2,238
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota

, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abbasi, J. 2019. Are probiotics money down the toilet? Or worse? JAMA 321 (7):633–5. doi: 10.1001/jama.2018.20798.
  • Agus, A., J. Planchais, and H. Sokol. 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe 23 (6):716–24. doi: 10.1016/j.chom.2018.05.003.
  • Al Azzaz, J., A. Al Tarraf, A. Heumann, D. Da Silva Barreira, J. Laurent, A. Assifaoui, A. Rieu, J. Guzzo, and P. Lapaquette. 2020. Resveratrol favors adhesion and biofilm formation of strain ATCC334. International Journal of Molecular Sciences 21 (15):5423. doi: 10.3390/ijms21155423.
  • Alard, J., V. Lehrter, M. Rhimi, I. Mangin, V. Peucelle, A.-L. Abraham, M. Mariadassou, E. Maguin, A.-J. Waligora-Dupriet, B. Pot, et al. 2016. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environmental Microbiology 18 (5):1484–97. doi: 10.1111/1462-2920.13181.
  • Anhê, F. F., R. T. Nachbar, T. V. Varin, V. Vilela, S. Dudonné, G. Pilon, M. Fournier, M.-A. Lecours, Y. Desjardins, D. Roy, et al. 2017. A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. Molecular Metabolism 6 (12):1563–73. doi: 10.1016/j.molmet.2017.10.003.
  • Anhê, F. F., D. Roy, G. Pilon, S. Dudonné, S. Matamoros, T. V. Varin, C. Garofalo, Q. Moine, Y. Desjardins, E. Levy, et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64 (6):872–83. doi: 10.1136/gutjnl-2014-307142.
  • Arfaoui, L. 2021. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 26 (10):2959. doi: 10.3390/molecules26102959.
  • Avila-Reyes, S. V., F. J. Garcia-Suarez, M. T. Jiménez, M. F. San Martín-Gonzalez, and L. A. Bello-Perez. 2014. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers 102:423–30. doi: 10.1016/j.carbpol.2013.11.033.
  • Ballard, J. W. O., and S. G. Towarnicki. 2020. Mitochondria, the gut microbiome and ROS. Cellular Signalling 75:109737. doi: 10.1016/j.cellsig.2020.109737.
  • Barcenilla, A., S. E. Pryde, J. C. Martin, S. H. Duncan, C. S. Stewart, C. Henderson, and H. J. Flint. 2000. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Applied and Environmental Microbiology 66 (4):1654–61. doi: 10.1128/AEM.66.4.1654-1661.2000.
  • Bashir, M., B. Prietl, M. Tauschmann, S. I. Mautner, P. K. Kump, G. Treiber, P. Wurm, G. Gorkiewicz, C. Hogenauer, and T. R. Pieber. 2016. Effects of high doses of vitamin D3 on mucosa-associated gut microbiome vary between regions of the human gastrointestinal tract. European Journal of Nutrition 55 (4):1479–89. doi: 10.1007/s00394-015-0966-2.
  • Belenguer, A., S. H. Duncan, A. G. Calder, G. Holtrop, P. Louis, G. E. Lobley, and H. J. Flint. 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Applied and Environmental Microbiology 72 (5):3593–9. doi: 10.1128/AEM.72.5.3593-3599.2006.
  • Belzer, C., L. W. Chia, S. Aalvink, B. Chamlagain, V. Piironen, J. Knol, and W. M. de Vos. 2017. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B production by intestinal symbionts. mBio 8 (5):e00770–00717. doi: 10.1128/mBio.00770-17.
  • Belzer, C., and W. M. de Vos. 2012. Microbes inside-from diversity to function: the case of Akkermansia. The ISME Journal 6 (8):1449–58. doi: 10.1038/ismej.2012.6.
  • Bilen, M., J.-C. Dufour, J.-C. Lagier, F. Cadoret, Z. Daoud, G. Dubourg, and D. Raoult. 2018. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 6 (1):94. doi: 10.1186/s40168-018-0485-5.
  • Birkeland, E., S. Gharagozlian, K. I. Birkeland, J. Valeur, I. Måge, I. Rud, and A.-M. Aas. 2020. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: A randomised controlled trial. European Journal of Nutrition 59 (7):3325–38. doi: 10.1007/s00394-020-02282-5.
  • Blaser, M. J. 2016. Antibiotic use and its consequences for the normal microbiome. Science (New York, N.Y.) 352 (6285):544–5. doi: 10.1126/science.aad9358.
  • Boesmans, L., M. Valles-Colomer, J. Wang, V. Eeckhaut, G. Falony, R. Ducatelle, F. Van Immerseel, J. Raes, and K. Verbeke. 2018. Butyrate producers as potential next-generation probiotics: Safety assessment of the administration of to healthy volunteers. mSystems 3 (6):e00094–00018. doi: 10.1128/mSystems.00094-18.
  • Bron, P. A., M. Kleerebezem, R.-J. Brummer, P. D. Cani, A. Mercenier, T. T. MacDonald, C. L. Garcia-Ródenas, and J. M. Wells. 2017. Can probiotics modulate human disease by impacting intestinal barrier function? The British Journal of Nutrition 117 (1):93–107. doi: 10.1017/S0007114516004037.
  • Bruno-Barcena, J. M., and M. A. Azcarate-Peril. 2015. Galacto-oligosaccharides and colorectal cancer: Feeding our intestinal probiome. Journal of Functional Foods 12:92–108. doi: 10.1016/j.jff.2014.10.029.
  • Canfora, E. E., C. M. van der Beek, G. D. A. Hermes, G. H. Goossens, J. W. E. Jocken, J. J. Holst, H. M. van Eijk, K. Venema, H. Smidt, E. G. Zoetendal, et al. 2017. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 153 (1):87–97. doi: 10.1053/j.gastro.2017.03.051.
  • Cani, P. D., and W. M. de Vos. 2017. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Frontiers in Microbiology 8:1765. doi: 10.3389/fmicb.2017.01765.
  • Catry, E., L. B. Bindels, A. Tailleux, S. Lestavel, A. M. Neyrinck, J.-F. Goossens, I. Lobysheva, H. Plovier, A. Essaghir, J.-B. Demoulin, et al. 2018. Targeting the gut microbiota with inulin-type fructans: Preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 67 (2):271–83. doi: 10.1136/gutjnl-2016-313316.
  • Chaplin, A., C. Carpéné, and J. Mercader. 2018. Resveratrol, metabolic syndrome, and gut microbiota. Nutrients 10 (11):1651. doi: 10.3390/nu10111651.
  • Chaplin, A., P. Parra, S. Laraichi, F. Serra, and A. Palou. 2016. Calcium supplementation modulates gut microbiota in a prebiotic manner in dietary obese mice. Molecular Nutrition & Food Research 60 (2):468–80. doi: 10.1002/mnfr.201500480.
  • Charoensiddhi, S., M. A. Conlon, P. Methacanon, C. M. M. Franco, P. Su, and W. Zhang. 2017. Gut health benefits of brown seaweed Ecklonia radiata and its polysaccharides demonstrated in vivo in a rat model. Journal of Functional Foods 37:676–84. doi: 10.1016/j.jff.2017.08.040.
  • Choi, Y., S. Lee, S. Kim, J. Lee, J. Ha, H. Oh, Y. Lee, Y. Kim, and Y. Yoon. 2020. Vitamin E (α-tocopherol) consumption influences gut microbiota composition. International Journal of Food Sciences and Nutrition 71 (2):221–5. doi: 10.1080/09637486.2019.1639637.
  • Chua, J. C. L., J. D. F. Hale, P. Silcock, and P. J. Bremer. 2020. Bacterial survival and adhesion for formulating new oral probiotic foods. Critical Reviews in Food Science and Nutrition 60 (17):2926–37. doi: 10.1080/10408398.2019.1669528.
  • Chung, W. S. F., A. W. Walker, P. Louis, J. Parkhill, J. Vermeiren, D. Bosscher, S. H. Duncan, and H. J. Flint. 2016. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology 14:3. doi: 10.1186/s12915-015-0224-3.
  • Collins, J., C. Robinson, H. Danhof, C. W. Knetsch, H. C. van Leeuwen, T. D. Lawley, J. M. Auchtung, and R. A. Britton. 2018. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 553 (7688):291–4. doi: 10.1038/nature25178.
  • Colliou, N., Y. Ge, B. Sahay, M. Gong, M. Zadeh, J. L. Owen, J. Neu, W. G. Farmerie, F. Alonzo, K. Liu, et al. 2017. Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. The Journal of Clinical Investigation 127 (11):3970–86. doi: 10.1172/JCI95376.
  • Cunningham, M, M. A. Azcarate-Peril, A. Barnard, V. Benoit, R. Grimaldi, D. Guyonnet, H. D. Holscher, K. Hunter, S. Manurung, D. Obis, et al. 2021. Shaping the future of probiotics and prebiotics. Trends in Microbiology 29 (8):667–685. doi: 10.1016/j.tim.2021.01.003.
  • D'Souza, G., S. Shitut, D. Preussger, G. Yousif, S. Waschina, and C. Kost. 2018. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports 35 (5):455–88. doi: 10.1039/c8np00009c.
  • Daniel, K. G., K. R. Landis-Piwowar, D. Chen, S. B. Wan, T.-H. Chan, and Q. P. Dou. 2006. Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit. International Journal of Molecular Medicine 18 (4):625–32. doi: 10.3892/ijmm.18.4.625.
  • Degnan, P. H., M. E. Taga, and A. L. Goodman. 2014. Vitamin B12 as a modulator of gut microbial ecology. Cell Metabolism 20 (5):769–78. doi: 10.1016/j.cmet.2014.10.002.
  • DeMartino, P., and D. W. Cockburn. 2020. Resistant starch: Impact on the gut microbiome and health. Current Opinion in Biotechnology 61:66–71. doi: 10.1016/j.copbio.2019.10.008.
  • Derrien, M., C. Belzer, and W. M. de Vos. 2017. Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis 106:171–81. doi: 10.1016/j.micpath.2016.02.005.
  • Di, T., G. J. Chen, Y. Sun, S. Y. Ou, X. X. Zeng, and H. Ye. 2018. In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra. Journal of Functional Foods 40:18–27. doi: 10.1016/j.jff.2017.10.040.
  • Dona, A. C., G. Pages, R. G. Gilbert, and P. W. Kuchel. 2010. Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release. Carbohydrate Polymers. 80 (3):599–617. doi: 10.1016/j.carbpol.2010.01.002.
  • Donaldson, G. P., S. M. Lee, and S. K. Mazmanian. 2016. Gut biogeography of the bacterial microbiota. Nature Reviews. Microbiology 14 (1):20–32. doi: 10.1038/nrmicro3552.
  • Dongowski, G., G. Jacobasch, and D. Schmiedl. 2005. Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation. Journal of Agricultural and Food Chemistry 53 (23):9257–67. doi: 10.1021/jf0507792.
  • Dostal, A., C. Chassard, F. M. Hilty, M. B. Zimmermann, T. Jaeggi, S. Rossi, and C. Lacroix. 2012. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. The Journal of Nutrition 142 (2):271–7. doi: 10.3945/jn.111.148643.
  • Dostal, A., S. Fehlbaum, C. Chassard, M. B. Zimmermann, and C. Lacroix. 2013. Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiology Ecology 83 (1):161–75. doi: 10.1111/j.1574-6941.2012.01461.x.
  • Dostal, A., C. Lacroix, L. Bircher, V. T. Pham, R. Follador, M. B. Zimmermann, and C. Chassard. 2015. Iron modulates butyrate production by a child gut microbiota in vitro. mBio 6 (6):e01453. doi: 10.1128/mBio.01453-15.
  • Douillard, F. P., and W. M. de Vos. 2014. Functional genomics of lactic acid bacteria: From food to health. Microbial Cell Factories 13 Suppl 1 (Suppl 1):S8. doi: 10.1186/1475-2859-13-S1-S8.
  • Dréno, B., S. Pécastaings, S. Corvec, S. Veraldi, A. Khammari, and C. Roques. 2018. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. Journal of the European Academy of Dermatology and Venereology: JEADV 32 Suppl 2:5–14. doi: 10.1111/jdv.15043.
  • Duncan, S. H., P. Louis, and H. J. Flint. 2004. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Applied and Environmental Microbiology 70 (10):5810–7. doi: 10.1128/AEM.70.10.5810-5817.2004.
  • Edogawa, S., A. L. Edwinson, S. A. Peters, L. L. Chikkamenahalli, W. Sundt, S. Graves, S. V. Gurunathan, M. Breen-Lyles, S. Johnson, R. Dyer, et al. 2020. Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in IBS. Gut 69 (1):62–73. doi: 10.1136/gutjnl-2018-317416.
  • Edwards, C. A., J. Havlik, W. Cong, W. Mullen, T. Preston, D. J. Morrison, and E. Combet. 2017. Polyphenols and health: Interactions between fibre, plant polyphenols and the gut microbiota. Nutrition Bulletin 42 (4):356–60. doi: 10.1111/nbu.12296.
  • Ellis, J. L., J. P. Karl, A. M. Oliverio, X. Fu, J. W. Soares, B. E. Wolfe, C. J. Hernandez, J. B. Mason, and S. L. Booth. 2021. Dietary vitamin K is remodeled by gut microbiota and influences community composition. Gut Microbes 13 (1):1887721–16. doi: 10.1080/19490976.2021.1887721.
  • Esaiassen, E., E. Hjerde, J. P. Cavanagh, G. S. Simonsen, and C. Klingenberg. 2017. Bifidobacterium bacteremia: Clinical characteristics and a genomic approach to assess pathogenicity. Journal of Clinical Microbiology 55 (7):2234–48. doi: 10.1128/JCM.00150-17.
  • Everard, A., C. Belzer, L. Geurts, J. P. Ouwerkerk, C. Druart, L. B. Bindels, Y. Guiot, M. Derrien, G. G. Muccioli, N. M. Delzenne, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 110 (22):9066–71. doi: 10.1073/pnas.1219451110.
  • Everard, A., V. Lazarevic, M. Derrien, M. Girard, G. G. Muccioli, G. M. Muccioli, A. M. Neyrinck, S. Possemiers, A. Van Holle, P. François, et al. 2011. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60 (11):2775–86. doi: 10.2337/db11-0227.
  • Fenn, K., P. Strandwitz, E. J. Stewart, E. Dimise, S. Rubin, S. Gurubacharya, J. Clardy, and K. Lewis. 2017. Quinones are growth factors for the human gut microbiota. Microbiome 5 (1):161. doi: 10.1186/s40168-017-0380-5.
  • Fernie, A. R., F. Carrari, and L. J. Sweetlove. 2004. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology 7 (3):254–61. doi: 10.1016/j.pbi.2004.03.007.
  • Ferreira-Halder, C. V., A. V. d. S. Faria, and S. S. Andrade. 2017. Action and function of Faecalibacterium prausnitzii in health and disease. Best Practice & Research. Clinical Gastroenterology 31 (6):643–8. doi: 10.1016/j.bpg.2017.09.011.
  • Flint, H. J., S. H. Duncan, K. P. Scott, and P. Louis. 2015. Links between diet, gut microbiota composition and gut metabolism. The Proceedings of the Nutrition Society 74 (1):13–22. doi: 10.1017/S0029665114001463.
  • Fordtran, J. S., and J. H. Walsh. 1973. Gastric acid secretion rate and buffer content of the stomach after eating. Results in normal subjects and in patients with duodenal ulcer. The Journal of Clinical Investigation 52 (3):645–57. doi: 10.1172/JCI107226.
  • Foretz, M., B. Guigas, and B. Viollet. 2019. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nature Reviews. Endocrinology 15 (10):569–89. doi: 10.1038/s41574-019-0242-2.
  • Fuentes-Zaragoza, E., M. J. Riquelme-Navarrete, E. Sanchez-Zapata, and J. A. Perez-Alvarez. 2010. Resistant starch as functional ingredient: A review. Food Research International. 43 (4):931–42. doi: 10.1016/j.foodres.2010.02.004.
  • Garcia-Carbonell, R., S.-J. Yao, S. Das, and M. Guma. 2019. Dysregulation of intestinal epithelial cell RIPK pathways promotes chronic inflammation in the IBD Gut. Frontiers in Immunology 10:1094. doi: 10.3389/fimmu.2019.01094.
  • Garg, N. K., A. Singh, and D. P. Chaudhary. 2017. Resistant starch: A potential impact on human health. International Journal of Current Microbiology and Applied Sciences 6 (5):2046–57. doi: 10.20546/ijcmas.2017.605.228.
  • Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology 14 (8):491–502. doi: 10.1038/nrgastro.2017.75.
  • Gibson, G. R., A. L. McCartney, and R. A. Rastall. 2005. Prebiotics and resistance to gastrointestinal infections. British Journal of Nutrition 93 (S1):S31–S34. doi: 10.1079/BJN20041343.
  • Gomez-Zavaglia, A., M. A. Prieto Lage, C. Jimenez-Lopez, J. C. Mejuto, and J. Simal-Gandara. 2019. The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants 8 (9):406. doi: 10.3390/antiox8090406.
  • Guida, F., S. Boccella, C. Belardo, M. Iannotta, F. Piscitelli, F. De Filippis, S. Paino, F. Ricciardi, D. Siniscalco, I. Marabese, et al. 2020. Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain, Behavior, and Immunity 85:128–41. doi: 10.1016/j.bbi.2019.04.006.
  • Guo, P., K. Zhang, X. Ma, and P. He. 2020. Clostridium species as probiotics: Potentials and challenges. Journal of Animal Science and Biotechnology 11:24. doi: 10.1186/s40104-019-0402-1.
  • Gupta, A., H. Vlamakis, N. Shoemaker, and A. A. Salyers. 2003. A new Bacteroides conjugative transposon that carries an ermB gene. Applied and Environmental Microbiology 69 (11):6455–63. doi: 10.1128/AEM.69.11.6455-6463.2003.
  • Hamner, S., K. McInnerney, K. Williamson, M. J. Franklin, and T. E. Ford. 2013. Bile salts affect expression of Escherichia coli O157:H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PLoS One 8 (9):e74647. doi: 10.1371/journal.pone.0074647.
  • He, L., H. Yang, J. Tang, Z. Liu, Y. Chen, B. Lu, H. He, S. Tang, Y. Sun, F. Liu, et al. 2019. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. Journal of Biological Engineering 13:58. doi: 10.1186/s13036-019-0189-9.
  • Hecht, A. L., B. W. Casterline, V. M. Choi, and J. Bubeck Wardenburg. 2017. A two-component system regulates Bacteroides fragilis toxin to maintain intestinal homeostasis and prevent lethal disease. Cell Host Microbe 22 (4):443–8. doi: 10.1016/j.chom.2017.08.007.
  • Heinken, A., M. T. Khan, G. Paglia, D. A. Rodionov, H. J. M. Harmsen, and I. Thiele. 2014. Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. Journal of Bacteriology 196 (18):3289–302. doi: 10.1128/JB.01780-14.
  • Henriques, S. F., D. B. Dhakan, L. Serra, A. P. Francisco, Z. Carvalho-Santos, C. Baltazar, A. P. Elias, M. Anjos, T. Zhang, O. D. K. Maddocks, et al. 2020. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nature Communications 11 (1):4236. doi: 10.1038/s41467-020-18049-9.
  • Hewison, M. 2011. Antibacterial effects of vitamin D. Nature Reviews. Endocrinology 7 (6):337–45. doi: 10.1038/nrendo.2010.226.
  • Hiippala, K., V. Kainulainen, M. Suutarinen, T. Heini, J. R. Bowers, D. Jasso-Selles, D. Lemmer, M. Valentine, R. Barnes, D. M. Engelthaler, et al. 2020. Isolation of anti-inflammatory and epithelium reinforcing Bacteroides and Parabacteroides spp. From a healthy fecal donor. Nutrients 12 (4):935. doi: 10.3390/nu12040935.
  • Hold, G. L., A. Schwiertz, R. I. Aminov, M. Blaut, and H. J. Flint. 2003. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Applied and Environmental Microbiology 69 (7):4320–4. doi: 10.1128/AEM.69.7.4320-4324.2003.
  • Hu, W., W. Lu, L. Li, H. Zhang, Y. K. Lee, W. Chen, and J. Zhao. 2021. Both living and dead Faecalibacterium prausnitzii alleviate HDM-induced allergic asthma through the modulation of gut microbiota and short-chain fatty acid (SCFAs) production. Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.11207.
  • Hu, Y., D. Chen, P. Zheng, J. Yu, J. He, X. Mao, and B. Yu. 2019. The bidirectional interactions between resveratrol and gut microbiota: An insight into oxidative stress and inflammatory bowel disease therapy. BioMed Research International 2019:5403761. doi: 10.1155/2019/5403761.
  • Igwe, E. O., K. E. Charlton, Y. C. Probst, K. Kent, and M. E. Netzel. 2019. A systematic literature review of the effect of anthocyanins on gut microbiota populations. Journal of Human Nutrition and Dietetics: The Official Journal of the British Dietetic Association 32 (1):53–62. doi: 10.1111/jhn.12582.
  • Intanon, M., S. L. Arreola, N. H. Pham, W. Kneifel, D. Haltrich, and T.-H. Nguyen. 2014. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiology Letters 353 (2):89–97. doi: 10.1111/1574-6968.12407.
  • Iyer, C., and K. Kailasapathy. 2005. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. Journal of Food Science 70 (1):M18–M23. doi: 10.1111/j.1365-2621.2005.tb09041.x.
  • Jayamanne, V. S., and M. R. Adams. 2006. Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Letters in Applied Microbiology 42 (3):189–94. doi: 10.1111/j.1472-765X.2006.01843.x.
  • Jiang, B., Z. Li, B. Ou, Q. Duan, and G. Zhu. 2019. Targeting ideal oral vaccine vectors based on probiotics: A systematical view. Applied Microbiology and Biotechnology 103 (10):3941–53. doi: 10.1007/s00253-019-09770-7.
  • Jones, R. M., J. W. Mercante, and A. S. Neish. 2012. Reactive oxygen production induced by the gut microbiota: Pharmacotherapeutic implications. Current Medicinal Chemistry 19 (10):1519–29. doi: 10.2174/092986712799828283.
  • Kadlec, R., and M. Jakubec. 2014. The effect of prebiotics on adherence of probiotics. Journal of Dairy Science 97 (4):1983–90. doi: 10.3168/jds.2013-7448.
  • Kakiyama, G., W. M. Pandak, P. M. Gillevet, P. B. Hylemon, D. M. Heuman, K. Daita, H. Takei, A. Muto, H. Nittono, J. M. Ridlon, et al. 2013. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. Journal of Hepatology 58 (5):949–55. doi: 10.1016/j.jhep.2013.01.003.
  • Kang, C.-S., M. Ban, E.-J. Choi, H.-G. Moon, J.-S. Jeon, D.-K. Kim, S.-K. Park, S. G. Jeon, T.-Y. Roh, S.-J. Myung, et al. 2013. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One 8 (10):e76520. doi: 10.1371/journal.pone.0076520.
  • Kasahara, K., K. A. Krautkramer, E. Org, K. A. Romano, R. L. Kerby, E. I. Vivas, M. Mehrabian, J. M. Denu, F. Bäckhed, A. J. Lusis, et al. 2018. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature Microbiology 3 (12):1461–71. doi: 10.1038/s41564-018-0272-x.
  • Kelly, C. J., E. E. Alexeev, L. Farb, T. W. Vickery, L. Zheng, C. Eric L, D. A. Kitzenberg, K. D. Battista, D. J. Kominsky, C. E. Robertson, et al. 2019. Oral vitamin B12 supplement is delivered to the distal gut, altering the corrinoid profile and selectively depleting Bacteroides in C57BL/6 mice. Gut Microbes 10 (6):654–62. doi: 10.1080/19490976.2019.1597667.
  • Khan, M. T., S. H. Duncan, A. J. Stams, J. M. van Dijl, H. J. Flint, and H. J. Harmsen. 2012. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. The ISME Journal 6 (8):1578–85. doi: 10.1038/ismej.2012.5.
  • Khan, M. T., J. M. van Dijl, and H. J. M. Harmsen. 2014. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One 9 (5):e96097. doi: 10.1371/journal.pone.0096097.
  • Kleessen, B., L. Hartmann, and M. Blaut. 2001. Oligofructose and long-chain inulin: Influence on the gut microbial ecology of rats associated with a human faecal flora. The British Journal of Nutrition 86 (2):291–300. doi: 10.1079/bjn2001403.
  • Krumbeck, J. A., J. Walter, and R. W. Hutkins. 2018. Synbiotics for improved human health: Recent developments, challenges, and opportunities. Annual Review of Food Science and Technology 9:451–79. doi: 10.1146/annurev-food-030117-012757.
  • Lee, H., and G. Ko. 2014. Effect of metformin on metabolic improvement and gut microbiota. Applied and Environmental Microbiology 80 (19):5935–43. doi: 10.1128/AEM.01357-14.
  • Lee, Y., R. Yoshitsugu, K. Kikuchi, G.-H. Joe, M. Tsuji, T. Nose, H. Shimizu, H. Hara, K. Minamida, K. Miwa, et al. 2016. Combination of soya pulp and Bacillus coagulans lilac-01 improves intestinal bile acid metabolism without impairing the effects of prebiotics in rats fed a cholic acid-supplemented diet. The British Journal of Nutrition 116 (4):603–10. doi: 10.1017/S0007114516002270.
  • Lewis, K., F. Lutgendorff, V. Phan, J. D. Söderholm, P. M. Sherman, and D. M. McKay. 2010. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflammatory Bowel Diseases 16 (7):1138–48. doi: 10.1002/ibd.21177.
  • Li, E., S. Yang, Y. Zou, W. Cheng, B. Li, T. Hu, Q. Li, W. Wang, S. Liao, and D. Pang. 2019. Purification, characterization, prebiotic preparations and antioxidant activity of oligosaccharides from mulberries. Molecules 24 (12):2329. doi: 10.3390/molecules24122329.
  • Li, J., V. Adams, T. L. Bannam, K. Miyamoto, J. P. Garcia, F. A. Uzal, J. I. Rood, and B. A. McClane. 2013. Toxin plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews: MMBR 77 (2):208–33. doi: 10.1128/MMBR.00062-12.
  • Li, J., Y. Ge, M. Zadeh, R. Curtiss, and M. Mohamadzadeh. 2020. Regulating vitamin B12 biosynthesis via the cbiMCbl riboswitch in Propionibacterium strain UF1. Proceedings of the National Academy of Sciences of the United States of America 117 (1):602–9. doi: 10.1073/pnas.1916576116.
  • Liang, J., H. Li, J. Chen, L. He, X. Du, L. Zhou, Q. Xiong, X. Lai, Y. Yang, S. Huang, et al. 2019. Dendrobium officinale polysaccharides alleviate colon tumorigenesis via restoring intestinal barrier function and enhancing anti-tumor immune response. Pharmacological Research 148:104417. doi: 10.1016/j.phrs.2019.104417.
  • Licht, T. R., T. Ebersbach, and H. Frøkiaer. 2012. Prebiotics for prevention of gut infections. Trends in Food Science & Technology 23 (2):70–82. doi: 10.1016/j.tifs.2011.08.011.
  • Liu, F., P. Li, M. Chen, Y. Luo, M. Prabhakar, H. Zheng, Y. He, Q. Qi, H. Long, Y. Zhang, et al. 2017. Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population. Scientific Reports 7 (1):11789. doi: 10.1038/s41598-017-10722-2.
  • Liu, J., X. Liu, X.-Q. Xiong, T. Yang, T. Cui, N.-L. Hou, X. Lai, S. Liu, M. Guo, X.-H. Liang, et al. 2017. Effect of vitamin A supplementation on gut microbiota in children with autism spectrum disorders – A pilot study. BMC Microbiology 17 (1):204. doi: 10.1186/s12866-017-1096-1.
  • Liu, Q. Q., C. M. Li, L. N. Fu, H. L. Wang, J. Tan, Y. Q. Wang, D. F. Sun, Q. Y. Gao, Y. X. Chen, and J. Y. Fang. 2020. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes 12 (1):1788900. doi: 10.1080/19490976.2020.1788900.
  • Locato, V., S. Cimini, and L. D. Gara. 2013. Strategies to increase vitamin C in plants: From plant defense perspective to food biofortification. Frontiers in Plant Science 4:152. doi: 10.3389/fpls.2013.00152.
  • Lopez-Siles, M., S. H. Duncan, L. J. Garcia-Gil, and M. Martinez-Medina. 2017. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. The ISME Journal 11 (4):841–52. doi: 10.1038/ismej.2016.176.
  • Lordan, C., D. Thapa, R. P. Ross, and P. D. Cotter. 2020. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 11 (1):1–20. doi: 10.1080/19490976.2019.1613124.
  • Lukiw, W. J. 2016. Bacteroides fragilis lipopolysaccharide and inflammatory signaling in Alzheimer's disease. Frontiers in Microbiology 7:1544. doi: 10.3389/fmicb.2016.01544.
  • Luthuli, S., S. Wu, Y. Cheng, X. Zheng, M. Wu, and H. Tong. 2019. Therapeutic effects of fucoidan: A review on recent studies. Marine Drugs 17 (9):487. doi: 10.3390/md17090487.
  • Ma, C., S. Wasti, S. Huang, Z. Zhang, R. Mishra, S. Jiang, Z. You, Y. Wu, H. Chang, Y. Wang, et al. 2020. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide. Gut Microbes 12 (1):1785252. doi: 10.1080/19490976.2020.1785252.
  • Maathuis, A. J. H., E. G. van den Heuvel, M. H. C. Schoterman, and K. Venema. 2012. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique. The Journal of Nutrition 142 (7):1205–12. doi: 10.3945/jn.111.157420.
  • Macfarlane, G. T., H. Steed, and S. Macfarlane. 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology 104 (2):305–44. doi: 10.1111/j.1365-2672.2007.03520.x.
  • Machiels, K., M. Joossens, J. Sabino, V. De Preter, I. Arijs, V. Eeckhaut, V. Ballet, K. Claes, F. Van Immerseel, K. Verbeke, et al. 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63 (8):1275–83. doi: 10.1136/gutjnl-2013-304833.
  • Macierzanka, A., A. Torcello-Gómez, C. Jungnickel, and J. Maldonado-Valderrama. 2019. Bile salts in digestion and transport of lipids. Advances in Colloid and Interface Science 274:102045. doi: 10.1016/j.cis.2019.102045.
  • Madhu, A. N., N. Amrutha, and S. G. Prapulla. 2012. Characterization and antioxidant property of probiotic and synbiotic yogurts. Probiotics and Antimicrobial Proteins 4 (2):90–7. doi: 10.1007/s12602-012-9099-6.
  • Markowiak, P., and K. Śliżewska. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9 (9):1921. doi: 10.3390/nu9091021.
  • Martínez, C., B. K. Rodiño-Janeiro, B. Lobo, M. L. Stanifer, B. Klaus, M. Granzow, A. M. González-Castro, E. Salvo-Romero, C. Alonso-Cotoner, M. Pigrau, et al. 2017. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 66 (9):1537–8. doi: 10.1136/gutjnl-2016-311477.
  • McCann, A., I. B. Jeffery, B. Ouliass, G. Ferland, X. Fu, S. L. Booth, T. T. T. Tran, P. W. O'Toole, and E. M. O'Connor. 2019. Exploratory analysis of covariation of microbiota-derived vitamin K and cognition in older adults. The American Journal of Clinical Nutrition 110 (6):1404–15. doi: 10.1093/ajcn/nqz220.
  • Moens, F., S. Weckx, and L. De Vuyst. 2016. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. International Journal of Food Microbiology 231:76–85. doi: 10.1016/j.ijfoodmicro.2016.05.015.
  • Monteagudo-Mera, A., R. A. Rastall, G. R. Gibson, D. Charalampopoulos, and A. Chatzifragkou. 2019. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology 103 (16):6463–72. doi: 10.1007/s00253-019-09978-7.
  • Mullish, B. H., J. A. K. McDonald, A. Pechlivanis, J. R. Allegretti, D. Kao, G. F. Barker, D. Kapila, E. O. Petrof, S. A. Joyce, C. G. M. Gahan, et al. 2019. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent infection. Gut 68 (10):1791–800. doi: 10.1136/gutjnl-2018-317842.
  • Neef, A., and Y. Sanz. 2013. Future for probiotic science in functional food and dietary supplement development. Current Opinion in Clinical Nutrition and Metabolic Care 16 (6):679–87. doi: 10.1097/MCO.0b013e328365c258.
  • Nunes, S., F. Danesi, D. Del Rio, and P. Silva. 2018. Resveratrol and inflammatory bowel disease: The evidence so far. Nutrition Research Reviews 31 (1):85–97. doi: 10.1017/S095442241700021X.
  • O'Toole, P. W., J. R. Marchesi, and C. Hill. 2017. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nature Microbiology 2:17057. doi: 10.1038/nmicrobiol.2017.57.
  • Paganini, D., M. A. Uyoga, and M. B. Zimmermann. 2016. Iron fortification of foods for infants and children in low-income countries: Effects on the gut microbiome, gut inflammation, and diarrhea. Nutrients 8 (8):494. doi: 10.3390/nu8080494.
  • Pandey, K. R., S. R. Naik, and B. V. Vakil. 2015. Probiotics, prebiotics and synbiotics - A review. Journal of Food Science and Technology 52 (12):7577–87. doi: 10.1007/s13197-015-1921-1.
  • Panesar, P. S., R. Kaur, R. S. Singh, and J. F. Kennedy. 2018. Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. International Journal of Biological Macromolecules 111:667–79. doi: 10.1016/j.ijbiomac.2018.01.062.
  • Pasqualetti, V., A. Altomare, M. P. L. Guarino, V. Locato, S. Cocca, S. Cimini, R. Palma, R. Alloni, L. De Gara, and M. Cicala. 2014. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS One. 9 (5):e98031. doi: 10.1371/journal.pone.0098031.
  • Patel, R., and H. L. DuPont. 2015. New approaches for bacteriotherapy: Prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 60 (Suppl 2):S108–S121. doi: 10.1093/cid/civ177.
  • Peng, M., Z. Tabashsum, M. Anderson, A. Truong, A. K. Houser, J. Padilla, A. Akmel, J. Bhatti, S. O. Rahaman, and D. Biswas. 2020. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Comprehensive Reviews in Food Science and Food Safety 19 (4):1908–33. doi: 10.1111/1541-4337.12565.
  • Pickard, J. M., M. Y. Zeng, R. Caruso, and G. Núñez. 2017. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews 279 (1):70–89. doi: 10.1111/imr.12567.
  • Plöger, S., F. Stumpff, G. B. Penner, J.-D. Schulzke, G. Gäbel, H. Martens, Z. Shen, D. Günzel, and J. R. Aschenbach. 2012. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Annals of the New York Academy of Sciences 1258:52–9. doi: 10.1111/j.1749-6632.2012.06553.x.
  • Pranckutė, R., A. Kaunietis, N. Kuisienė, and D. J. Čitavičius. 2016. Combining prebiotics with probiotic bacteria can enhance bacterial growth and secretion of bacteriocins. International Journal of Biological Macromolecules 89:669–76. doi: 10.1016/j.ijbiomac.2016.05.041.
  • Qian, Y., G. J. Li, K. Zhu, H. Y. Suo, P. Sun, and X. Zhao. 2013. Effects of three types of resistant starch on intestine and their gastric ulcer preventive activities in vivo. Journal of the Korean Society for Applied Biological Chemistry 56 (6):739–46. doi: 10.1007/s13765-013-3229-z.
  • Qiao, Y., J. Sun, S. Xia, X. Tang, Y. Shi, and G. Le. 2014. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity. Food & Function 5 (6):1241–9. doi: 10.1039/c3fo60630a.
  • Ramirez-Farias, C., K. Slezak, Z. Fuller, A. Duncan, G. Holtrop, and P. Louis. 2008. Effect of inulin on the human gut microbiota: Stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British Journal of Nutrition 101 (4):541–50. doi: 10.1017/S0007114508019880.
  • Rastmanesh, R. 2011. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chemico-Biological Interactions 189 (1-2):1–8. doi: 10.1016/j.cbi.2010.10.002.
  • Reed, S., H. Neuman, S. Moscovich, R. P. Glahn, O. Koren, and E. Tako. 2015. Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 7 (12):9768–84. doi: 10.3390/nu7125497.
  • Reichardt, N., S. H. Duncan, P. Young, A. Belenguer, C. McWilliam Leitch, K. P. Scott, H. J. Flint, and P. Louis. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. The ISME Journal 8 (6):1323–35. doi: 10.1038/ismej.2014.14.
  • Reid, D. T., L. K. Eller, J. E. Nettleton, and R. A. Reimer. 2016. Postnatal prebiotic fibre intake mitigates some detrimental metabolic outcomes of early overnutrition in rats. European Journal of Nutrition 55 (8):2399–409. doi: 10.1007/s00394-015-1047-2.
  • Ren, G. M., M. Yu, K. K. Li, Y. Hu, Y. Wang, X. H. Xu, and J. J. Qu. 2016. Seleno-lentinan prevents chronic pancreatitis development and modulates gut microbiota in mice. Journal of Functional Foods 22:177–88. doi: 10.1016/j.jff.2016.01.035.
  • Reunanen, J., V. Kainulainen, L. Huuskonen, N. Ottman, C. Belzer, H. Huhtinen, W. M. de Vos, and R. Satokari. 2015. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Applied and Environmental Microbiology 81 (11):3655–62. doi: 10.1128/AEM.04050-14.
  • Rios-Covian, D., M. Gueimonde, S. H. Duncan, H. J. Flint, and C. G. de los Reyes-Gavilan. 2015. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiology Letters 362 (21):fnv176. doi: 10.1093/femsle/fnv176.
  • Roberfroid, M. B. 2007. Inulin-type fructans: Functional food ingredients. The Journal of Nutrition 137 (11):2493S–502S. doi: 10.1093/jn/137.11.2493S.
  • Rodriguez, J., S. Hiel, A. M. Neyrinck, T. Le Roy, S. A. Pötgens, Q. Leyrolle, B. D. Pachikian, M. A. Gianfrancesco, P. D. Cani, N. Paquot, et al. 2020. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut 69 (11):1975–87. doi: 10.1136/gutjnl-2019-319726.
  • Rouanet, A., S. Bolca, A. Bru, I. Claes, H. Cvejic, H. Girgis, A. Harper, S. N. Lavergne, S. Mathys, M. Pane, et al. 2020. Live biotherapeutic products, a road map for safety assessment. Frontiers in Medicine 7:237. doi: 10.3389/fmed.2020.00237.
  • Ruff, W. E., C. Dehner, W. J. Kim, O. Pagovich, C. L. Aguiar, A. T. Yu, A. S. Roth, S. M. Vieira, C. Kriegel, O. Adeniyi, et al. 2019. Pathogenic autoreactive T and B cells cross-react with mimotopes expressed by a common human gut commensal to trigger autoimmunity. Cell Host & Microbe 26 (1):100–13. doi: 10.1016/j.chom.2019.05.003.
  • Ruiz Sella, S. R. B., T. Bueno, A. A. B. de Oliveira, S. G. Karp, and C. R. Soccol. 2021. Bacillus subtilis natto as a potential probiotic in animal nutrition. Critical Reviews in Biotechnology 41 (3):355–69. doi: 10.1080/07388551.2020.1858019.
  • Saarela, M. H. 2019. Safety aspects of next generation probiotics. Current Opinion in Food Science 30:8–13. doi: 10.1016/j.cofs.2018.09.001.
  • Sanders, M. E., L. M. A. Akkermans, D. Haller, C. Hammerman, J. Heimbach, G. Hörmannsperger, G. Huys, D. D. Levy, F. Lutgendorff, D. Mack, et al. 2010. Safety assessment of probiotics for human use. Gut Microbes 1 (3):164–85. doi: 10.4161/gmic.1.3.12127.
  • Sangwan, V., S. K. Tomar, R. R. B. Singh, A. K. Singh, and B. Ali. 2011. Galactooligosaccharides: Novel components of designer foods. Journal of Food Science 76 (4):R103–R111. doi: 10.1111/j.1750-3841.2011.02131.x.
  • Sarao, L. K., and M. Arora. 2017. Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition 57 (2):344–71. doi: 10.1080/10408398.2014.887055.
  • Savini, M., C. Cecchini, M. C. Verdenelli, S. Silvi, C. Orpianesi, and A. Cresci. 2010. Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients 2 (3):330–9. doi: 10.3390/nu2030330.
  • Schwab, C., H. J. Ruscheweyh, V. Bunesova, V. T. Pham, N. Beerenwinkel, and C. Lacroix. 2017. Trophic interactions of infant Bifidobacteria and Eubacterium hallii during L-fucose and fucosyllactose degradation. Frontiers in Microbiology 8:95. doi: 10.3389/fmicb.2017.00095.
  • Sears, C. L., S. Islam, A. Saha, M. Arjumand, N. H. Alam, A. S. G. Faruque, M. A. Salam, J. Shin, D. Hecht, A. Weintraub, et al. 2008. Association of enterotoxigenic Bacteroides fragilis infection with inflammatory diarrhea. Clinical Infectious diseases: An Official Publication of the Infectious Diseases Society of America 47 (6):797–803. doi: 10.1086/591130.
  • Sekirov, I., S. L. Russell, L. C. Antunes, and B. B. Finlay. 2010. Gut microbiota in health and disease. Physiological Reviews 90 (3):859–904. doi: 10.1152/physrev.00045.2009.
  • Serafini, F., F. Strati, P. Ruas-Madiedo, F. Turroni, E. Foroni, S. Duranti, F. Milano, A. Perotti, A. Viappiani, S. Guglielmetti, et al. 2013. Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe 21:9–17. doi: 10.1016/j.anaerobe.2013.03.003.
  • Shang, Q. S., G. R. Song, M. F. Zhang, J. J. Shi, C. Y. Xu, J. J. Hao, G. Y. Li, and G. L. Yu. 2017. Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. Journal of Functional Foods 28:138–46. doi: 10.1016/j.jff.2016.11.002.
  • Shin, N.-R., J.-C. Lee, H.-Y. Lee, M.-S. Kim, T. W. Whon, M.-S. Lee, and J.-W. Bae. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63 (5):727–35. doi: 10.1136/gutjnl-2012-303839.
  • Silva, P. B., S. Garcia, C. Baldo, and M. A. P. C. Celligoi. 2017. Prebiotic activity of fructooligosaccharides produced by Bacillus subtilis natto CCT 7712. Acta Alimentaria 46 (2):145–51. doi: 10.1556/066.2016.0004.
  • Simpson, H. L., and B. J. Campbell. 2015. Review article: Dietary fibre-microbiota interactions. Alimentary Pharmacology & Therapeutics 42 (2):158–79. doi: 10.1111/apt.13248.
  • Skrypnik, K., and J. Suliburska. 2018. Association between the gut microbiota and mineral metabolism. Journal of the Science of Food and Agriculture 98 (7):2449–60. doi: 10.1002/jsfa.8724.
  • Sokol, H., B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermúdez-Humarán, J.-J. Gratadoux, S. Blugeon, C. Bridonneau, J.-P. Furet, G. Corthier, et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America 105 (43):16731–6. doi: 10.1073/pnas.0804812105.
  • Solomons, N. W., and R. A. Jacob. 1981. Studies on the bioavailability of zinc in humans: Effects of heme and nonheme iron on the absorption of zinc. The American Journal of Clinical Nutrition 34 (4):475–82. doi: 10.1093/ajcn/34.4.475.
  • Steinert, R. E., Y.-K. Lee, and W. Sybesma. 2020. Vitamins for the gut microbiome. Trends in Molecular Medicine 26 (2):137–40. doi: 10.1016/j.molmed.2019.11.005.
  • Stacchiotti, V., S. Rezzi, M. Eggersdorfer, and F. Galli. 2020. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Critical Reviews in Food Science and Nutrition :1–22. doi: 10.1080/10408398.2020.1793728.
  • Stoidis, C. N., E. P. Misiakos, P. Patapis, C. I. Fotiadis, and B. G. Spyropoulos. 2011. Potential benefits of pro- and prebiotics on intestinal mucosal immunity and intestinal barrier in short bowel syndrome. Nutrition Research Reviews 24 (1):21–30. doi: 10.1017/S0954422410000260.
  • Succi, M., P. Tremonte, G. Pannella, L. Tipaldi, A. Cozzolino, R. Romaniello, E. Sorrentino, and R. Coppola. 2017. Pre-cultivation with selected prebiotics enhances the survival and the stress response of Lactobacillus rhamnosus strains in simulated gastrointestinal transit. Frontiers in Microbiology 8:1067. doi: 10.3389/fmicb.2017.01067.
  • Tachon, S., J. Zhou, M. Keenan, R. Martin, and M. L. Marco. 2013. The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiology Ecology 83 (2):299–309. doi: 10.1111/j.1574-6941.2012.01475.x.
  • Tan, H., Q. Zhai, and W. Chen. 2019. Investigations of Bacteroides spp. towards next-generation probiotics. Food Research International (Ottawa, Ont.) 116:637–44. doi: 10.1016/j.foodres.2018.08.088.
  • Tao, T., Z. Ding, D. P. Hou, S. Prakash, Y. N. Zhao, Z. P. Fan, D. M. Zhang, Z. P. Wang, M. Liu, and J. Han. 2019. Influence of polysaccharide as co-encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc-37 by spray drying. Journal of Food Engineering. 252:10–7. doi: 10.1016/j.jfoodeng.2019.02.009.
  • Thambiraj, S. R., M. Phillips, S. R. Koyyalamudi, and N. Reddy. 2018. Yellow lupin (Lupinus luteus L.) polysaccharides: Antioxidant, immunomodulatory and prebiotic activities and their structural characterisation. Food Chemistry 267:319–28. doi: 10.1016/j.foodchem.2018.02.111.
  • Tian, Y., R. G. Nichols, J. Cai, A. D. Patterson, and M. T. Cantorna. 2018. Vitamin A deficiency in mice alters host and gut microbial metabolism leading to altered energy homeostasis. The Journal of Nutritional Biochemistry 54:28–34. doi: 10.1016/j.jnutbio.2017.10.011.
  • Tomas-Barberan, F. A., M. V. Selma, and J. C. Espin. 2016. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Current Opinion in Clinical Nutrition and Metabolic Care 19 (6):471–6. doi: 10.1097/MCO.0000000000000314.
  • Turpin, W., C. Humblot, M. Thomas, and J.-P. Guyot. 2010. Lactobacilli as multifaceted probiotics with poorly disclosed molecular mechanisms. International Journal of Food Microbiology 143 (3):87–102. doi: 10.1016/j.ijfoodmicro.2010.07.032.
  • Unno, T., T. Hisada, and S. Takahashi. 2015. Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short-chain fatty acids in rats. Journal of Agricultural and Food Chemistry 63 (36):7952–7. doi: 10.1021/acs.jafc.5b02649.
  • Vandeputte, D., G. Falony, S. Vieira-Silva, J. Wang, M. Sailer, S. Theis, K. Verbeke, and J. Raes. 2017. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66 (11):1968–74. doi: 10.1136/gutjnl-2016-313271.
  • Velázquez, O. C., R. W. Seto, J. Choi, D. Zhou, F. Breen, J. D. Fisher, and J. L. Rombeau. 1997. Butyrate inhibits deoxycholate-induced increase in colonic mucosal DNA and protein synthesis in vivo. Diseases of the Colon and Rectum 40 (11):1368–75. doi: 10.1007/BF02050825.
  • Verspreet, J., E. Dornez, W. Van den Ende, J. A. Delcour, and C. M. Courtin. 2015. Cereal grain fructans: Structure, variability and potential health effects. Trends in Food Science & Technology 43 (1):32–42. doi: 10.1016/j.tifs.2015.01.006.
  • Wan, M. L. Y., S. J. Forsythe, and H. El-Nezami. 2019. Probiotics interaction with foodborne pathogens: A potential alternative to antibiotics and future challenges. Critical Reviews in Food Science and Nutrition 59 (20):3320–33. doi: 10.1080/10408398.2018.1490885.
  • Wang, C., J. Zhao, H. Zhang, Y.-K. Lee, Q. Zhai, and W. Chen. 2020. Roles of intestinal bacteroides in human health and diseases. Critical Reviews in Food Science and Nutrition :1–19. doi: 10.1080/10408398.2020.1802695.
  • Wang, S. M., Y. Xiao, F. W. Tian, J. X. Zhao, H. Zhang, Q. X. Zhai, and W. Chen. 2020. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. Journal of Functional Foods 66:103838.103838. doi: 10.1016/j.jff.2020.:.
  • Waris, G., and H. Ahsan. 2006. Reactive oxygen species: Role in the development of cancer and various chronic conditions. Journal of Carcinogenesis 5:14. doi: 10.1186/1477-3163-5-14.
  • Waterhouse, M., B. Hope, L. Krause, M. Morrison, M. M. Protani, M. Zakrzewski, and R. E. Neale. 2019. Vitamin D and the gut microbiome: A systematic review of in vivo studies. European Journal of Nutrition 58 (7):2895–910. doi: 10.1007/s00394-018-1842-7.
  • Wilson, B., and K. Whelan. 2017. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology 32 Suppl 1:64–8. doi: 10.1111/jgh.13700.
  • Wrzosek, L., S. Miquel, M.-L. Noordine, S. Bouet, M. Joncquel Chevalier-Curt, V. Robert, C. Philippe, C. Bridonneau, C. Cherbuy, C. Robbe-Masselot, et al. 2013. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biology 11:61. doi: 10.1186/1741-7007-11-61.
  • Xiao, Y., J. Zhao, H. Zhang, Q. Zhai, and W. Chen. 2020. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clinical Nutrition (Edinburgh, Scotland) 39 (5):1315–23. doi: 10.1016/j.clnu.2019.05.014.
  • Yao, M., J. Wu, B. Li, H. Xiao, D. J. McClements, and L. Li. 2017. Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids 72:228–36. doi: 10.1016/j.foodhyd.2017.05.033.
  • Yao, M., J. Xie, H. Du, D. J. McClements, H. Xiao, and L. Li. 2020. Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety 19 (2):857–74. doi: 10.1111/1541-4337.12532.
  • Yao, M. F., B. Li, H. W. Ye, W. H. Huang, Q. X. Luo, H. Xiao, D. J. McClements, and L. J. Li. 2018. Enhanced viability of probiotics (Pediococcus pentosaceus Li05) by encapsulation in microgels doped with inorganic nanoparticles. Food Hydrocolloids 83:246–52. doi: 10.1016/j.foodhyd.2018.05.024.
  • Yao, M. F., J. Wu, B. Li, H. Xiao, D. J. McClements, and L. J. Li. 2017. Microencapsulation of Lactobacillus salivarious Li01 for enhanced storage viability and targeted delivery to gut microbiota. Food Hydrocolloids. 72:228–36. doi: 10.1016/j.foodhyd.2017.05.033.
  • Yeo, S.-K., and M.-T. Liong. 2010. Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. Journal of the Science of Food and Agriculture 90 (2):267–75. doi: 10.1002/jsfa.3808.
  • Zackular, J. P., J. L. Moore, A. T. Jordan, L. J. Juttukonda, M. J. Noto, M. R. Nicholson, J. D. Crews, M. W. Semler, Y. Zhang, L. B. Ware, et al. 2016. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection. Nature Medicine 22 (11):1330–4. doi: 10.1038/nm.4174.
  • Zaman, S. A., and S. R. Sarbini. 2016. The potential of resistant starch as a prebiotic. Critical Reviews in Biotechnology 36 (3):578–84. doi: 10.3109/07388551.2014.993590.
  • Zhang, T., Q. Li, L. Cheng, H. Buch, and F. Zhang. 2019. Akkermansia muciniphila is a promising probiotic. Microbial Biotechnology 12 (6):1109–25. doi: 10.1111/1751-7915.13410.
  • Zhang, Z., J. Lv, L. Pan, and Y. Zhang. 2018. Roles and applications of probiotic Lactobacillus strains. Applied Microbiology and Biotechnology 102 (19):8135–43. doi: 10.1007/s00253-018-9217-9.
  • Zhou, L., M. H. Xie, F. Yang, and J. K. Liu. 2020. Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. Lwt 117:108621. doi: 10.1016/j.lwt.2019.108621.
  • Zhou, Z.-Y., L.-W. Ren, P. Zhan, H.-Y. Yang, D.-D. Chai, and Z.-W. Yu. 2016. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling. Acta Pharmacologica Sinica 37 (8):1063–75. doi: 10.1038/aps.2016.21.
  • Zúñiga, M., V. Monedero, and M. J. Yebra. 2018. Utilization of host-derived glycans by intestinal Lactobacillus and Bifidobacterium species. Frontiers in Microbiology 9:1917. doi: 10.3389/fmicb.2018.01917. [InsertedFromOnline[pubmedMismatch]]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.