021.105568.
  • Li, S., J. Li, Z. Zhu, S. Cheng, J. He, and O. Lamikanra. 2020. Soluble dietary fiber and polyphenol complex in lotus root: Preparation, interaction and identification. Food Chemistry 314:126219. doi: 10.1016/j.foodchem.2020.126219.
  • Lianfu, Z., and L. Zelong. 2008. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrasonics Sonochemistry 15 (5):731–7. doi: 10.1016/j.ultsonch.2007.12.001.
  • Liazid, A., R. Guerrero, E. Cantos, M. Palma, and C. Barroso. 2011. Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry 124 (3):1238–43. doi: 10.1016/j.foodchem.2010.07.053.
  • Liew, S. Q., G. C. Ngoh, R. Yusoff, and W. H. Teoh. 2016. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. International Journal of Biological Macromolecules 93 (Pt A):426–35. doi: 10.1016/j.ijbiomac.2016.08.065.
  • Liew, S. Q., W. H. Teoh, R. Yusoff, and G. C. Ngoh. 2019. Comparisons of process intensifying methods in the extraction of pectin from pomelo peel. Chemical Engineering and Processing - Process Intensification 143:107586. doi: 10.1016/j.cep.2019.107586.
  • Lim, L. B., N. Priyantha, C. Hei Ing, M. Khairud Dahri, D. Tennakoon, T. Zehra, and M. Suklueng. 2015. Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B. Desalination and Water Treatment 53 (4):964–75.
  • Lim, T. 2012. Carica papaya. In Edible medicinal and non-medicinal plants, ed. T. K. Lim, 693–717. London: Springer.
  • Londoño-Londoño, J., V. R. de Lima, O. Lara, A. Gil, T. B. C. Pasa, G. J. Arango, and J. R. R. Pineda. 2010. Clean recovery of antioxidant flavonoids from citrus peel: Optimizing an aqueous ultrasound-assisted extraction method. Food Chemistry 119 (1):81–7. doi: 10.1016/j.foodchem.2009.05.075.
  • López-Bascón, M., and M. L. De Castro. 2020. Soxhlet extraction. In Liquid-phase extraction, ed. C. F. Poole, 327–54. USA: Elsevier.
  • Lopresto, C. G., F. Petrillo, A. A. Casazza, B. Aliakbarian, P. Perego, and V. Calabrò. 2014. A non-conventional method to extract D-limonene from waste lemon peels and comparison with traditional Soxhlet extraction. Separation and Purification Technology 137:13–20. doi: 10.1016/j.seppur.2014.09.015.
  • Lotfi, L., A. Kalbasi-Ashtari, M. Hamedi, and F. Ghorbani. 2015. Effects of enzymatic extraction on anthocyanins yield of saffron tepals (Crocos sativus) along with its color properties and structural stability. Journal of Food and Drug Analysis 23 (2):210–8. doi: 10.1016/j.jfda.2014.10.011.
  • Ma, Y.-Q., J.-C. Chen, D.-H. Liu, and X.-Q. Ye. 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry 16 (1):57–62. doi: 10.1016/j.ultsonch.2008.04.012.
  • Machado, A. P. D. F., J. L. Pasquel-Reátegui, G. F. Barbero, and J. Martínez. 2015. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with conventional methods. Food Research International 77:675–83. doi: 10.1016/j.foodres.2014.12.042.
  • Majid, A., A. R. Phull, A. H. Khaskheli, S. Abbasi, M. H. Sirohi, I. Ahmed, S. H. Ujjan, I. A. Jokhio, and W. Ahmed. 2019. Applications and opportunities of supercritical fluid extraction in food processing technologies: A review.
  • Manousaki, A., M. Jancheva, S. Grigorakis, and D. P. Makris. 2016. Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: A comparison with conventional eco-friendly solvents. Recycling 1 (1):194–204. doi: 10.3390/recycling1010194.
  • Marathe, S. J., S. B. Jadhav, S. B. Bankar, and R. S. Singhal. 2017. Enzyme-assisted extraction of bioactives. In Food bioactives, ed. M. Puri, 171–201. Australia: Springer.
  • Marić, M., A. N. Grassino, Z. Zhu, F. J. Barba, M. Brnčić, and S. R. Brnčić. 2018. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends in Food Science & Technology 76:28–37. doi: 10.1016/j.tifs.2018.03.022.
  • Masci, A., A. Coccia, E. Lendaro, L. Mosca, P. Paolicelli, and S. Cesa. 2016. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chemistry 202:59–69. doi: 10.1016/j.foodchem.2016.01.106.
  • Mehmood, A., M. Ishaq, L. Zhao, S. Yaqoob, B. Safdar, M. Nadeem, M. Munir, and C. Wang. 2019. Impact of ultrasound and conventional extraction techniques on bioactive compounds and biological activities of blue butterfly pea flower (Clitoria ternatea L.). Ultrasonics Sonochemistry 51:12–9. doi: 10.1016/j.ultsonch.2018.10.013.
  • Miękus, N., A. Iqbal, K. Marszałek, C. Puchalski, and A. Świergiel. 2019. Green chemistry extractions of carotenoids from Daucus carota L.—Supercritical carbon dioxide and enzyme-assisted methods. Molecules 24 (23):4339. doi: 10.3390/molecules24234339.
  • Milman, B. L., and I. K. Zhurkovich. 2017. The chemical space for non-target analysis. TrAC Trends in Analytical Chemistry 97:179–87. doi: 10.1016/j.trac.2017.09.013.
  • Mirzadeh, M., M. R. Arianejad, and L. Khedmat. 2020. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydrate Polymers 229:115421. doi: 10.1016/j.carbpol.2019.115421.
  • Misra, N., S. Pankaj, A. Segat, and K. Ishikawa. 2016. Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology 55:39–47. doi: 10.1016/j.tifs.2016.07.001.
  • Misra, N. N., M. Koubaa, S. Roohinejad, P. Juliano, H. Alpas, R. S. Inacio, J. A. Saraiva, and F. J. Barba. 2017. Landmarks in the historical development of twenty first century food processing technologies. Food Research International (Ottawa, Ont.) 97:318–39. doi: 10.1016/j.foodres.2017.05.001.
  • Mohammadzadeh, M., M. Honarvar, A. R. Zarei, M. M. A. Boojar, and H. Bakhoda. 2018. A new approach for separation and recovery of betaine from beet molasses based on cloud point extraction technique. Journal of Food Science and Technology 55 (4):1215–23. doi: 10.1007/s13197-017-2999-4.
  • Muñoz-Almagro, N., A. Montilla, F. J. Moreno, and M. Villamiel. 2017. Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment. Ultrasonics Sonochemistry 38:807–19. doi: 10.1016/j.ultsonch.2016.11.039.
  • Mustafa, A., and C. Turner. 2011. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta 703 (1):8–18. doi: 10.1016/j.aca.2011.07.018.
  • Nag, S., and N. Sit. 2018. Optimization of ultrasound assisted enzymatic extraction of polyphenols from pomegranate peels based on phytochemical content and antioxidant property. Journal of Food Measurement and Characterization 12 (3):1734–43. doi: 10.1007/s11694-018-9788-2.
  • Naghshineh, M., K. Olsen, and C. A. Georgiou. 2013. Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chemistry 136 (2):472–8. doi: 10.1016/j.foodchem.2012.08.036.
  • Ndayishimiye, J., A. T. Getachew, and B. S. Chun. 2017. Comparison of characteristics of oils extracted from a mixture of citrus seeds and peels using hexane and supercritical carbon dioxide. Waste and Biomass Valorization 8 (4):1205–17. doi: 10.1007/s12649-016-9697-8.
  • Nigam, P. S.-N., and A. Pandey. 2009. Biotechnology for agro-industrial residues utilisation: Utilisation of agro-residues. United Kingdom: Springer Science & Business Media.
  • Oberleitner, N., A. Ressmann, K. Bica, P. Gärtner, M. Fraaije, U. Bornscheuer, F. Rudroff, and M. Mihovilovic. 2017. From waste to value–direct utilization of limonene from orange peel in a biocatalytic cascade reaction towards chiral carvolactone. Green Chemistry 19 (2):367–71. doi: 10.1039/C6GC01138A.
  • Oey, I., M. Lille, A. Van Loey, and M. Hendrickx. 2008. Effect of high-pressure processing on colour, texture and flavour of fruit-and vegetable-based food products: A review. Trends in Food Science & Technology 19 (6):320–8. doi: 10.1016/j.tifs.2008.04.001.
  • Omeroglu, P. Y., B. Acoglu, T. Özdal, C. E. Tamer, and Ö. U. Çopur. 2019. Extraction techniques for plant-based bio-active compounds. In Natural bio-active compounds, ed. M. K. Swamy, M. Sayeed Akhtar, 465–92. Singapore: Springer.
  • Paggiola, G., S. V. Stempvoort, J. Bustamante, J. M. V. Barbero, A. J. Hunt, and J. H. Clark. 2016. Can bio‐based chemicals meet demand? Global and regional case‐study around citrus waste‐derived limonene as a solvent for cleaning applications. Biofuels, Bioproducts and Biorefining 10 (6):686–98. doi: 10.1002/bbb.1677.
  • Palacios-Ponce, S., A. Ilyina, R. Ramos-González, H. A. Ruiz, J. L. Martínez-Hernández, E. P. Segura-Ceniceros, M. A. Aguilar, O. Sánchez, and C. N. Aguilar. 2017. Bioproducts obtained from the bioprocessing of the banana peel waste: An overview. In Applied chemistry and chemical engineering, Vol. 5, ed. A. K. Haghi, 223–50. USA: Apple Academic Press.
  • Pan, X., G. Niu, and H. Liu. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification 42 (2):129–33. doi: 10.1016/S0255-2701(02)00037-5.
  • Pare, A., A. Nema, V. Singh, and B. Mandhyan. 2014. Combined effect of ohmic heating and enzyme assisted aqueous extraction process on soy oil recovery. Journal of Food Science and Technology 51 (8):1606–11. doi: 10.1007/s13197-012-0685-0.
  • Parniakov, O., F. J. Barba, N. Grimi, N. Lebovka, and E. Vorobiev. 2014. Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Research International 65:337–43. doi: 10.1016/j.foodres.2014.09.015.
  • Parniakov, O., F. J. Barba, N. Grimi, N. Lebovka, and E. Vorobiev. 2016. Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry 192:842–8. doi: 10.1016/j.foodchem.2015.07.096.
  • Pasrija, D., and C. Anandharamakrishnan. 2015. Techniques for extraction of green tea polyphenols: A review. Food and Bioprocess Technology 8 (5):935–50.
  • Patist, A., and D. Bates. 2008. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science & Emerging Technologies 9 (2):147–54. doi: 10.1016/j.ifset.2007.07.004.
  • Pereira, C. G., and M. A. A. Meireles. 2010. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology 3 (3):340–72. doi: 10.1007/s11947-009-0263-2.
  • Pereira, R. N., R. M. Rodrigues, Z. Genisheva, H. Oliveira, V. de Freitas, J. A. Teixeira, and A. A. Vicente. 2016. Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT 74:493–503. doi: 10.1016/j.lwt.2016.07.074.
  • Petkova, N., M. Ognyanov, M. Kirchev, and M. Stancheva. 2020. Bioactive compounds in water extracts prepared from rosehip‐containing herbal blends. Journal of Food Processing and Preservation:e14645.
  • Petropoulos, S., F. Di Gioia, and G. Ntatsi. 2017. Vegetable organosulfur compounds and their health promoting effects. Current Pharmaceutical Design 23 (19):2850–75. doi: 10.2174/1381612823666170111100531.
  • Plaza, M., and C. Turner. 2017. Pressurized hot water extraction of bioactives. Comprehensive Analytical Chemistry 76:53–82.
  • Pothitirat, W., M. T. Chomnawang, R. Supabphol, and W. Gritsanapan. 2010. Free radical scavenging and anti-acne activities of mangosteen fruit rind extracts prepared by different extraction methods. Pharmaceutical Biology 48 (2):182–6. doi: 10.3109/13880200903062671.
  • Puértolas, E., N. López, G. Saldaña, I. Álvarez, and J. Raso. 2010. Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. Journal of Food Engineering 98 (1):120–5. doi: 10.1016/j.jfoodeng.2009.12.017.
  • Qian, S., X. Fang, D. Dan, E. Diao, and Z. Lu. 2018. Ultrasonic-assisted enzymatic extraction of a water soluble polysaccharide from dragon fruit peel and its antioxidant activity. RSC Advances 8 (73):42145–52. doi: 10.1039/C8RA06449K.
  • Quiles-Carrillo, L., C. Mellinas, MdC. Garrigós, R. Balart, and S. Torres-Giner. 2019. Optimization of microwave-assisted extraction of phenolic compounds with antioxidant activity from carob pods. Food Analytical Methods 12 (11):2480–90. doi: 10.1007/s12161-019-01596-3.
  • Raghavi, S., R. Sindhu, P. Binod, E. Gnansounou, and A. Pandey. 2016. Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresource Technology 199:202–10. doi: 10.1016/j.biortech.2015.08.062.
  • Rajasree, R., P. Sibi, F. Francis, and H. William. 2016. Phytochemicals of Cucurbitaceae family—A review. International Journal of Pharmacognosy and Phytochemical Research 8 (1):113–23.
  • Rajha, H. N., N. Boussetta, N. Louka, R. G. Maroun, and E. Vorobiev. 2015. Effect of alternative physical pretreatments (pulsed electric field, high voltage electrical discharges and ultrasound) on the dead-end ultrafiltration of vine-shoot extracts. Separation and Purification Technology 146:243–51. doi: 10.1016/j.seppur.2015.03.058.
  • Rakholiya, K., M. Kaneria, D. Desai, and S. Chanda. 2013. Antimicrobial activity of decoction extracts of residual parts (seed and peels) of Mangifera indica L. var. Kesar against pathogenic and food spoilage microorganism. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, vol. 2, 850–856.FORMATEX.
  • Raks, V., H. Al-Suod, and B. Buszewski. 2018. Isolation, separation, and preconcentration of biologically active compounds from plant matrices by extraction techniques. Chromatographia 81 (2):189–202. doi: 10.1007/s10337-017-3405-0.
  • Ramachandran, S., S. K. Singh, C. Larroche, C. R. Soccol, and A. Pandey. 2007. Oil cakes and their biotechnological applications-A review. Bioresource Technology 98 (10):2000–9. doi: 10.1016/j.biortech.2006.08.002.
  • Ravanfar, R., M. Moein, M. Niakousari, and A. Tamaddon. 2018. Extraction and fractionation of anthocyanins from red cabbage: Ultrasonic-assisted extraction and conventional percolation method. Journal of Food Measurement and Characterization 12 (4):2271–7. doi: 10.1007/s11694-018-9844-y.
  • Ravichandran, K., N. M. M. T. Saw, A. A. Mohdaly, A. M. Gabr, A. Kastell, H. Riedel, Z. Cai, D. Knorr, and I. Smetanska. 2013. Impact of processing of red beet on betalain content and antioxidant activity. Food Research International 50 (2):670–5. doi: 10.1016/j.foodres.2011.07.002.
  • Rifna, E., and M. Dwivedi. 2021. The microbiological safety of food powders. In Food powders properties and characterization, ed. E. Emris, 169–93. Switzerland: Springer.
  • Rifna, E., K. R. Ramanan, and R. Mahendran. 2019. Emerging technology applications for improving seed germination. Trends in Food Science & Technology 86:95–108. doi: 10.1016/j.tifs.2019.02.029.
  • Rifna, E., S. K. Singh, S. Chakraborty, and M. Dwivedi. 2019. Effect of thermal and non-thermal techniques for microbial safety in food powder: Recent advances. Food Research International (Ottawa, Ont.) 126:108654. doi: 10.1016/j.foodres.2019.108654.
  • Rocha, C. M., Z. Genisheva, P. Ferreira-Santos, R. Rodrigues, A. A. Vicente, J. A. Teixeira, and R. N. Pereira. 2018. Electric field-based technologies for valorization of bioresources. Bioresource Technology 254:325–39. doi: 10.1016/j.biortech.2018.01.068.
  • Rodríguez, G., A. Lama, R. Rodríguez, A. Jiménez, R. Guillén, and J. Fernández-Bolanos. 2008. Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology 99 (13):5261–9. doi: 10.1016/j.biortech.2007.11.027.
  • Romero-Cascales, I., J. I. Fernández-Fernández, J. M. López-Roca, and E. Gómez-Plaza. 2005. The maceration process during winemaking extraction of anthocyanins from grape skins into wine. European Food Research and Technology 221 (1-2):163–7. doi: 10.1007/s00217-005-1144-1.
  • Roselló-Soto, E., O. Parniakov, Q. Deng, A. Patras, M. Koubaa, N. Grimi, N. Boussetta, B. K. Tiwari, E. Vorobiev, N. Lebovka, et al. 2016. Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms. Food Engineering Reviews 8 (2):214–34. doi: 10.1007/s12393-015-9131-1.
  • Roy, B. C., M. Hoshino, H. Ueno, M. Sasaki, and M. Goto. 2007. Supercritical carbon dioxide extraction of the volatiles from the peel of Japanese citrus fruits. Journal of Essential Oil Research 19 (1):78–84. doi: 10.1080/10412905.2007.9699234.
  • S., Z. 2018. Study on the extraction and degradation of citrus pectin by dielectric barrier discharge plasma. Vol. 12.
  • Safdar, M. N., T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, and A. A. Saddozai. 2017. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. Journal of Food and Drug Analysis 25 (3):488–500. doi: 10.1016/j.jfda.2016.07.010.
  • Safdar, M. N., T. Kausar, and M. Nadeem. 2017. Comparison of ultrasound and maceration techniques for the extraction of polyphenols from the mango peel. Journal of Food Processing and Preservation 41 (4):e13028. doi: 10.1111/jfpp.13028.
  • Saini, A., P. S. Panesar, and M. B. Bera. 2019. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresources and Bioprocessing 6 (1):26. doi: 10.1186/s40643-019-0261-9.
  • Scepankova, H., M. Martins, L. Estevinho, I. Delgadillo, and J. A. Saraiva. 2018. Enhancement of bioactivity of natural extracts by non-thermal high hydrostatic pressure extraction. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 73 (4):253–67. doi: 10.1007/s11130-018-0687-9.
  • Sensoy, I., and S. Sastry. 2004. Extraction using moderate electric fields. Journal of Food Science 69 (1):FEP7–FEP13. doi: 10.1111/j.1365-2621.2004.tb17861.x.
  • Sepelev, I., and R. Galoburda. 2015. Industrial potato peel waste application in food production: A review. Research for Rural Development 1:130–6.
  • Shah, S., A. Sharma, and M. Gupta. 2005. Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresource Technology 96 (1):121–3. doi: 10.1016/j.biortech.2004.02.026.
  • Shen, L., X. Wang, Z. Wang, Y. Wu, and J. Chen. 2008. Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry 107 (2):929–38. doi: 10.1016/j.foodchem.2007.08.047.
  • Shouqin, Z., X. Jun, and W. Changzheng. 2005. Note: Effect of high hydrostatic pressure on extraction of flavonoids in propolis. Food Science and Technology International 11 (3):213–6. doi: 10.1177/1082013205054420.
  • Sindhu, R., E. Gnansounou, S. Rebello, P. Binod, S. Varjani, I. S. Thakur, R. B. Nair, and A. Pandey. 2019. Conversion of food and kitchen waste to value-added products. Journal of Environmental Management 241:619–30. doi: 10.1016/j.jenvman.2019.02.053.
  • Sindhu, R., M. Kuttiraja, V. E. Preeti, S. Vani, R. K. Sukumaran, and P. Binod. 2013. A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars. Bioresource Technology 135:67–72. doi: 10.1016/j.biortech.2012.09.050.
  • Singh, J. P., A. Kaur, K. Shevkani, and N. Singh. 2016. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. Journal of Food Science and Technology 53 (11):4056–66. doi: 10.1007/s13197-016-2412-8.
  • Singh, P. P., and M. D. Saldaña. 2011. Subcritical water extraction of phenolic compounds from potato peel. Food Research International 44 (8):2452–8. doi: 10.1016/j.foodres.2011.02.006.
  • Skenderidis, P., C. Mitsagga, I. Giavasis, K. Petrotos, D. Lampakis, S. Leontopoulos, C. Hadjichristodoulou, and A. Tsakalof. 2019. The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit peel extract. Journal of Food Measurement and Characterization 13 (3):1–15.
  • Sommano, S., P. Ounamornmas, M. Nisoa, S. Sriwattana, P. Page, and G. Colelli. 2018. Characterisation and physiochemical properties of mango peel pectin extracted by conventional and phase control microwave-assisted extractions. International Food Research Journal 25 (6)
  • Soquetta, M. B., LdM. Terra, and C. P. Bastos. 2018. Green technologies for the extraction of bioactive compounds in fruits and vegetables. Cyta - Journal of Food 16 (1):400–12. doi: 10.1080/19476337.2017.1411978.
  • Soria, A. C., and M. Villamiel. 2010. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends in Food Science & Technology 21 (7):323–31. doi: 10.1016/j.tifs.2010.04.003.
  • Sowbhagya, H., and V. Chitra. 2010. Enzyme-assisted extraction of flavorings and colorants from plant materials. Critical Reviews in Food Science and Nutrition 50 (2):146–61. doi: 10.1080/10408390802248775.
  • Soxhlet, F. V. 1879. Die gewichtsanalytische bestimmung des milchfettes. Dingler's Polytechnisches Journal 232:461–5.
  • Strati, I. F., E. Gogou, and V. Oreopoulou. 2015. Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food and Bioproducts Processing 94:668–74. doi: 10.1016/j.fbp.2014.09.012.
  • Sultana, B., F. Anwar, M. R. Asi, and S. A. S. Chatha. 2008. Antioxidant potential of extracts from different agro wastes: Stabilization of corn oil. Grasas y Aceites 59 (3):205–17.
  • Sultana, B., Z. Hussain, M. Asif, and A. Munir. 2012. Investigation on the antioxidant activity of leaves, peels, stems bark, and kernel of mango (Mangifera indica L.). Journal of Food Science 77 (8):C849–C852. doi: 10.1111/j.1750-3841.2012.02807.x.
  • Szentmihályi, K., P. Vinkler, B. Lakatos, V. Illés, and M. Then. 2002. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresource Technology 82 (2):195–201. doi: 10.1016/s0960-8524(01)00161-4.
  • Takamatsu, T., K. Uehara, Y. Sasaki, M. Hidekazu, Y. Matsumura, A. Iwasawa, N. Ito, M. Kohno, T. Azuma, and A. Okino. 2015. Microbial inactivation in the liquid phase induced by multigas plasma jet. PLoS One 10 (7):e0132381. doi: 10.1371/journal.pone.0132381.
  • Tan, Z.-J., F.-F. Li, and J.-M. Xing. 2012. Cloud point extraction of aloe anthraquinones based on non-ionic surfactant aqueous two-phase system. Natural Product Research 26 (15):1423–32. doi: 10.1080/14786419.2011.601415.
  • Tang, H., P. Chen, Q. Ding, L. Liu, H. Qi, and L. Li. 2016. Extraction of soluble dietary fiber from pomelo peel by ultrasonic assisted enzymatic method and its antioxidant activity. Storage and Process 16 (6):103–6.
  • Thakur, P., N. George, and M. Chakraborty. 2020. Qualitative phytochemical screening of sweet orange (Citrus sinensis) peel extract-A preliminary study. Plant Cell Biotechnology and Molecular Biology 21 (17-18): 29–34.
  • Torres-Valenzuela, L. S., A. Ballesteros-Gómez, and S. Rubio. 2019. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Engineering Reviews 12 (1):1–18.
  • Transparency Market Research. 2018. Polyphenols market by product (grape seed, green tea, apple and others), by application (functional beverages, functional food, dietary supplements and others)‐global industry analysis, size, share, growth, trends and forecast, 2012–2018.
  • Tunchaiyaphum, S., M. Eshtiaghi, and N. Yoswathana. 2013. Extraction of bioactive compounds from mango peels using green technology. International Journal of Chemical Engineering and Applications 4 (4):194.
  • Turrini, F., P. Malaspina, P. Giordani, S. Catena, P. Zunin, and R. Boggia. 2020. Traditional decoction and PUAE aqueous extracts of pomegranate peels as potential low-cost anti-tyrosinase ingredients. Applied Sciences 10 (8):2795. doi: 10.3390/app10082795.
  • Umair, M., S. Jabbar, M. M. Nasiru, T. Sultana, A. M. Senan, F. N. Awad, Z. Hong, and J. Zhang. 2019. Exploring the potential of high-voltage electric field cold plasma (HVCP) using a dielectric barrier discharge (DBD) as a plasma source on the quality parameters of carrot juice. Antibiotics 8 (4):235. doi: 10.3390/antibiotics8040235.
  • Uwineza, P. A., and A. Waśkiewicz. 2020. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules 25 (17):3847. doi: 10.3390/molecules25173847.
  • Vázquez, M. B., L. R. Comini, R. E. Martini, S. N. Montoya, S. Bottini, and J. L. Cabrera. 2014. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae). Ultrasonics Sonochemistry 21 (2):478–84. doi: 10.1016/j.ultsonch.2013.08.023.
  • Vergara-Salinas, J. R., P. Bulnes, M. C. Zúñiga, J. Pérez-Jiménez, J. L. Torres, M. L. Mateos-Martín, E. Agosin, and J. R. Pérez-Correa. 2013. Effect of pressurized hot water extraction on antioxidants from grape pomace before and after enological fermentation. Journal of Agricultural and Food Chemistry 61 (28):6929–36. doi: 10.1021/jf4010143.
  • Vergara-Salinas, J. R., J. Cuevas-Valenzuela, and J. R. Pérez-Correa. 2015. Pressurized hot water extraction of polyphenols from plant material. In Biotechnology of bioactive compounds: Sources and applications, ed. V. K. Gupta, M. G. Tuohy, 63. India: Wiley Online Library.
  • Vilariño, M. V., C. Franco, and C. Quarrington. 2017. Food loss and waste reduction as an integral part of a circular economy. Frontiers in Environmental Science 5:21. doi: 10.3389/fenvs.2017.00021.
  • Vinatoru, M., T. Mason, and I. Calinescu. 2017. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends in Analytical Chemistry 97:159–78. doi: 10.1016/j.trac.2017.09.002.
  • Vorobiev, E., A. B. Jemai, H. Bouzrara, N. Lebovka, and M. Bazhal. 2004. Pulsed electric field-assisted extraction of juice from food plants. In Novel food processing technologies, ed. G. V. Barbosa-Cánovas, M. S. Tapia, M. P. Cano, 127–52. United States: CRC Press.
  • Vu, H. T., C. J. Scarlett, and Q. V. Vuong. 2018. Phenolic compounds within banana peel and their potential uses: A review. Journal of Functional Foods 40:238–48. doi: 10.1016/j.jff.2017.11.006.
  • Vu, H. T., C. J. Scarlett, and Q. V. Vuong. 2019. Maximising recovery of phenolic compounds and antioxidant properties from banana peel using microwave assisted extraction and water. Journal of Food Science and Technology 56 (3):1360–70. doi: 10.1007/s13197-019-03610-2.
  • Wang, H., G. Chen, X. Guo, A. M. Abbasi, and R. H. Liu. 2016. Influence of the stage of ripeness on the phytochemical profiles, antioxidant and antiproliferative activities in different parts of Citrus reticulata Blanco cv. Lwt - Food Science and Technology 69:67–75.
  • Wang, J., B. Sun, Y. Liu, and H. Zhang. 2014. Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chemistry 150:482–8. doi: 10.1016/j.foodchem.2013.10.121.
  • Wang, L., and C. L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 17 (6):300–12. doi: 10.1016/j.tifs.2005.12.004.
  • Wendimu, A., and W. Tekalign. 2020. Research article infusion extraction of toxin from chili pepper (Capsicum baccatum) for bedbug protection.
  • Wikiera, A., M. Mika, and M. Grabacka. 2015. Multicatalytic enzyme preparations as effective alternative to acid in pectin extraction. Food Hydrocolloids. 44:156–61. doi: 10.1016/j.foodhyd.2014.09.018.
  • Wikiera, A., M. Mika, A. Starzyńska-Janiszewska, and B. Stodolak. 2015. Application of celluclast 1.5 L in apple pectin extraction. Carbohydrate Polymers 134:251–7. doi: 10.1016/j.carbpol.2015.07.051.
  • Wolfe, K., X. Wu, and R. H. Liu. 2003. Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry 51 (3):609–14. doi: 10.1021/jf020782a.
  • WSDE (Washington State Department of Ecology). 1994. Pollution prevention in fruit and vegetable food processing industries. In Utilisation of bioactive compounds from agricultural and food waste, 252–71. CRC Press. Accessed June 25, 2017. https://fortress.wa.gov/ecy/publications/publications/94056.pdf.
  • Wu, H., J. Zhu, W. Diao, and C. Wang. 2014. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydrate Polymers 113:314–24. doi: 10.1016/j.carbpol.2014.07.025.
  • Xi, J. 2006. Effect of high pressure processing on the extraction of lycopene in tomato paste waste. Chemical Engineering & Technology 29 (6):736–9. doi: 10.1002/ceat.200600024.
  • Xie, F., W. Zhang, X. Lan, S. Gong, J. Wu, and Z. Wang. 2018. Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymers 196:474–82. doi: 10.1016/j.carbpol.2018.05.061.
  • Xu, G., J. Chen, D. Liu, Y. Zhang, P. Jiang, and X. Ye. 2008. Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. Journal of Food Science 73 (1):C11–C18. doi: 10.1111/j.1750-3841.2007.00546.x.
  • Yan, L.-G., L. He, and J. Xi. 2017. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds—A review. Critical Reviews in Food Science and Nutrition 57 (13):2877–88. doi: 10.1080/10408398.2015.1077193.
  • Yang, Y.-C., J. Li, Y.-G. Zu, Y.-J. Fu, M. Luo, N. Wu, and X.-L. Liu. 2010. Optimisation of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity. Food Chemistry 122 (1):373–80. doi: 10.1016/j.foodchem.2010.02.061.
  • Zhang, G., M. Hu, L. He, P. Fu, L. Wang, and J. Zhou. 2013. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food and Bioproducts Processing 91 (2):158–68. doi: 10.1016/j.fbp.2012.09.003.
  • Zhang, L., S. Guo, M. Wang, and L. He. 2015. PEG-based ultrasound-assisted enzymatic extraction of polysaccharides from Ginkgo biloba leaves. International Journal of Biological Macromolecules 80:644–50. doi: 10.1016/j.ijbiomac.2015.07.023.
  • Zhang, Q.-W., L.-G. Lin, and W.-C. Ye. 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine 13 (1):20. doi: 10.1186/s13020-018-0177-x.
  • Zheng, J., C. Ding, L. Wang, G. Li, J. Shi, H. Li, H. Wang, and Y. Suo. 2011. Anthocyanins composition and antioxidant activity of wild Lycium ruthenicum Murr. from Qinghai-Tibet Plateau. Food Chemistry 126 (3):859–65. doi: 10.1016/j.foodchem.2010.11.052.
  • Zhu, Z., Q. Guan, M. Koubaa, F. J. Barba, S. Roohinejad, G. Cravotto, X. Yang, S. Li, and J. He. 2017. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chemistry 215:391–400. doi: 10.1016/j.foodchem.2016.07.157.
  • Zhu, Z., S. Li, J. He, R. Thirumdas, D. Montesano, and F. J. Barba. 2018. Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: Ultra-filtration performance and HPLC-MS2 profile. Food Research International 111:291–8. doi: 10.1016/j.foodres.2018.05.047.
  • Živković, J., K. Šavikin, T. Janković, N. Ćujić, and N. Menković. 2018. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Separation and Purification Technology 194:40–7. doi: 10.1016/j.seppur.2017.11.032.
  • Žlabur, J. Š., S. Voća, N. Dobričević, S. Pliestić, A. Galić, A. Boričević, and N. Borić. 2016. Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves. International Agrophysics 30 (1):95–104. doi: 10.1515/intag-2015-0077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.