1,272
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Halophytes as source of bioactive phenolic compounds and their potential applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abotaleb, M., A. Liskova, P. Kubatka, and D. Büsselberg. 2020. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 10 (2):221. doi: 10.3390/biom10020221.
  • Alkan, D., and A. Yemenicioğlu. 2016. Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids 55 (12):1–10. doi: 10.1016/j.foodhyd.2015.10.025.
  • Amato, A., S. Terzo, and F. Mulè. 2019. Natural compounds as beneficial antioxidant agents in neurodegenerative disorders: A focus on Alzheimer’s disease. Antioxidants 8 (12):1–16. doi: 10.3390/antiox8120608.
  • Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27 (1):84–93. doi: 10.1016/j.biotechadv.2008.09.003.
  • Ayyappan, D., G. Sathiyaraj, and K. C. Ravindran. 2016. Phytoextraction of heavy metals by Sesuvium Portulacastrum l. a salt marsh halophyte from tannery effluent. International Journal of Phytoremediation 18 (5):453–9. doi: 10.1080/15226514.2015.1109606.
  • Badhani, B., N. Sharma, and R. Kakkar. 2015. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 5 (35):27540–57. doi: 10.1039/C5RA01911G.
  • Bae, J. Y., L. Y. Park, and S. H. Lee. 2008. Effect of Salicornia herbacea L. powder on the quality characteristics of bread. Journal of the Korean Society of Food Science and Nutrition 37 (9):1196–201. doi: 10.3746/jkfn.2008.37.9.1196.
  • Barreira, L., E. Resek, M. J. Rodrigues, M. I. Rocha, H. Pereira, N. Bandarra, M. M. Silva, J. Varela, and L. Custódio. 2017. Halophytes: Gourmet food with nutritional health benefits? Journal of Food Composition and Analysis 59:35–42. doi: 10.1016/j.jfca.2017.02.003.
  • Bernal, J., J. A. Mendiola, E. Ibáñez, and A. Cifuentes. 2011. Advanced analysis of nutraceuticals. Journal of Pharmaceutical and Biomedical Analysis 55 (4):758–74. doi: 10.1016/j.jpba.2010.11.033.
  • Bernal, P., M. Zloh, and P. W. Taylor. 2009. Disruption of D-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the {beta}-lactam resistance modifier (-)-epicatechin gallate . The Journal of Antimicrobial Chemotherapy 63 (6):1156–62. doi: 10.1093/jac/dkp094.
  • Bertin, R. L., L. V. Gonzaga, G. S. C. Borges, M. S. Azevedo, H. F. Maltez, M. Heller, G. A. Micke, L. B. B. Tavares, and R. Fett. 2014. Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia Ambigua (Amaranthaceae) using HPLC–ESI-MS/MS. Food Research International 55:404–11. doi: 10.1016/j.foodres.2013.11.036.
  • Boestfleisch, C., N. B. Wagenseil, A. K. Buhmann, C. E. Seal, E. M. Wade, A. Muscolo, and J. Papenbrock. 2014. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation. AoB PLANTS 6:1–16. doi: 10.1093/aobpla/plu046.
  • Boo, Y. C. 2019. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants 8 (8):275. doi: 10.3390/antiox8080275.
  • Bose, J., A. Rodrigo-Moreno, and S. Shabala. 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany 65 (5):1241–57. doi: 10.1093/jxb/ert430.
  • Bouarab-Chibane, L., V. Forquet, P. Lantéri, Y. Clément, L. Léonard-Akkari, N. Oulahal, P. Degraeve, and C. Bordes. 2019. Antibacterial properties of polyphenols: Characterization and QSAR (quantitative structure-activity relationship) models. Frontiers in Microbiology 10:829. doi: 10.3389/fmicb.2019.00829.
  • Boulaaba, M., K. Mkadmini, S. Tsolmon, J. Han, A. Smaoui, K. Kawada, R. Ksouri, H. Isoda, and C. Abdelly. 2013. In vitro antiproliferative effect of Arthrocnemum indicum extracts on Caco-2 cancer cells through cell cycle control and related phenol LC-TOF-MS identification. Evidence-Based Complementary and Alternative Medicine 2013:529375. doi: 10.1155/2013/529375.
  • Boutigny, A.-L., F. Richard-Forget, and C. Barreau. 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. European Journal of Plant Pathology 121 (4):411–23. doi: 10.1007/s10658-007-9266-x.
  • Carbonell-Capella, J. M., M. Buniowska, F. J. Barba, M. J. Esteve, and A. Frígola. 2014. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety 13 (2):155–71. doi: 10.1111/1541-4337.12049.
  • Carocho, M., P. Morales, and I. C. F. R. Ferreira. 2015. Natural food additives: Quo vadis? Trends in Food Science & Technology 45 (2):284–95. doi: 10.1016/j.tifs.2015.06.007.
  • Chen, L., C. Gnanaraj, P. Arulselvan, H. El-Seedi, and H. Teng. 2019. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of type 2 diabetes. Trends in Food Science & Technology 85:149–62. doi: 10.1016/j.tifs.2018.11.026.
  • Cho, H.-D., J.-H. Lee, J.-H. Jeong, J.-Y. Kim, S.-T. Yee, S.-K. Park, M.-K. Lee, and K.-I. Seo. 2016. Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L. Journal of the Science of Food and Agriculture 96 (4):1085–92. doi: 10.1002/jsfa.7180.
  • Coelho, M. S., S. S. Fernandes, and M. M. Salas-Mellado. 2019. Association between diet, health, and the presence of bioactive compounds in foods. In Bioactive compounds: Health benefits and potential applications, ed. M. R. S. Campos, 1st ed., 159–83. Cambridge, MA: Woodhead Publishing. doi: 10.1016/B978-0-12-814774-0.00009-8.
  • Costa, D. C., H. S. Costa, T. G. Albuquerque, F. Ramos, M. C. Castilho, and A. Sanches-Silva. 2015. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends in Food Science & Technology 45 (2):336–54. doi: 10.1016/j.tifs.2015.06.009.
  • Cushnie, T. P. T., and A. J. Lamb. 2011. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents 38 (2):99–107. doi: 10.1016/j.ijantimicag.2011.02.014.
  • Dai, J., and R. J. Mumper. 2010. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules (Basel, Switzerland) 15 (10):7313–52. doi: 10.3390/molecules15107313.
  • Delcour, A. H. 2009. Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta 1794 (5):808–16. doi: 10.1016/j.bbapap.2008.11.005.
  • Dias, C., R. Domínguez-Perles, A. Aires, A. Teixeira, E. Rosa, A. Barros, and M. J. Saavedra. 2015. Phytochemistry and activity against digestive pathogens of grape (Vitis vinifera L.) stem’s (poly)phenolic extracts. LWT - Food Science and Technology 61 (1):25–32. doi: 10.1016/j.lwt.2014.11.033.
  • Essaidi, I., Z. Brahmi, A. Snoussi, H. B. H. Koubaier, H. Casabianca, N. Abe, E. A. Omri, M. M. Chaabouni, and N. Bouzouita. 2013. Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control 32 (1):125–33. doi: 10.1016/j.foodcont.2012.11.006.
  • Etesami, H., and G. A. Beattie. 2018. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology 9:148. doi: 10.3389/fmicb.2018.00148.
  • Falleh, H., R. Ksouri, F. Medini, S. Guyot, C. Abdelly, and C. Magné. 2011. Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Industrial Crops and Products 34 (1):1066–71. doi: 10.1016/j.indcrop.2011.03.018.
  • Faria, G. Y. Y., M. M. Souza, J. R. M. Oliveira, C. S. B. Costa, M. P. Collares, and C. Prentic. 2020. Effect of ultrasound-assisted cold plasma pretreatment to obtain sea asparagus extract and its application in Italian salami. Food Research International 137:109435. doi: 10.1016/j.foodres.2020.109435.
  • Flowers, T. J., H. K. Galal, and L. Bromham. 2010. Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology 37 (7):604–12. doi: 10.1071/FP09269.
  • Freile-Pelegrín, Y., and D. Robledo. 2014. Bioactive phenolic compounds from algae. In Bioactive compounds from marine foods: Plant and animal sources, ed. B. Hernandez-Ledesma and M. Herrero, 1st ed., 113–29. Chichester: John Wiley & Sons. doi: 10.1002/9781118412893.ch6.
  • González, M. B. 2020. Adaptation of halophytes to different habitats. In Seed dormancy and germination, ed. J. C. Jimenez-Lopez, 1st ed., 1–23. London, UK: IntechOpen. doi: 10.5772/intechopen.87056.
  • Gullón, B., T. A. Lú-Chau, M. T. Moreira, J. M. Lema, and G. Eibes. 2017. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science & Technology 67:220–35. doi: 10.1016/j.tifs.2017.07.008.
  • Hamed, K. B., H. Ellouzi, O. Z. Talbi, K. Hessini, I. Slama, T. Ghnaya, S. M. Bosch, A. Savour, and C. Abdelly. 2013. Physiological response of halophytes to multiple stresses. Functional Plant Biology 40 (9):883–96. doi: 10.1071/FP13074.
  • Haminiuk, C. W. I., G. M. Maciel, M. S. V. Plata-Oviedo, and R. M. Peralta. 2012. Phenolic compounds in fruits - An overview. International Journal of Food Science & Technology 47 (10):2023–44. doi: 10.1111/j.1365-2621.2012.03067.x.
  • Hanen, F., K. Riadh, O. Samia, G. Sylvain, M. Christian, and A. Chedly. 2009. Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food and Chemical Toxicology 47 (9):2308–13. doi: 10.1016/j.fct.2009.06.025.
  • Imran, M., A. Rauf, T. Abu-Izneid, M. Nadeem, M. A. Shariati, I. A. Khan, A. Imran, I. E. Orhan, M. Rizwan, M. Atif, et al. 2019. Luteolin, a flavonoid, as an anticancer agent: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 112:108612. doi: 10.1016/j.biopha.2019.108612.
  • Jdey, A., H. Falleh, S. B. Jannet, K. M. Hammi, X. Dauvergne, R. Ksouri, and C. Magné. 2017. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. South African Journal of Botany 112:508–14. doi: 10.1016/j.sajb.2017.05.016.
  • Jia, G.-X., Z.-Q. Zhu, F.-Q. Chang, and Y.-X. Li. 2002. Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Reports 21 (2):141–6. doi: 10.1007/s00299-002-0489-1.
  • Kearl, J., C. McNary, J. S. Lowman, C. Mei, Z. T. Aanderud, S. T. Smith, J. West, E. Colton, M. Hamson, and B. L. Nielsen. 2019. Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Frontiers in Microbiology 10:1849. doi: 10.3389/fmicb.2019.01849.
  • Khan, H., A. Sureda, T. Belwal, S. Çetinkaya, İ. Süntar, S. Tejada, H. P. Devkota, H. Ullah, and M. Aschner. 2019. Polyphenols in the treatment of autoimmune diseases. Autoimmunity Reviews 18 (7):647–57. doi: 10.1016/j.autrev.2019.05.001.
  • Khoo, H. E., A. Azlan, S. T. Tang, and S. M. Lim. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61 (1):1361779. doi: 10.1080/16546628.2017.1361779.
  • Kosová, K., I. T. Práil, and P. Vítámvás. 2013. Protein contribution to plant salinity response and tolerance acquisition. International Journal of Molecular Sciences 14 (4):6757–89. doi: 10.3390/ijms14046757.
  • Ksouri, R., H. Falleh, W. Megdiche, N. Trabelsi, B. Mhamdi, K. Chaieb, A. Bakrouf, C. Magné, and C. Abdelly. 2009. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food and Chemical Toxicology 47 (8):2083–91. doi: 10.1016/j.fct.2009.05.040.
  • Kumar, N., and N. Goel. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports (Amsterdam, Netherlands) 24:e00370. doi: 10.1016/j.btre.2019.e00370.
  • Kumar, N., and V. Pruthi. 2014. Potential applications of ferulic acid from natural sources. Biotechnology Reports 4 (1):86–93. doi: 10.1016/j.btre.2014.09.002.
  • Lattanzio, V. 2013. Phenolic compounds: Introduction. In Natural products, ed. K. G. Ramawat and J.-M. Mérillon, 1543–80. Berlin: Springer. doi: 10.1007/978-3-642-22144-6_57.
  • Lattanzio, V., V. M. T. Lattanzio, and A. Cardinali. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in research, ed. F. Imperato, 1st ed., 23–67. Thiruvananthapuram, Kerala: Research Signpost. doi: 10.1080/19439342.2018.1452778.
  • Lechner, D., S. Gibbons, and F. Bucar. 2008. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium. Phytochemistry Letters 1 (2):71–5. doi: 10.1016/j.phytol.2008.01.002.
  • Liu, R. H. 2004. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. The Journal of Nutrition 134 (12 Suppl):3479S–85S. doi: 10.1093/jn/134.12.3479S.
  • Liu, J., L. Wang, J. Li, C. Li, S. Zhang, Q. Gao, W. Zhang, and J. Li. 2020. Degradation mechanism of Acacia mangium tannin in NaOH/urea aqueous solution and application of degradation products in phenolic adhesives. International Journal of Adhesion and Adhesives 98:102556. doi: 10.1016/j.ijadhadh.2020.102556.
  • Lopes, M., M. C. Castilho, A. Sanches-Silva, A. Freitas, J. Barbosa, M. J. Gonçalves, C. Cavaleiro, and F. Ramos. 2020. Evaluation of the mycotoxins content of Salicornia spp.: A gourmet plant alternative to salt. Food Additives & Contaminants. Part B, Surveillance 13 (3):162–70. doi: 10.1080/19393210.2020.1741692.
  • Lopes, M., C. Cavaleiro, and F. Ramos. 2017. Sodium reduction in bread: A role for glasswort (Salicornia ramosissima J. Woods). Comprehensive Reviews in Food Science and Food Safety 16 (5):1056–71. doi: 10.1111/1541-4337.12277.
  • Lushchak, V. I. 2011. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 153 (2):175–90. doi: 10.1016/j.cbpc.2010.10.004.
  • Manousaki, E., and N. Kalogerakis. 2009. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): Metal uptake in relation to salinity. Environmental Science and Pollution Research International 16 (7):844–54. doi: 10.1007/s11356-009-0224-3.
  • Mariem, S., F. Hanen, J. Inès, S. Mejdi, and K. Riadh. 2014. Phenolic profile, biological activities and fraction analysis of the medicinal halophyte Retama raetam. South African Journal of Botany 94:114–21. doi: 10.1016/j.sajb.2014.06.010.
  • Martínez, C., E. Pons, G. Prats, and J. León. 2004. Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal: For Cell and Molecular Biology 37 (2):209–17. doi: 10.1046/j.1365-313X.2003.01954.x.
  • Mathesius, U. 2018. Flavonoid functions in plants and their interactions with other organisms. Plants 7 (2):30. doi: 10.3390/plants7020030.
  • Megdiche-Ksouri, W., N. Trabelsi, K. Mkadmini, S. Bourgou, A. Noumi, M. Snoussi, R. Barbria, O. Tebourbi, and R. Ksouri. 2015. Artemisia campestris phenolic compounds have antioxidant and antimicrobial activity. Industrial Crops and Products 63:104–13. doi: 10.1016/j.indcrop.2014.10.029.
  • Meot-Duros, L., L. G. Floch, and C. Magné. 2008. Radical scavenging, antioxidant and antimicrobial activities of halophytic species. Journal of Ethnopharmacology 116 (2):258–62. doi: 10.1016/j.jep.2007.11.024.
  • Mesías, M., M. Navarro, N. Martínez-Saez, M. Ullate, M. D. Castillo, and F. J. Morales. 2014. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Research International 62:1120–6. doi: 10.1016/j.foodres.2014.05.058.
  • Messina, C. M., G. Bono, R. Arena, M. Randazzo, S. Manuguerra, and A. Santulli. 2016. Polyphenols from halophytes and modified atmosphere packaging improve sensorial and biochemical markers of quality of common dolphinfish (Coryphaena hippurus) fillets. Food Science & Nutrition 4 (5):723–32. doi: 10.1002/fsn3.337.
  • Mishra, A., and B. Tanna. 2017. Halophytes: Potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science 8:829. doi: 10.3389/fpls.2017.00829.
  • Morales, P., I. C. F. R. Ferreira, A. M. Carvalho, M. C. Sánchez-Mata, M. Cámara, V. Fernández-Ruiz, M. Pardo-de-Santayana, and J. Tardío. 2014. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT - Food Science and Technology 55 (1):389–96. doi: 10.1016/j.lwt.2013.08.017.
  • Mzoughi, Z., H. Chahdoura, Y. Chakroun, M. Cámara, V. Fernández-Ruiz, P. Morales, H. Mosbah, G. Flamini, M. Snoussi, and H. Majdoub. 2019. Wild edible Swiss chard leaves (Beta vulgaris L. var. cicla): Nutritional, phytochemical composition and biological activities. Food Research International 119:612–21. doi: 10.1016/j.foodres.2018.10.039.
  • Nova, P., A. Pimenta-Martins, J. L. Silva, A. M. Silva, A. M. Gomes, and A. C. Freitas. 2020. Health benefits and bioavailability of marine resources components that contribute to health – what’s new? Critical Reviews in Food Science and Nutrition 60 (21):3680–92. doi: 10.1080/10408398.2019.1704681.
  • Ohta, M., Y. Hayashi, A. Nakashima, A. Hamada, A. Tanaka, T. Nakamura, and T. Hayakawa. 2002. Introduction of a Na+/H + antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters 532 (3):279–82. doi: 10.1016/S0014-5793(02)03679-7.
  • Padalino, L., C. Costa, M. A. D. Nobile, and A. Conte. 2019. Extract of Salicornia europaea in fresh pasta to enhance phenolic compounds and antioxidant activity. International Journal of Food Science & Technology 54 (11):3051–7. doi: 10.1111/ijfs.14218.
  • Pandey, S., M. K. Patel, A. Mishra, and B. Jha. 2016. In planta transformed cumin (Cuminum cyminum L.) plants, overexpressing the SbNHX1 gene showed enhanced salt endurance. PloS One 11 (7):e0159349. doi: 10.1371/journal.pone.0159349.
  • Panta, S., T. Flowers, P. Lane, R. Doyle, G. Haros, and S. Shabala. 2014. Halophyte agriculture: Success stories. Environmental and Experimental Botany 107:71–83. doi: 10.1016/j.envexpbot.2014.05.006.
  • Parida, A. K., A. Kumari, J. Rangani, and M. Patel. 2019. Halophytes: Potential resources of coastal ecosystems and their economic, ecological and bioprospecting significance. In Halophytes and climate change: Adaptive mechanisms and potential uses, ed. M. Hasanuzzaman, S. Shabala, and M. Fujita, 1st ed., 287–323. Wallingford, UK: CABI. doi: 10.1079/9781786394330.0000.
  • Park, D. H., D. Kothari, K.-M. Niu, S. G. Han, J. E. Yoon, H.-G. Lee, and S.-K. Kim. 2019. Effect of fermented medicinal plants as dietary additives on food preference and fecal microbial quality in dogs. Animals 9 (9):690. doi: 10.3390/ani9090690.
  • Popa, V. I., M. Dumitru, I. Volf, and N. Anghel. 2008. Lignin and polyphenols as allelochemicals. Industrial Crops and Products 27 (2):144–9. doi: 10.1016/j.indcrop.2007.07.019.
  • Qasim, M., Z. Abideen, M. Y. Adnan, S. Gulzar, B. Gul, M. Rasheed, and M. A. Khan. 2017. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. South African Journal of Botany 110:240–50. doi: 10.1016/j.sajb.2016.10.005.
  • Reginato, M. A., A. Castagna, A. Furlán, S. Castro, A. Ranieri, and V. Luna. 2014. Physiological responses of a halophytic shrub to salt stress by Na2SO4 and NaCl: Oxidative damage and the role of polyphenols in antioxidant protection. AoB PLANTS 6:plu042. doi: 10.1093/aobpla/plu042.
  • Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science 2 (4):152–9. doi: 10.1016/S1360-1385(97)01018-2.
  • Rodrigues, M. J., A. Soszynski, A. Martins, A. P. Rauter, N. R. Neng, J. M. F. Nogueira, J. Varela, L. Barreira, and L. Custódio. 2015. Unravelling the antioxidant potential and the phenolic composition of different anatomical organs of the marine halophyte Limonium algarvense. Industrial Crops and Products 77:315–22. doi: 10.1016/j.indcrop.2015.08.061.
  • Rodríguez-Ramiro, I., S. Ramos, L. Bravo, L. Goya, and M. Á. Martín. 2012. Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and P38-MAPK pathways and protect human colonic cells against oxidative stress. European Journal of Nutrition 51 (7):881–92. doi: 10.1007/s00394-011-0269-1.
  • Rozema, J., and T. Flowers. 2008. Ecology. Crops for a salinized world. Science (New York, N.Y.) 322 (5907):1478–80. doi: 10.1126/science.1168572.
  • Salehi, B., P. V. T. Fokou, M. Sharifi-Rad, P. Zucca, R. Pezzani, N. Martins, and J. Sharifi-Rad. 2019. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 12 (1):11. doi: 10.3390/ph12010011.
  • Sanches Silva, A., P. Reboredo-Rodríguez, D. I. Sanchez-Machado, J. López-Cervantes, D. Barreca, V. Pittala, D. Samec, I. E. Orhan, H. O. Gulcan, T. Y. Forbes-Hernandez, et al. 2020a. Evaluation of the status quo of polyphenols analysis: Part II-Analysis methods and food processing effects. Comprehensive Reviews in Food Science and Food Safety 19 (6):3219–40. doi: 10.1111/1541-4337.12626.
  • Sanches Silva, A., P. Reboredo‐Rodríguez, I. Süntar, A. Sureda, T. Belwal, M. R. Loizzo, R. Tundis, E. Sobarzo-Sanchez, L. Rastrelli, T. Y. Forbes-Hernandez, et al. 2020b. Evaluation of the status quo of polyphenols analysis: Part I-phytochemistry, bioactivity, interactions, and industrial uses. Comprehensive Reviews in Food Science and Food Safety 19 (6):3191–218. doi: 10.1111/1541-4337.12629.
  • Sanches-Silva, A., D. Costa, T. G. Albuquerque, G. G. Buonocore, F. Ramos, M. C. Castilho, A. V. Machado, and H. S. Costa. 2014. Trends in the use of natural antioxidants in active food packaging: A review. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 31 (3):374–95. doi: 10.1080/19440049.2013.879215.
  • Santos, E. S., M. M. Abreu, S. Peres, M. C. F. Magalhães, S. Leitão, A. S. Pereira, and M. J. Cerejeira. 2017. Potential of Tamarix africana and other halophyte species for phytostabilisation of contaminated salt marsh soils. Journal of Soils and Sediments 17 (5):1459–73. doi: 10.1007/s11368-015-1333-x.
  • Santos-Buelga, C., S. Gonzalez-Manzano, M. Dueñas, and A. M. Gonzalez-Paramas. 2012. Extraction and isolation of phenolic compounds. In Natural products isolation (methods and protocols), ed. S. D. Sarker and L. Nahar, vol. 864, 1st ed., 427–64. Totowa, NJ: Humana Press. doi: 10.1007/978-1-61779-624-1_17.
  • Shabala, S., and R. Munns. 2017. Salinity stress: Physiological constraints and adaptive mechanisms. In Plant stress physiology, ed. S. Shabala, 2nd ed., 24–63. Oxfordshire, UK: CABI. doi: 10.1079/9781780647296.0024.
  • Shahidi, F., and Y. Zhong. 2015. Measurement of antioxidant activity. Journal of Functional Foods 18:757–81. doi: 10.1016/j.jff.2015.01.047.
  • Silva, T., C. Oliveira, and F. Borges. 2014. Caffeic acid derivatives, analogs and applications: A patent review (2009-2013). Expert Opinion on Therapeutic Patents 24 (11):1257–70. doi: 10.1517/13543776.2014.959492.
  • Srinivasulu, C., M. Ramgopal, G. Ramanjaneyulu, C. M. Anuradha, and K. C. Suresh. 2018. Syringic acid (SA) ‒ A review of its occurrence, biosynthesis, pharmacological and industrial Importance. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 108:547–57. doi: 10.1016/j.biopha.2018.09.069.
  • Stanković, M., D. Jakovljević, M. Stojadinov, and Z. D. Stevanović. 2019. Halophyte species as a source of secondary metabolites with antioxidant activity. In Ecophysiology, abiotic stress responses and utilization of halophytes, ed. M. Hasanuzzaman, K. Nahar, and M. Öztürk, 1st ed., 289–312. Singapore, Singapore: Springer. doi: 10.1007/978-981-13-3762-8_14.
  • Stanković, M. S., M. Petrović, D. Godjevac, and Z. D. Stevanović. 2015. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? Journal of Arid Environments 120:26–32. doi: 10.1016/j.jaridenv.2015.04.008.
  • Statista. 2020. Revenue generated by the functional food market worldwide from 2019 to 2025. Accessed September 6, 2020. https://www.statista.com/statistics/252803/global-functional-food-sales/.
  • Sung, J. H., S. H. Park, D. H. Seo, J. H. Lee, S. W. Hong, and S. S. Hong. 2009. Antioxidative and skin-whitening effect of an aqueous extract of Salicornia herbacea. Bioscience, Biotechnology, and Biochemistry 73 (3):552–6. doi: 10.1271/bbb.80601.
  • Surówka, E., D. Latowski, M. Libik-Konieczny, and Z. Miszalski. 2019. ROS signalling, and antioxidant defence network in halophytes. In Halophytes and climate change: Adaptive mechanisms and potential uses, ed. M. Hasanuzzaman, S. Shabala, and M. Fujita, 1st ed., 179–95. Oxfordshire, UK: CABI. doi: 10.1079/9781786394330.0000.
  • Taguri, T., T. Tanaka, and I. Kouno. 2004. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biological and Pharmaceutical Bulletin 27 (12):1965–9. doi: 10.1248/bpb.27.1965.
  • Toma, L., G. M. Sanda, L. S. Niculescu, M. Deleanu, A. V. Sima, and C. S. Stancu. 2020. Phenolic compounds exerting lipid-regulatory, anti-inflammatory and epigenetic effects as complementary treatments in cardiovascular diseases. Biomolecules 10 (4):641. doi: 10.3390/biom10040641.
  • Tong, T., Y.-J. Liu, J. Kang, C.-M. Zhang, and S. G. Kang. 2019. Antioxidant activity and main chemical components of a novel fermented tea. Molecules 24 (16):2917. doi: 10.3390/molecules24162917.
  • Ventura, Y., and M. Sagi. 2013. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany 92:144–53. doi: 10.1016/j.envexpbot.2012.07.010.
  • Waller, U., A. K. Buhmann, A. Ernst, V. Hanke, A. Kulakowski, B. Wecker, J. Orellana, and J. Papenbrock. 2015. Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquaculture International 23 (6):1473–89. doi: 10.1007/s10499-015-9898-3.
  • Watson, R. R., ed. 2019. Polyphenols in plants: Isolation, purification and extract preparation. 2nd ed. London, UK: Academic Press. doi: 10.1016/C2017-0-00209-4.
  • Weir, T. L., S.-W. Park, and J. M. Vivanco. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology 7 (4):472–9. doi: 10.1016/j.pbi.2004.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.