1,569
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Essential oils as natural antimicrobials applied in meat and meat products—a review

, , , &

References

  • Alirezalu, K., M. Pateiro, M. Yaghoubi, A. Alirezalu, S. H. Peighambardoust, and J. M. Lorenzo. 2020. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends in Food Science & Technology 100:292–306. doi: 10.1016/j.tifs.2020.04.010.
  • Álvarez, M., A. Rodríguez, F. Núñez, A. Silva, and M. J. Andrade. 2020. In vitro antifungal effects of spices on ochratoxin A production and related gene expression in Penicillium nordicum on a dry-cured fermented sausage medium. Food Control 114:107222. doi: 10.1016/j.foodcont.2020.107222.
  • Atarés, L., and A. Chiralt. 2016. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology 48:51–62. doi: 10.1016/j.tifs.2015.12.001.
  • Ayari, S., S. Shankar, P. Follett, F. Hossain, and M. Lacroix. 2020. Potential synergistic antimicrobial efficiency of binary combinations of essential oils against Bacillus cereus and Paenibacillus amylolyticus - Part A. Microbial Pathogenesis 141:104008. doi: 10.1016/j.micpath.2020.104008.
  • Aziz, M., and S. Karboune. 2018. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition 58 (3):486–511. doi: 10.1080/10408398.2016.1194256.
  • Badawy, M. E. I., T. M. R. Lotfy, and S. M. S. Shawir. 2020. Facile synthesis and characterizations of antibacterial and antioxidant of chitosan monoterpene nanoparticles and their applications in preserving minced meat. International Journal of Biological Macromolecules 156:127–36. doi: 10.1016/j.ijbiomac.2020.04.044.
  • Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar. 2008. Biological effects of essential oils-a review. Food and Chemical Toxicology 46 (2):446–75. doi: 10.1016/j.fct.2007.09.106.
  • Balamurugan, S., C. Gemmell, A. T. Y. Lau, L. Arvaj, P. Strange, A. Gao, and S. Barbut. 2020. High pressure processing during drying of fermented sausages can enhance safety and reduce time required to produce a dry fermented product. Food Control 113:107224. doi: 10.1016/j.foodcont.2020.107224.
  • Baldin, J. C., E. C. Michelin, Y. J. Polizer, I. Rodrigues, S. H. S. de Godoy, R. P. Fregonesi, M. A. Pires, L. T. Carvalho, C. S. Fávaro-Trindade, C. G. de Lima, et al. 2016. Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity. Meat Science 118:15–21. doi: 10.1016/j.meatsci.2016.03.016.
  • Barbosa, L. N., V. L. M. Rall, A. A. H. Fernandes, P. I. Ushimaru, I. da Silva Probst, and A. Fernandes. 2009. Essential oils against foodborne pathogens and spoilage bacteria in minced meat. Foodborne Pathogens and Disease 6 (6):725–8. doi: 10.1089/fpd.2009.0282.
  • Barbosa, R. F. d. S., E. D. C. Yudice, S. K. Mitra, and D. d. S. Rosa. 2021. Characterization of Rosewood and Cinnamon Cassia essential oil polymeric capsules: Stability, loading efficiency, release rate and antimicrobial properties. Food Control 121:107605. doi: 10.1016/j.foodcont.2020.107605.
  • Bassolé, I. H. N., and H. R. Juliani. 2012. Essential oils in combination and their antimicrobial properties. Molecules (Basel, Switzerland) 17 (4):3989–4006. doi: 10.3390/molecules17043989.
  • Ben Lagha, A., K. Vaillancourt, P. Maquera Huacho, and D. Grenier. 2020. Effects of labrador tea, peppermint, and winter savory essential oils on Fusobacterium nucleatum. Antibiotics 9 (11):794. doi: 10.3390/antibiotics9110794.
  • Berruga, M., H. Vergara, and L. Gallego. 2005. Influence of packaging conditions on microbial and lipid oxidation in lamb meat. Small Ruminant Research 57 (2–3):257–64. doi: 10.1016/j.smallrumres.2004.08.004.
  • Bharti, S. K., V. Pathak, T. Alam, A. Arya, V. K. Singh, A. K. Verma, and V. Rajkumar. 2020. Materialization of novel composite bio-based active edible film functionalized with essential oils on antimicrobial and antioxidative aspect of chicken nuggets during extended storage. Journal of Food Science 85 (9):2857–65. doi: 10.1111/1750-3841.15365.
  • Buchanan, R. L., L. G. M. Gorris, M. M. Hayman, T. C. Jackson, and R. C. Whiting. 2017. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75:1–13. doi: 10.1016/j.foodcont.2016.12.016.
  • Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology 94 (3):223–53. doi: 10.1016/j.ijfoodmicro.2004.03.022.
  • Calo, J. R., P. G. Crandall, C. A. O’Bryan, and S. C. Ricke. 2015. Essential oils as antimicrobials in food systems – A review. Food Control 54:111–9. doi: 10.1016/j.foodcont.2014.12.040.
  • Carocho, M., M. F. Barreiro, P. Morales, and I. C. F. R. Ferreira. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13 (4):377–99. doi: 10.1111/1541-4337.12065.
  • Casiglia, S., M. Bruno, E. Scandolera, F. Senatore, and F. Senatore. 2019. Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on micro-organisms affecting historical art crafts. Arabian Journal of Chemistry 12 (8):2704–12. doi: 10.1016/j.arabjc.2015.05.017.
  • Castro-Rosas, J., C. R. Ferreira-Grosso, C. A. Gómez-Aldapa, E. Rangel-Vargas, M. L. Rodríguez-Marín, F. A. Guzmán-Ortiz, and R. N. Falfan-Cortes. 2017. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review. Food Research International (Ottawa, ON) 102:575–87. doi: 10.1016/j.foodres.2017.09.054.
  • Cha, D. S., and M. S. Chinnan. 2004. Biopolymer-based antimicrobial packaging: A review. Critical Reviews in Food Science and Nutrition 44 (4):223–37. doi: 10.1080/10408690490464276.
  • Chaichi, M., A. Mohammadi, F. Badii, and M. Hashemi. 2021. Triple synergistic essential oils prevent pathogenic and spoilage bacteria growth in the refrigerated chicken breast meat. Biocatalysis and Agricultural Biotechnology 32:101926. doi: 10.1016/j.bcab.2021.101926.
  • Chaillou, S., A. Chaulot-Talmon, H. Caekebeke, M. Cardinal, S. Christieans, C. Denis, M. H. Desmonts, X. Dousset, C. Feurer, E. Hamon, et al. 2015. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The ISME Journal 9 (5):1105–18. doi: 10.1038/ismej.2014.202.
  • Chivandi, E., R. Dangarembizi, T. T. Nyakudya, and K. H. Erlwanger. 2016. Use of essential oils as a preservative of meat. In Essential oils in food preservation, flavor and safety, ed. V. R. Preedy, Chap. 8, 85–91. San Diego: Academic Press.
  • Chouhan, S., K. Sharma, and S. Guleria. 2017. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines 4:58.
  • Clemente, I., M. Aznar, and C. Nerín. 2019. Synergistic properties of mustard and cinnamon essential oils for the inactivation of foodborne moulds in vitro and on Spanish bread. International Journal of Food Microbiology 298:44–50. doi: 10.1016/j.ijfoodmicro.2019.03.012.
  • Clemente, I., M. Aznar, F. Silva, and C. Nerín. 2016. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innovative Food Science & Emerging Technologies 36:26–33. doi: 10.1016/j.ifset.2016.05.013.
  • Criado, P., C. Fraschini, M. Jamshidian, S. Salmieri, N. Desjardins, A. Sahraoui, and M. Lacroix. 2019. Effect of cellulose nanocrystals on thyme essential oil release from alginate beads: Study of antimicrobial activity against Listeria innocua and ground meat shelf life in combination with gamma irradiation. Cellulose 26 (9):5247–65. doi: 10.1007/s10570-019-02481-2.
  • da Silva e Silva, N., F. de Souza Farias, M. M. dos Santos Freitas, E. J. G. Pino Hernández, V. V. Dantas, M. Enê Chaves Oliveira, M. R. S. P. Joele, and L. de Fátima Henriques Lourenço. 2021. Artificial intelligence application for classification and selection of fish gelatin packaging film produced with incorporation of palm oil and plant essential oils. Food Packaging and Shelf Life 27:100611. doi: 10.1016/j.fpsl.2020.100611.
  • da Silveira, S. M., F. B. Luciano, N. Fronza, A. Cunha, G. N. Scheuermann, and C. R. W. Vieira. 2014. Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C. LWT - Food Science and Technology 59 (1):86–93. doi: 10.1016/j.lwt.2014.05.032.
  • Davarcı, F., D. Turan, B. Ozcelik, and D. Poncelet. 2017. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocolloids 62:119–27. doi: 10.1016/j.foodhyd.2016.06.029.
  • de Souza, H. J. B., R. V. d. B. Fernandes, S. V. Borges, P. H. C. Felix, L. C. Viana, A. M. T. Lago, and D. A. Botrel. 2018. Utility of blended polymeric formulations containing cellulose nanofibrils for encapsulation and controlled release of sweet orange essential oil. Food and Bioprocess Technology 11 (6):1188–98. doi: 10.1007/s11947-018-2082-9.
  • Delshadi, R., A. Bahrami, A. G. Tafti, F. J. Barba, and L. L. Williams. 2020. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology 104:72–83. doi: 10.1016/j.tifs.2020.07.004.
  • Demirok Soncu, E., N. Özdemir, B. Arslan, S. Küçükkaya, and A. Soyer. 2020. Contribution of surface application of chitosan–thyme and chitosan–rosemary essential oils to the volatile composition, microbial profile, and physicochemical and sensory quality of dry-fermented sausages during storage. Meat Science 166:108127. doi: 10.1016/j.meatsci.2020.108127.
  • Djenane, D., J. Yangüela, L. Montañés, M. Djerbal, and P. Roncalés. 2011. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control 22 (7):1046–53. doi: 10.1016/j.foodcont.2010.12.015.
  • Doyle, M. E. 2007. FRI BRIEFINGS Microbial Food Spoilage—Losses and Control Strategies a Brief Review of the Literature.
  • Dussault, D., K. D. Vu, and M. Lacroix. 2014. In vitro evaluation of antimicrobial activities of various commercial essential oils, oleoresin and pure compounds against food pathogens and application in ham. Meat Science 96 (1):514–20. doi: 10.1016/j.meatsci.2013.08.015.
  • Duze, S. T., M. Marimani, and M. Patel. 2021. Tolerance of Listeria monocytogenes to biocides used in food processing environments. Food Microbiology 97:103758. doi: 10.1016/j.fm.2021.103758.
  • El Adab, S., and M. Hassouna. 2016. Proteolysis, lipolysis and sensory characteristics of a Tunisian dry fermented poultry meat sausage with oregano and thyme essential oils. Journal of Food Safety 36 (1):19–32. doi: 10.1111/jfs.12209.
  • El-Wahab, H. M. F. A., and G. S. E.-D. Moram. 2013. Toxic effects of some synthetic food colorants and/or flavor additives on male rats. Toxicology and Industrial Health 29 (2):224–32. doi: 10.1177/0748233711433935.
  • Esmaeili, H., N. Cheraghi, A. Khanjari, M. Rezaeigolestani, A. A. Basti, A. Kamkar, and E. M. Aghaee. 2020. Incorporation of nanoencapsulated garlic essential oil into edible films: A novel approach for extending shelf life of vacuum-packed sausages. Meat Science 166:108135. doi: 10.1016/j.meatsci.2020.108135.
  • Fadel, H. H. M., A. H. El-Ghorab, A. M. S. Hussein, K. F. El-Massry, S. N. Lotfy, M. Y. Sayed Ahmed, and T. N. Soliman. 2020. Correlation between chemical composition and radical scavenging activity of 10 commercial essential oils: Impact of microencapsulation on functional properties of essential oils. Arabian Journal of Chemistry 13 (8):6815–27. doi: 10.1016/j.arabjc.2020.06.034.
  • Fadil, M., K. Fikri-Benbrahim, S. Rachiq, B. Ihssane, S. Lebrazi, M. Chraibi, T. Haloui, and A. Farah. 2018. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology. European Journal of Pharmaceutics and Biopharmaceutics 126:211–20. doi: 10.1016/j.ejpb.2017.06.002.
  • Falleh, H., M. Ben Jemaa, M. Saada, and R. Ksouri. 2020. Essential oils: A promising eco-friendly food preservative. Food Chemistry 330:127268. doi: 10.1016/j.foodchem.2020.127268.
  • Freke, J., J. Pleadin, M. Mitak, T. Lešić, Ž. Jakopović, I. Perković, K. Markov, and M. Zadravec. 2019. Toxicogenic fungi and the occurrence of mycotoxins in traditional meat products. Croatian Journal of Food Science and Technology 11 (2):272–82. doi: 10.17508/CJFST.2019.11.2.05.
  • García-Díez, J., J. Alheiro, A. L. Pinto, V. Falco, M. J. Fraqueza, and L. Patarata. 2017. Synergistic activity of essential oils from herbs and spices used on meat products against food borne pathogens. Natural Product Communications 12 (2):1934578X1701200. doi: 10.1177/1934578X1701200236.
  • García-Díez, J., J. Alheiro, A. L. Pinto, L. Soares, V. Falco, M. J. Fraqueza, and L. Patarata. 2016. Behaviour of food-borne pathogens on dry cured sausage manufactured with herbs and spices essential oils and their sensorial acceptability. Food Control 59:262–70. doi: 10.1016/j.foodcont.2015.05.027.
  • Gavaric, N., S. S. Mozina, N. Kladar, and B. Bozin. 2015. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. Journal of Essential Oil Bearing Plants 18 (4):1013–21. doi: 10.1080/0972060X.2014.971069.
  • Ghabraie, M., K. D. Vu, L. Tata, S. Salmieri, and M. Lacroix. 2016a. Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT - Food Science and Technology 66:332–9. doi: 10.1016/j.lwt.2015.10.055.
  • Ghabraie, M., K. D. Vu, S. Tnani, and M. Lacroix. 2016b. Antibacterial effects of 16 formulations and irradiation against Clostridium sporogenes in a sausage model. Food Control 63:21–7. doi: 10.1016/j.foodcont.2015.11.019.
  • Ghaderi-Ghahfarokhi, M., M. Barzegar, M. A. Sahari, H. Ahmadi Gavlighi, and F. Gardini. 2017. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties. International Journal of Biological Macromolecules 102:19–28. doi: 10.1016/j.ijbiomac.2017.04.002.
  • Ghaderi-Ghahfarokhi, M., M. Barzegar, M. A. Sahari, and M. H. Azizi. 2016. Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food and Bioprocess Technology 9 (7):1187–201. doi: 10.1007/s11947-016-1708-z.
  • Gómez, B., F. J. Barba, R. Domínguez, P. Putnik, D. Bursać Kovačević, M. Pateiro, F. Toldrá, and J. M. Lorenzo. 2018. Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends in Food Science & Technology 82:135–47. doi: 10.1016/j.tifs.2018.10.006.
  • Guimarães, A. C., L. M. Meireles, M. F. Lemos, M. C. C. Guimarães, D. C. Endringer, M. Fronza, and R. Scherer. 2019. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24 (13):2471. doi: 10.3390/molecules24132471.
  • Gulin-Sarfraz, T., G. N. Kalantzopoulos, M. Kvalvåg Pettersen, A. Wold Åsli, I. Tho, L. Axelsson, and J. Sarfraz. 2021. Inorganic nanocarriers for encapsulation of natural antimicrobial compounds for potential food packaging application: A comparative study. Nanomaterials 11 (2):379. doi: 10.3390/nano11020379.
  • Gutema, F. D., G. Rasschaert, G. E. Agga, A. Jufare, A. B. Duguma, R. D. Abdi, L. Duchateau, F. Crombe, S. Gabriël, and L. De Zutter. 2021. Occurrence, molecular characteristics, and antimicrobial resistance of Escherichia coli O157 in cattle, beef, and humans in Bishoftu Town, Central Ethiopia. Foodborne Pathogens and Disease 18 (1):1–7. doi: 10.1089/fpd.2020.2830.
  • Gutierrez, J., C. Barry-Ryan, and P. Bourke. 2009. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiology 26 (2):142–50. doi: 10.1016/j.fm.2008.10.008.
  • Hadian, M., A. Rajaei, A. Mohsenifar, and M. Tabatabaei. 2017. Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT 84:394–401. doi: 10.1016/j.lwt.2017.05.075.
  • Hashemi, S. M. B., and D. Jafarpour. 2020. Synergistic properties of Eucalyptus caesia and Dracocephalum multicaule Montbr & Auch essential oils: Antimicrobial activity against food borne pathogens and antioxidant activity in pear slices. Journal of Food Processing and Preservation 44 (9):e14651. doi: 10.1111/jfpp.14651.
  • Hashim, A. F., S. F. Hamed, H. A. Abdel Hamid, K. A. Abd-Elsalam, I. Golonka, W. Musiał, and I. M. El-Sherbiny. 2019. Antioxidant and antibacterial activities of omega-3 rich oils/curcumin nanoemulsions loaded in chitosan and alginate-based microbeads. International Journal of Biological Macromolecules 140:682–96. doi: 10.1016/j.ijbiomac.2019.08.085.
  • Hassan, Y. A., A. I. M. Khedr, J. Alkabli, R. F. M. Elshaarawy, and A. M. Nasr. 2021. Co-delivery of imidazolium Zn(II)salen and Origanum Syriacum essential oil by shrimp chitosan nanoparticles for antimicrobial applications. Carbohydrate Polymers 260:117834. doi: 10.1016/j.carbpol.2021.117834.
  • Hassoun, A., and Ö. Emir Çoban. 2017. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends in Food Science & Technology 68:26–36. doi: 10.1016/j.tifs.2017.07.016.
  • Heckert Bastos, L. P., J. Vicente, C. H. Corrêa dos Santos, M. Geraldo de Carvalho, and E. E. Garcia-Rojas. 2020. Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids 102:105605. doi: 10.1016/j.foodhyd.2019.105605.
  • Hernández-Macedo, M. L., G. V. Barancelli, and C. J. Contreras-Castillo. 2011. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: A review. Brazilian Journal of Microbiology 42 (1):1–11. doi: 10.1590/S1517-83822011000100001.
  • Hossain, F., P. Follett, K. Dang Vu, M. Harich, S. Salmieri, and M. Lacroix. 2016. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiology 53 (Pt B):24–30. doi: 10.1016/j.fm.2015.08.006.
  • Huang, D. F., J. G. Xu, J. X. Liu, H. Zhang, and Q. P. Hu. 2014. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food-related bacteria. Microbiology 83 (4):357–65. doi: 10.1134/S0026261714040067.
  • Huq, T., K. D. Vu, B. Riedl, J. Bouchard, and M. Lacroix. 2015. Synergistic effect of gamma (γ)-irradiation and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiology 46:507–14. doi: 10.1016/j.fm.2014.09.013.
  • Hyldgaard, M., T. Mygind, and R. Meyer. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3:12. doi: 10.3389/fmicb.2012.00012.
  • Jain, S., T. Winuprasith, and M. Suphantharika. 2020. Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocolloids 104:105730. doi: 10.1016/j.foodhyd.2020.105730.
  • Jayasena, D. D., and C. Jo. 2013. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends in Food Science & Technology 34 (2):96–108. doi: 10.1016/j.tifs.2013.09.002.
  • Jayasena, D. D., and C. Jo. 2014. Potential application of essential oils as natural antioxidants in meat and meat products: A review. Food Reviews International 30 (1):71–90. doi: 10.1080/87559129.2013.853776.
  • Ji, H., H. Kim, L. R. Beuchat, and J.-H. Ryu. 2019. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. International Journal of Food Microbiology 291:104–10. doi: 10.1016/j.ijfoodmicro.2018.11.023.
  • Jiang, J., and Y. L. Xiong. 2016. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Science 120:107–17. doi: 10.1016/j.meatsci.2016.04.005.
  • Ju, J., Y. Xie, H. Yu, Y. Guo, Y. Cheng, Y. Chen, L. Ji, and W. Yao. 2020. Synergistic properties of citral and eugenol for the inactivation of foodborne molds in vitro and on bread. LWT 122:109063. doi: 10.1016/j.lwt.2020.109063.
  • Kalogianni, A. I., T. Lazou, I. Bossis, and A. I. Gelasakis. 2020. Natural phenolic compounds for the control of oxidation. Bacterial Spoilage, and Foodborne Pathogens in Meat Foods 9:794.
  • Kamkar, A., E. Molaee-Aghaee, A. Khanjari, A. Akhondzadeh-Basti, B. Noudoost, N. Shariatifar, M. Alizadeh Sani, and M. Soleimani. 2021. Nanocomposite active packaging based on chitosan biopolymer loaded with nano-liposomal essential oil: Its characterizations and effects on microbial, and chemical properties of refrigerated chicken breast fillet. International Journal of Food Microbiology 342:109071. doi: 10.1016/j.ijfoodmicro.2021.109071.
  • Kang, J.-H., and K. B. Song. 2018. Inhibitory effect of plant essential oil nanoemulsions against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium on red mustard leaves. Innovative Food Science & Emerging Technologies 45:447–54. doi: 10.1016/j.ifset.2017.09.019.
  • Kfoury, M., L. Auezova, H. Greige-Gerges, and S. Fourmentin. 2019. Encapsulation in cyclodextrins to widen the applications of essential oils. Environmental Chemistry Letters 17 (1):129–43. doi: 10.1007/s10311-018-0783-y.
  • Kingchaiyaphum, W., and C. Rachtanapun. 2012. Antimicrobial and antioxidative activities of essential oils in Chinese sausage (Kun-Chiang). Asian Journal of Food and Agro-Industry 2012:156–62.
  • Kocić-Tanackov, S., and G. Dimić. 2013. Antifungal activity of essential oils in the control of food-borne fungi growth and mycotoxin biosynthesis in food metabolism. In Microbial pathogens and strategies for combating them: Science, technology and education, ed. A. Méndez-Vilas, Vol. 4, no. 5, 838–849. Badajoz, Spain: Formatex Research Center.
  • Kumar, N., A. Singh, D. K. Sharma, and K. Kishore. 2019. Chapter 3 - Toxicity of food additives. In Food safety and human health, ed. R. L. Singh and S. Mondal, 67–98. Amsterdam, Netherlands: Academic Press.
  • Kurpas, M., J. Osek, A. Moura, A. Leclercq, M. Lecuit, and K. Wieczorek. 2020. Genomic characterization of listeria monocytogenes isolated from ready-to-eat meat and meat processing environments in Poland. Frontiers in Microbiology 11:1412. doi: 10.3389/fmicb.2020.01412.
  • Labadie, J. 1999. Consequences of packaging on bacterial growth. Meat is an ecological niche. Meat Science 52 (3):299–305. doi: 10.1016/s0309-1740(99)00006-6.
  • Lammari, N., O. Louaer, A. H. Meniai, and A. Elaissari. 2020. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics 12 (5):431. doi: 10.3390/pharmaceutics12050431.
  • Lee, H. J., H. I. Yong, M. Kim, Y.-S. Choi, and C. Jo. 2020. Status of meat alternatives and their potential role in the future meat market - A review. Asian-Australasian Journal of Animal Sciences 33 (10):1533–43. doi: 10.5713/ajas.20.0419.
  • Lin, L., X. Liao, and H. Cui. 2019. Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packaging and Shelf Life 21:100337. doi: 10.1016/j.fpsl.2019.100337.
  • Li, W.-R., Q.-S. Shi, Q. Liang, X.-M. Huang, and Y.-B. Chen. 2014. Antifungal effect and mechanism of garlic oil on Penicillium funiculosum. Applied Microbiology and Biotechnology 98 (19):8337–46. doi: 10.1007/s00253-014-5919-9.
  • Li, H., X. Sun, X. Liao, and M. Gänzle. 2020. Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Comprehensive Reviews in Food Science and Food Safety 19 (6):3476–500. doi: 10.1111/1541-4337.12617.
  • Liu, F., H. Rhim, K. Park, J. Xu, and C. K. Y. Lo. 2021. HACCP certification in food industry: Trade-offs in product safety and firm performance. International Journal of Production Economics 231:107838. doi: 10.1016/j.ijpe.2020.107838.
  • López-Dı́az, T.-M., J.-A. Santos, M. L. Garcı́a-López, and A. Otero. 2001. Surface mycoflora of a Spanish fermented meat sausage and toxigenicity of Penicillium isolates. International Journal of Food Microbiology 68 (1–2):69–74. doi: 10.1016/S0168-1605(01)00472-X.
  • Luna-Guevara, J., M. Hernández, M. Arenas-Hernández, and M. Luna-Guevara. 2021. Effect of essential oils of oregano (Origanum vulgare), thyme (Thymus vulgaris), orange (Citrus sinensis var. Valencia) in the vapor phase on the antimicrobial and sensory properties of a meat emulsion inoculated with Salmonella enterica. Food Research 5 (1):306–12. doi: 10.26656/fr.2017.5(1).488.
  • Mackay, M. L., K. Milne, and I. M. Gould. 2000. Comparison of methods for assessing synergic antibiotic interactions. International Journal of Antimicrobial Agents 15 (2):125–9. doi: 10.1016/S0924-8579(00)00149-7.
  • Maes, C., S. Bouquillon, and M.-L. Fauconnier. 2019. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 24:2539. doi: 10.3390/molecules24142539.
  • Majeed, H., Y.-Y. Bian, B. Ali, A. Jamil, U. Majeed, Q. F. Khan, K. J. Iqbal, C. F. Shoemaker, and Z. Fang. 2015. Essential oil encapsulations: Uses, procedures, and trends. RSC Advances 5 (72):58449–63. doi: 10.1039/C5RA06556A.
  • Marturano, V., V. Bizzarro, V. Ambrogi, A. Cutignano, G. Tommonaro, G. R. Abbamondi, M. Giamberini, B. Tylkowski, C. Carfagna, and P. Cerruti. 2019. Light-responsive nanocapsule-coated polymer films for antimicrobial active packaging. Polymers 11 (1):68. doi: 10.3390/polym11010068.
  • Menezes, N. M. C., W. F. Martins, D. A. Longhi, and G. M. F. de Aragão. 2018. Modeling the effect of oregano essential oil on shelf-life extension of vacuum-packed cooked sliced ham. Meat Science 139:113–9. doi: 10.1016/j.meatsci.2018.01.017.
  • Meng, J., J. T. LeJeune, T. Zhao, and M. P. Doyle. 2012. Enterohemorrhagic Escherichia coli. In Food microbiology: Fundamentals and frontiers, ed. M. P. Doyle, L. R. Beuchat, 287–309. Washington, DC: ASM Press.–
  • Morsy, M. K., E. Mekawi, and R. Elsabagh. 2018. Impact of pomegranate peel nanoparticles on quality attributes of meatballs during refrigerated storage. LWT 89:489–95. doi: 10.1016/j.lwt.2017.11.022.
  • Muthukumarasamy, P., and R. A. Holley. 2007. Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology 24 (1):82–8. doi: 10.1016/j.fm.2006.03.004.
  • Nazzaro, F., F. Fratianni, R. Coppola, and V. D. Feo. 2017. Essential oils and antifungal activity. Pharmaceuticals 10 (4):86. doi: 10.3390/ph10040086.
  • Nazzaro, F., P. Orlando, F. Fratianni, and R. Coppola. 2012. Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology 23 (2):182–6. doi: 10.1016/j.copbio.2011.10.001.
  • Nikkhah, M., M. Hashemi, M. B. Habibi Najafi, and R. Farhoosh. 2017. Synergistic effects of some essential oils against fungal spoilage on pear fruit. International Journal of Food Microbiology 257:285–94. doi: 10.1016/j.ijfoodmicro.2017.06.021.
  • Niyonzima, E., M. P. Ongol, A. Kimonyo, and M. Sindic. 2015. Risk factors and control measures for bacterial contamination in the bovine meat chain: A review on Salmonella and pathogenic E. coli. Journal of Food Research 4 (5):98–121. doi: 10.5539/jfr.v4n5p98.
  • Ouedrhiri, W., M. Balouiri, S. Bouhdid, E. H. Harki, S. Moja, and H. Greche. 2018. Antioxidant and antibacterial activities of Pelargonium asperum and Ormenis mixta essential oils and their synergistic antibacterial effect. Environmental Science and Pollution Research 25 (30):29860–7. doi: 10.1007/s11356-017-9739-1.
  • Oussalah, M., S. Caillet, and M. Lacroix. 2006. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. Journal of Food Protection 69 (5):1046–55. doi: 10.4315/0362-028X-69.5.1046.
  • Oussalah, M., S. Caillet, L. Saucier, and M. Lacroix. 2007. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18 (5):414–20. doi: 10.1016/j.foodcont.2005.11.009.
  • Pabast, M., N. Shariatifar, S. Beikzadeh, and G. Jahed. 2018. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 91:185–92. doi: 10.1016/j.foodcont.2018.03.047.
  • Pandey, R., and S. Upadhyay. 2012. Food additive. Division of Genetics. Plant breeding & Agrotechnology, National Botanical Research Institute, Lucknow, India. doi: 10.5772/34455.
  • Pateiro, M., F. J. Barba, R. Domínguez, A. S. Sant'Ana, A. Mousavi Khaneghah, M. Gavahian, B. Gómez, and J. M. Lorenzo. 2018. Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review. Food Research International (Ottawa, ON) 113:156–66. doi: 10.1016/j.foodres.2018.07.014.
  • Pateiro, M., P. E. S. Munekata, A. S. Sant'Ana, R. Domínguez, D. Rodríguez-Lázaro, and J. M. Lorenzo. 2021. Application of essential oils as antimicrobial agents against spoilage and pathogenic micro-organisms in meat products. International Journal of Food Microbiology 337:108966. doi: 10.1016/j.ijfoodmicro.2020.108966.
  • Peng, C., S.-Q. Zhao, J. Zhang, G.-Y. Huang, L.-Y. Chen, and F.-Y. Zhao. 2014. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry 165:560–8. doi: 10.1016/j.foodchem.2014.05.126.
  • Pin, C., G. D. García de Fernando, and J. A. Ordóñez. 2002. Effect of modified atmosphere composition on the metabolism of glucose by Brochothrix thermosphacta. Applied and Environmental Microbiology 68 (9):4441–7. doi: 10.1128/aem.68.9.4441-4447.2002.
  • Pleadin, J., M. Zadravec, D. Brnić, I. Perković, M. Škrivanko, and D. Kovačević. 2017. Moulds and mycotoxins detected in the regional speciality fermented sausage 'slavonski kulen' during a 1-year production period. Food Additives & Contaminants, Part A 34 (2):282–90. doi: 10.1080/19440049.2016.1266395.
  • Ponnampalam, E. N., A. E. D. Bekhit, H. Bruce, N. D. Scollan, V. Muchenje, P. Silva, and J. L. Jacobs. 2019. Chapter 2 - Production strategies and processing systems of meat: Current status and future outlook for innovation – A global perspective. In Sustainable meat production and processing, ed. C. M. Galanakis, 17–44. Cambridge, Massachusetts: Academic Press.
  • Prakash, B., A. Kujur, A. Yadav, A. Kumar, P. P. Singh, and N. K. Dubey. 2018. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 89:1–11. doi: 10.1016/j.foodcont.2018.01.018.
  • Rajaei, A., M. Hadian, A. Mohsenifar, T. Rahmani-Cherati, and M. Tabatabaei. 2017. A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packaging and Shelf Life 14:137–45. doi: 10.1016/j.fpsl.2017.10.005.
  • Rehman, A., T. Ahmad, R. M. Aadil, M. J. Spotti, A. M. Bakry, I. M. Khan, L. Zhao, T. Riaz, and Q. Tong. 2019. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends in Food Science & Technology 90:35–46. doi: 10.1016/j.tifs.2019.05.015.
  • Rehman, A., S. M. Jafari, R. M. Aadil, E. Assadpour, M. A. Randhawa, and S. Mahmood. 2020a. Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends in Food Science & Technology 101:106–21. doi: 10.1016/j.tifs.2020.05.001.
  • Rehman, A., Q. Tong, S. M. Jafari, E. Assadpour, Q. Shehzad, R. M. Aadil, M. W. Iqbal, M. M. A. Rashed, B. S. Mushtaq, and W. Ashraf. 2020b. Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science 275:102048. doi: 10.1016/j.cis.2019.102048.
  • Requena, R., M. Vargas, and A. Chiralt. 2019. Study of the potential synergistic antibacterial activity of essential oil components using the thiazolyl blue tetrazolium bromide (MTT) assay. LWT 101:183–90. doi: 10.1016/j.lwt.2018.10.093.
  • Reyes-Jurado, F., A. Lopez-Malo, and E. Palou. 2016. Antimicrobial activity of individual and combined essential oils against foodborne pathogenic bacteria. Journal of Food Protection 79 (2):309–15. doi: 10.4315/0362-028X.Jfp-15-392.
  • Ribeiro-Santos, R., M. Andrade, N. R. d. Melo, and A. Sanches-Silva. 2017. Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology 61:132–40. doi: 10.1016/j.tifs.2016.11.021.
  • Rolim, H. M. L., and T. C. Ramalho. 2021. Chapter 7 - Biopolymer essential oil nanocomposite for antimicrobial packaging. In M. Rai & C. A. dos Santos (Eds.), Biopolymer-based nano films, 115–31. Amsterdam, Netherlands: Elsevier.
  • Russo, F., D. Ercolini, G. Mauriello, and F. Villani. 2006. Behaviour of Brochothrix thermosphacta in presence of other meat spoilage microbial groups. Food Microbiology 23 (8):797–802. doi: 10.1016/j.fm.2006.02.004.
  • Sharma, S., S. Barkauskaite, A. K. Jaiswal, and S. Jaiswal. 2021. Essential oils as additives in active food packaging. Food Chemistry 343:128403. doi: 10.1016/j.foodchem.2020.128403.
  • Šimunović, K., F. Bucar, A. Klančnik, F. Pompei, A. Paparella, and S. Smole Možina. 2020. In vitro effect of the common culinary herb winter savory (Satureja montana) against the infamous food pathogen Campylobacter jejuni. Foods 9 (4):537. doi: 10.3390/foods9040537.
  • Singh, V. K., S. Das, A. K. Dwivedy, R. Rathore, and N. K. Dubey. 2019. Assessment of chemically characterized nanoencapuslated Ocimum sanctum essential oil against aflatoxigenic fungi contaminating herbal raw materials and its novel mode of action as methyglyoxal inhibitor. Postharvest Biology and Technology 153:87–95. doi: 10.1016/j.postharvbio.2019.03.022.
  • Skowron, K., E. Wałecka-Zacharska, N. Wiktorczyk-Kapischke, K. J. Skowron, K. Grudlewska-Buda, J. Bauza-Kaszewska, Z. Bernaciak, M. Borkowski, and E. Gospodarek-Komkowska. 2020. Assessment of the prevalence and drug susceptibility of listeria monocytogenes strains isolated from various types of meat. Foods 9 (9):1293. doi: 10.3390/foods9091293.
  • Šojić, B., B. Pavlić, Z. Zeković, V. Tomović, P. Ikonić, S. Kocić-Tanackov, and N. Džinić. 2018. The effect of essential oil and extract from sage (Salvia officinalis L.) herbal dust (food industry by-product) on the oxidative and microbiological stability of fresh pork sausages. LWT 89:749–55. doi: 10.1016/j.lwt.2017.11.055.
  • Sultanbawa, Y. 2011. Plant antimicrobials in food applications: Minireview. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances, vol 2, 1084–1099. Badajoz, Spain: Formatex Research Center.
  • Thanissery, R., and D. P. Smith. 2014. Effect of marinade containing thyme and orange oils on broiler breast fillet and whole wing aerobic bacteria during refrigerated storage. Journal of Applied Poultry Research 23 (2):228–32. doi: 10.3382/japr.2013-00890.
  • Tsao, S.-M., and M.-C. Yin. 2001. In-vitro antimicrobial activity of four diallyl sulphides occurring naturally in garlic and Chinese leek oils. Journal of Medical Microbiology 50 (7):646–9. doi: 10.1099/0022-1317-50-7-646.
  • Turasan, H., S. Sahin, and G. Sumnu. 2015. Encapsulation of rosemary essential oil. LWT - Food Science and Technology 64 (1):112–9. doi: 10.1016/j.lwt.2015.05.036.
  • Turgis, M., J. Han, S. Caillet, and M. Lacroix. 2009. Antimicrobial activity of mustard essential oil against Escherichia coli O157: H7 and Salmonella typhi. Food Control 20 (12):1073–9. doi: 10.1016/j.foodcont.2009.02.001.
  • Van de Vel, E., I. Sampers, and K. Raes. 2019. A review on influencing factors on the minimum inhibitory concentration of essential oils. Critical Reviews in Food Science and Nutrition 59 (3):357–78. doi: 10.1080/10408398.2017.1371112.
  • Varghese, S. A., S. Siengchin, and J. Parameswaranpillai. 2020. Essential oils as antimicrobial agents in biopolymer-based food packaging - A comprehensive review. Food Bioscience 38:100785. doi: 10.1016/j.fbio.2020.100785.
  • Vasilijević, B., D. Mitić-Ćulafić, I. Djekic, T. Marković, J. Knežević-Vukčević, I. Tomasevic, B. Velebit, and B. Nikolić. 2019. Antibacterial effect of Juniperus communis and Satureja montana essential oils against Listeria monocytogenes in vitro and in wine marinated beef. Food Control 100:247–56. doi: 10.1016/j.foodcont.2019.01.025.
  • Vieira, M. G. A., M. A. da Silva, L. O. dos Santos, and M. M. Beppu. 2011. Natural-based plasticizers and biopolymer films: A review. European Polymer Journal 47 (3):254–63. doi: 10.1016/j.eurpolymj.2010.12.011.
  • Vishwakarma, G. S., N. Gautam, J. N. Babu, S. Mittal, and V. Jaitak. 2016. Polymeric encapsulates of essential oils and their constituents: A review of preparation techniques, characterization, and sustainable release mechanisms. Polymer Reviews 56 (4):668–701. doi: 10.1080/15583724.2015.1123725.
  • Wang, X., F. Cheng, X. Wang, T. Feng, S. Xia, and X. Zhang. 2021. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. International Journal of Biological Macromolecules 168:59–66. doi: 10.1016/j.ijbiomac.2020.12.003.
  • Wicochea-Rodríguez, J. D., P. Chalier, T. Ruiz, and E. Gastaldi. 2019. Active food packaging based on biopolymers and aroma compounds: How to design and control the release. Frontiers in Chemistry 7:398. doi: 10.3389/fchem.2019.00398.
  • Yang, K., A. Liu, A. Hu, J. Li, Z. Zen, Y. Liu, S. Tang, and C. Li. 2021. Preparation and characterization of cinnamon essential oil nanocapsules and comparison of volatile components and antibacterial ability of cinnamon essential oil before and after encapsulation. Food Control 123:107783. doi: 10.1016/j.foodcont.2020.107783.
  • Yostawonkul, J., N. Nittayasut, A. Phasuk, R. Junchay, S. Boonrungsiman, S. Temisak, M. Kongsema, W. Phoolcharoen, and T. Yata. 2021. Nano/microstructured hybrid composite particles containing cinnamon oil as an antibiotic alternative against food-borne pathogens. Journal of Food Engineering 290:110209. doi: 10.1016/j.jfoodeng.2020.110209.
  • Yuan, W., C. H. M. Teo, and H.-G. Yuk. 2019. Combined antibacterial activities of essential oil compounds against Escherichia coli O157:H7 and their application potential on fresh-cut lettuce. Food Control 96:112–8. doi: 10.1016/j.foodcont.2018.09.005.
  • Zadravec, M., N. Vahčić, D. Brnić, K. Markov, J. Frece, R. Beck, T. Lešić, and J. Pleadin. 2020. A study of surface moulds and mycotoxins in Croatian traditional dry-cured meat products. International Journal of Food Microbiology 317:108459. doi: 10.1016/j.ijfoodmicro.2019.108459.
  • Zhang, H., Y. Liang, X. Li, and H. Kang. 2020. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices. Meat Science 166:108137. doi: 10.1016/j.meatsci.2020.108137.
  • Zhang, J., Y. Wang, D.-D. Pan, J.-X. Cao, X.-F. Shao, Y.-J. Chen, Y.-Y. Sun, and C.-R. Ou. 2016. Effect of black pepper essential oil on the quality of fresh pork during storage. Meat Science 117:130–6. doi: 10.1016/j.meatsci.2016.03.002.
  • Zhou, G. H., X. L. Xu, and Y. Liu. 2010. Preservation technologies for fresh meat - A review. Meat Science 86 (1):119–28. doi: 10.1016/j.meatsci.2010.04.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.