2,349
Views
1
CrossRef citations to date
0
Altmetric
Reviews

New insights into food O/W emulsion gels: Strategies of reinforcing mechanical properties and outlook of being applied to food 3D printing

, , &

References

  • Alavi, F., Z. Emam-Djomeh, M. Salami, and M. Mohammadian. 2020. Effect of microbial transglutaminase on the mechanical properties and microstructure of acid-induced gels and emulsion gels produced from thermal denatured egg white proteins. International Journal of Biological Macromolecules 153:523–32. doi: 10.1016/j.ijbiomac.2020.03.008.
  • Balakrishnan, G., B. T. Nguyen, C. Schmitt, T. Nicolai, and C. Chassenieux. 2017. Heat-set emulsion gels of casein micelles in mixtures with whey protein isolate. Food Hydrocolloids 73:213–21. doi: 10.1016/j.foodhyd.2017.07.005.
  • Bi, C. H., P. L. Wang, D. Y. Sun, Z. M. Yan, Y. Liu, Z. G. Huang, and F. Gao. 2020. Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel. Journal of Food Engineering 277:109923. doi: 10.1016/j.jfoodeng.2020.109923.
  • Bot, A., F. P. Duval, and W. G. Bouwman. 2007. Effect of processing on droplet cluster structure in emulsion gels. Food Hydrocolloids 21 (5–6):844–54. doi: 10.1016/j.foodhyd.2006.09.012.
  • Cao, Y. P., and R. Mezzenga. 2020. Design principles of food gels. Nature Food 1 (2):106–18. doi: 10.1038/s43016-019-0009-x.
  • Chandrajith, V. G. G., D. V. Karunasena, and R. Vithanage. 2019. Applications of microfluidization and high pressure processing in food industry and the effect of them on food products. Food and Nutrition Sciences 10 (04):403–11. doi: 10.4236/fns.2019.104030.
  • Chen, C., M. Zhang, C. F. Guo, and H. Z. Chen. 2021. 4D printing of lotus root powder gel: Color change induced by microwave. Innovative Food Science & Emerging Technologies 68:102605. doi: 10.1016/j.ifset.2021.102605.
  • Chen, H. Q., Y. Lu, F. Yuan, Y. X. Gao, and L. K. Mao. 2021. Effect of interfacial compositions on the physical properties of alginate-based emulsion gels and chemical stability of co-encapsulated bioactives. Food Hydrocolloids 111:106389. doi: 10.1016/j.foodhyd.2020.106389.
  • Chen, H. Q., L. K. Mao, Z. Q. Hou, F. Yuan, and Y. X. Gao. 2020. Roles of additional emulsifiers in the structures of emulsion gels and stability of vitamin E. Food Hydrocolloids 99:105372. doi: 10.1016/j.foodhyd.2019.105372.
  • Chen, J., and E. Dickinson. 1999. Interfacial ageing effect on the rheology of a heat-set protein emulsion gel. Food Hydrocolloids 13 (5):363–9. doi: 10.1016/S0268-005X(99)00021-1.
  • Chen, J. Y., Y. X. Ren, K. S. Zhang, J. P. Qu, F. Y. Hu, and Y. J. Yan. 2019. Phosphorylation modification of myofibrillar proteins by sodium pyrophosphate affects emulsion gel formation and oxidative stability under different pH conditions. Food & Function 10 (10):6568–81. doi: 10.1039/c9fo01397k.
  • Cheng, Y., P. O. Donkor, X. F. Ren, J. Wu, K. Agyemang, L. Ayim, and H. L. Ma. 2019. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocolloids 89:434–42. doi: 10.1016/j.foodhyd.2018.11.007.
  • Chung, H., T. W. Kim, M. Kwon, I. C. Kwon, and S. Y. Jeong. 2001. Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system. Journal of Controlled Release 71 (3):339–50. doi: 10.1016/s0168-3659(00)00363-1.
  • Cura, D. E., M. Lille, R. Partanen, K. Kruus, J. Buchert, and R. Lantto. 2010. Effect of Trichoderma reesei tyrosinase on rheology and microstructure of acidified milk gels. International Dairy Journal 20 (12):830–7. doi: 10.1016/j.idairyj.2010.06.008.
  • Dai, L., C. Sun, Y. Wei, L. Mao, and Y. Gao. 2018. Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocolloids 74:239–48. doi: 10.1016/j.foodhyd.2017.07.040.
  • de Souza Paglarini, C., S. Martini, and M. A. R. Pollonio. 2019. Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters. LWT 99:453–9. doi: 10.1016/j.lwt.2018.10.005.
  • Dickinson, E. 2012. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocolloids 28 (1):224–41. doi: 10.1016/j.foodhyd.2011.12.017.
  • Dickinson, E., and J. S. Chen. 1999. Heat-set whey protein emulsion gels: Role of active and inactive filler particles. Journal of Dispersion Science and Technology 20 (1–2):197–213. doi: 10.1080/01932699908943787.
  • Du, J., H. J. Dai, H. X. Wang, Y. Yu, H. K. Zhu, Y. Fu, L. Ma, L. Peng, L. Li, Q. Wang, et al. 2021. Preparation of high thermal stability gelatin emulsion and its application in 3D printing. Food Hydrocolloids 113:106536. doi: 10.1016/j.foodhyd.2020.106536.
  • Farjami, T., and A. Madadlou. 2019. An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends in Food Science & Technology 86:85–94. doi: 10.1016/j.tifs.2019.02.043.
  • Feng, L. P., X. Jia, Q. M. Zhu, Y. Liu, J. L. Li, and L. J. Yin. 2019. Investigation of the mechanical, rheological and microstructural properties of sugar beet pectin/soy protein isolate-based emulsion-filled gels. Food Hydrocolloids 89:813–20. doi: 10.1016/j.foodhyd.2018.11.039.
  • Fuhrmann, P. L., G. Sala, M. Stieger, and E. Scholten. 2020. Effect of oil droplet inhomogeneity at different length scales on mechanical and sensory properties of emulsion-filled gels: Length scale matters. Food Hydrocolloids 101:105462. doi: 10.1016/j.foodhyd.2019.105462.
  • Geng, M. J., T. Hu, Q. Zhou, A. Taha, L. Qin, W. H. Lv, X. Y. Xu, S. Y. Pan, and H. Hu. 2021. Effects of different nut oils on the structures and properties of gel-like emulsions induced by ultrasound using soy protein as an emulsifier. International Journal of Food Science & Technology 56 (4):1649–60. doi: 10.1111/ijfs.14786.
  • Glusac, J., I. Davidesko-Vardi, S. Isaschar-Ovdat, B. Kukavica, and A. Fishman. 2018. Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins. Food Hydrocolloids 82:53–63. doi: 10.1016/j.foodhyd.2018.03.046.
  • Godoi, F. C., S. Prakash, and B. R. Bhandari. 2016. 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering 179:44–54. doi: 10.1016/j.jfoodeng.2016.01.025.
  • Gu, X., L. J. Campbell, and S. R. Euston. 2009. Effects of different oils on the properties of soy protein isolate emulsions and gels. Food Research International 42 (8):925–32. doi: 10.1016/j.foodres.2009.04.015.
  • Guo, Q., N. Bellissimo, and D. Rousseau. 2017. Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels. Food Hydrocolloids 69:264–72. doi: 10.1016/j.foodhyd.2017.01.037.
  • He, C., M. Zhang, and Z. Fang. 2020. 3D printing of food: Pretreatment and post-treatment of materials. Critical Reviews in Food Science and Nutrition 60 (14):2379–92. doi: 10.1080/10408398.2019.1641065.
  • Hu, S. J., J. H. Wu, B. W. Zhu, M. Du, C. Wu, C. P. Yu, L. Song, and X. B. Xu. 2021. Low oil emulsion gel stabilized by defatted Antarctic krill (Euphausia superba) protein using high-intensity ultrasound. Ultrasonics Sonochemistry 70:105294. doi: 10.1016/j.ultsonch.2020.105294.
  • Huan, S., R. Ajdary, L. Bai, V. Klar, and O. J. Rojas. 2019. Low solids emulsion gels based on nanocellulose for 3D-printing. Biomacromolecules 20 (2):635–44. doi: 10.1021/acs.biomac.8b01224.
  • Ikeda, S., and E. C. Y. Li-Chan. 2004. Raman spectroscopy of heat-induced fine-stranded and particulate β-lactoglobulin gels. Food Hydrocolloids 18 (3):489–98. doi: 10.1016/j.foodhyd.2003.07.003.
  • Ji, L., Y. Xue, T. Zhang, Z. J. Li, and C. H. Xue. 2017. The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein-polysaccharide gels. Food Hydrocolloids 63:77–84. doi: 10.1016/j.foodhyd.2016.08.011.
  • Jiang, H., L. Y. Zheng, Y. H. Zou, Z. B. Tong, S. Y. Han, and S. J. Wang. 2019. 3D food printing: Main components selection by considering rheological properties. Critical Reviews in Food Science and Nutrition 59 (14):2335–47. doi: 10.1080/10408398.2018.1514363.
  • Johannesson, J., J. Khan, M. Hubert, A. Teleki, and C. A. S. Bergstrom. 2021. 3D-printing of solid lipid tablets from emulsion gels. International Journal of Pharmaceutics 597:120304. doi: 10.1016/j.ijpharm.2021.120304.
  • Kerner, E. H. 1956. The elastic and thermo-elastic properties of composite media. Proceedings of the Physical Society Section B 69 (8):808–13. doi: 10.1088/0370-1301/69/8/305.
  • Khalesi, H., W. Lu, K. Nishinari, and Y. P. Fang. 2020. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Advances in Colloid and Interface Science 285:102278. doi: 10.1016/j.cis.2020.102278.
  • Kim, H. W., H. Bae, and H. J. Park. 2018. Reprint of: Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. Journal of Food Engineering 220:28–37. doi: 10.1016/j.jfoodeng.2017.10.023.
  • Liang, X. P., C. C. Ma, X. J. Yan, H. H. Zeng, D. J. McClements, X. B. Liu, and F. G. Liu. 2020. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocolloids 102:105569. doi: 10.1016/j.foodhyd.2019.105569.
  • Li, A. Q., T. Gong, Y. J. Hou, X. Yang, and Y. R. Guo. 2020. Alginate-stabilized thixotropic emulsion gels and their applications in fabrication of low-fat mayonnaise alternatives. International Journal of Biological Macromolecules 146:821–31. doi: 10.1016/j.ijbiomac.2019.10.050.
  • Li, Q., Q. X. He, M. Y. Xu, J. G. Li, X. Liu, Z. L. Wan, and X. Q. Yang. 2020. Food-grade emulsions and emulsion gels prepared by soy protein-pectin complex nanoparticles and glycyrrhizic acid nanofibrils. Journal of Agricultural and Food Chemistry 68 (4):1051–63. doi: 10.1021/acs.jafc.9b04957.
  • Li, S. G., K. P. Wang, Q. Huang, and F. Geng. 2021. Microwave pretreatment enhanced the properties of ovalbumin-inulin-oil emulsion gels and improved the storage stability of pomegranate seed oil. Food Hydrocolloids 113:106548. doi: 10.1016/j.foodhyd.2020.106548.
  • Li, S. N., B. Zhang, C. Li, X. Fu, and Q. Huang. 2020. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chemistry 305:125476. doi: 10.1016/j.foodchem.2019.125476.
  • Li, S. N., B. Zhang, C. P. Tan, C. Li, X. Fu, and Q. Huang. 2019. Octenylsuccinate quinoa starch granule-stabilized Pickering emulsion gels: Preparation, microstructure and gelling mechanism. Food Hydrocolloids 91:40–47. doi: 10.1016/j.foodhyd.2019.01.001.
  • Li, X., X. B. Xu, L. Song, A. Q. Bi, C. Wu, Y. J. Ma, M. Du, and B. W. Zhu. 2020. High internal phase emulsion for food-grade 3D printing materials. ACS Applied Materials & Interfaces 12 (40):45493–45503. doi: 10.1021/acsami.0c11434.
  • Lim, H. P., K. W. Ho, C. K. S. Singh, C. W. Ooi, B. T. Tey, and E. S. Chan. 2020. Pickering emulsion hydrogel as a promising food delivery system: Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocolloids 103:105659. doi: 10.1016/j.foodhyd.2020.105659.
  • Lin, D. Q., A. L. Kelly, V. Maidannyk, and S. Miao. 2021. Effect of structuring emulsion gels by whey or soy protein isolate on the structure, mechanical properties, and in-vitro digestion of alginate-based emulsion gel beads. Food Hydrocolloids 110:106165. doi: 10.1016/j.foodhyd.2020.106165.
  • Lin, D. Q., A. L. Kelly, and S. Miao. 2020. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends in Food Science & Technology 102:123–137. doi: 10.1016/j.tifs.2020.05.024.
  • Lin, D. Q., A. L. Kelly, and S. Miao. 2021. The role of mixing sequence in structuring O/W emulsions and emulsion gels produced by electrostatic protein-polysaccharide interactions between soy protein isolate-coated droplets and alginate molecules. Food Hydrocolloids 113:106537. doi: 10.1016/j.foodhyd.2020.106537.
  • Lin, Q. Q., R. Liang, F. Zhong, A. Q. Ye, and H. Singh. 2021. In vivo oral breakdown properties of whey protein gels containing OSA-modified-starch-stabilized emulsions: Impact of gel structure. Food Hydrocolloids 113:106361. doi: 10.1016/j.foodhyd.2020.106361.
  • Liu, Q., X. Chang, Y. Shan, F. Fu, and S. Ding. 2021. Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles. Journal of the Science of Food and Agriculture 101 (9):3630–3643. doi: 10.1002/jsfa.10992.
  • Liu, Y. W., W. J. Zhang, K. Y. Wang, Y. L. Bao, J. Mac Regenstein, and P. Zhou. 2019. Fabrication of gel-like emulsions with whey protein isolate using microfluidization: Rheological properties and 3D printing performance. Food and Bioprocess Technology 12 (12):1967–1979. doi: 10.1007/s11947-019-02344-5.
  • Liu, Z. B., B. Bhandari, S. Prakash, S. Mantihal, and M. Zhang. 2019. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids 87:413–424. doi: 10.1016/j.foodhyd.2018.08.026.
  • Liu, Z. B., M. Zhang, B. Bhandari, and C. H. Yang. 2018. Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering 220:76–82. doi: 10.1016/j.jfoodeng.2017.04.017.
  • Lu, Y., L. K. Mao, M. N. Cui, F. Yuan, and Y. X. Gao. 2019. Effect of the solid fat content on properties of emulsion gels and stability of β-carotene. Journal of Agricultural and Food Chemistry 67 (23):6466–6475. doi: 10.1021/acs.jafc.9b01156.
  • Lu, Y., L. K. Mao, Z. Q. Hou, S. Miao, and Y. X. Gao. 2019. Development of emulsion gels for the delivery of functional food ingredients: From structure to functionality. Food Engineering Reviews 11 (4):245–258. doi: 10.1007/s12393-019-09194-z.
  • Lu, Y., L. K. Mao, H. X. Zheng, H. Q. Chen, and Y. X. Gao. 2020. Characterization of β-carotene loaded emulsion gels containing denatured and native whey protein. Food Hydrocolloids 102:105600. doi: 10.1016/j.foodhyd.2019.105600.
  • Lu, Y., Y. H. Zhang, F. Yuan, Y. X. Gao, and L. K. Mao. 2021. Emulsion gels with different proteins at the interface: Structures and delivery functionality. Food Hydrocolloids 116:106637. doi: 10.1016/j.foodhyd.2021.106637.
  • Luo, N., A. Q. Ye, F. M. Wolber, and H. Singh. 2020. In-mouth breakdown behaviour and sensory perception of emulsion gels containing active or inactive filler particles loaded with capsaicinoids. Food Hydrocolloids 108:106076. doi: 10.1016/j.foodhyd.2020.106076.
  • Lv, P. F., D. Wang, Y. L. Chen, S. X. Zhu, J. B. Zhang, L. K. Mao, Y. X. Gao, and F. Yuan. 2020. Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan: Fabrication, characterization and encapsulation. Food Hydrocolloids 108:105992. doi: 10.1016/j.foodhyd.2020.105992.
  • Lv, P. F., D. Wang, L. Dai, X. J. Wu, Y. X. Gao, and F. Yuan. 2020. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin. Food Research International (Ottawa, ON) 132:109032–109032. doi: 10.1016/j.foodres.2020.109032.
  • M’Barki, A., L. Bocquet, and A. Stevenson. 2017. Linking rheology and printability for dense and strong ceramics by direct ink writing. Scientific Reports 7 (1):6017. doi: 10.1038/s41598-017-06115-0.
  • Mantelet, M., M. Panouille, F. Boue, V. Bosc, F. Restagno, I. Souchon, and V. Mathieu. 2019. Impact of sol-gel transition on the ultrasonic properties of complex model foods: Application to agar/gelatin gels and emulsion filled gels. Food Hydrocolloids 87:506–518. doi: 10.1016/j.foodhyd.2018.08.021.
  • Mantovani, R. A., A. L. F. Cavallieri, and R. L. Cunha. 2016. Gelation of oil-in-water emulsions stabilized by whey protein. Journal of Food Engineering 175:108–116. doi: 10.1016/j.jfoodeng.2015.12.011.
  • Oliver, L., L. Berndsen, G. A. van Aken, and E. Scholten. 2015. Influence of droplet clustering on the rheological properties of emulsion-filled gels. Food Hydrocolloids 50:74–83. doi: 10.1016/j.foodhyd.2015.04.001.
  • Oliver, L., E. Scholten, and G. A. van Aken. 2015. Effect of fat hardness on large deformation rheology of emulsion-filled gels. Food Hydrocolloids 43:299–310. doi: 10.1016/j.foodhyd.2014.05.031.
  • Paciulli, M., P. Littardi, E. Carini, V. M. Paradiso, M. Castellino, and E. Chiavaro. 2020. Inulin-based emulsion filled gel as fat replacer in shortbread cookies: Effects during storage. LWT 133:109888. doi: 10.1016/j.lwt.2020.109888.
  • Paglarini, C. D., V. A. S. Vidal, S. Martini, R. L. Cunha, and M. A. R. Pollonio. 2020. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Critical Reviews in Food Science and Nutrition 1:1–16. doi: 10.1080/10408398.2020.1825322.
  • Phuhongsung, P., M. Zhang, and S. Devahastin. 2020. Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics. LWT 122:109019. doi: 10.1016/j.lwt.2020.109019.
  • Qayum, A., M. Hussain, M. Li, J. Q. Li, R. J. Shi, T. Q. Li, A. Anwar, Z. Ahmed, J. C. Hou, and Z. M. Jiang. 2021. Gelling, microstructure and water-holding properties of alpha-lactalbumin emulsion gel: Impact of combined ultrasound pretreatment and laccase cross-linking. Food Hydrocolloids 110:106122–106122. doi: 10.1016/j.foodhyd.2020.106122.
  • Qi, J. R., L. W. Song, W. Q. Zeng, and J. S. Liao. 2021. Citrus fiber for the stabilization of O/W emulsion through combination of Pickering effect and fiber-based network. Food Chemistry 343:128523. doi: 10.1016/j.foodchem.2020.128523.
  • Roullet, M., P. S. Clegg, and W. J. Frith. 2020. Rheology of protein-stabilised emulsion gels envisioned as composite networks 1 - Comparison of pure droplet gels and protein gels. Journal of Colloid and Interface Science 579:878–887. doi: 10.1016/j.jcis.2020.05.004.
  • Roullet, M., P. S. Clegg, and W. J. Frith. 2021. Rheology of protein-stabilised emulsion gels envisioned as composite networks. 2 - Framework for the study of emulsion gels. Journal of Colloid and Interface Science 594:92–100. doi: 10.1016/j.jcis.2021.02.088.
  • Sager, V. F., M. B. Munk, M. S. Hansen, W. L. P. Bredie, and L. Ahrné. 2021. Formulation of heat-induced whey protein gels for extrusion-based 3D printing. Foods 10 (8):8. doi: 10.3390/foods10010008.
  • Shahbazi, M., H. Jäger, and R. Ettelaie. 2021a. Application of Pickering emulsions in 3D printing of personalized nutrition. Part I: Development of reduced-fat printable casein-based ink. Colloids and Surfaces A: Physicochemical and Engineering Aspects 622:126641. doi: 10.1016/j.colsurfa.2021.126641.
  • Shahbazi, M., H. Jäger, and R. Ettelaie. 2021b. Application of Pickering emulsions in 3D printing of personalized nutrition. Part II: Functional properties of reduced-fat 3D printed cheese analogues. Colloids and Surfaces A: Physicochemical and Engineering Aspects 624:126760. doi: 10.1016/j.colsurfa.2021.126760.
  • Shahbazi, M., H. Jäger, R. Ettelaie, and J. S. Chen. 2021. Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks. Food Hydrocolloids 120:106967. doi: 10.1016/j.foodhyd.2021.106967.
  • Soumya, B., and B. Suvendu. 2012. Food gels: Gelling process and new applications. Critical Reviews in Food Science and Nutrition 52 (4):334–346. doi: 10.1080/10408398.2010.500234.
  • Su, J. Q., Q. Guo, Y. L. Chen, W. X. Dong, L. K. Mao, Y. X. Gao, and F. Yuan. 2020. Characterization and formation mechanism of lutein Pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids 98:105276. doi: 10.1016/j.foodhyd.2019.105276.
  • Sun, A., and S. Gunasekaran. 2009. Yield stress in foods: Measurements and applications. International Journal of Food Properties 12 (1):70–101. doi: 10.1080/10942910802308502.
  • Sun, C. X., C. X. Wang, Z. Q. Xiong, and Y. P. Fang. 2021. Properties of binary complexes of whey protein fibril and gum arabic and their functions of stabilizing emulsions and simulating mayonnaise. Innovative Food Science & Emerging Technologies 68:102609. doi: 10.1016/j.ifset.2021.102609.
  • Tan, C., S. Pajoumshariati, M. Arshadi, and A. Abbaspourrad. 2019. A simple route to renewable high internal phase emulsions (HIPEs) strengthened by successive cross-linking and electrostatics of polysaccharides. Chemical Communications (Cambridge, England) 55 (9):1225–1228. doi: 10.1039/c8cc09683j.
  • Tang, C. H., L. Chen, and E. A. Foegeding. 2011. Mechanical and water-holding properties and microstructures of soy protein isolate emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and transglutaminase: Influence of thermal treatments before and/or after emulsification. Journal of Agricultural and Food Chemistry 59 (8):4071–4077. doi: 10.1021/jf104834m.
  • Torres, O., B. Murray, and A. Sarkar. 2016. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology 55:98–108. doi: 10.1016/j.tifs.2016.07.006.
  • Torres, O., N. M. Tena, B. Murray, and A. Sarkar. 2017. Novel starch based emulsion gels and emulsion microgel particles: Design, structure and rheology. Carbohydrate Polymers 178:86–94. doi: 10.1016/j.carbpol.2017.09.027.
  • van Aken, G. A., L. Oliver, and E. Scholten. 2015. Rheological effect of particle clustering in gelled dispersions. Food Hydrocolloids 48:102–109. doi: 10.1016/j.foodhyd.2015.02.001.
  • van Vliet, T. 1988. Rheological properties of filled gels. Influence of filler matrix interaction. Colloid and Polymer Science 266 (6):518–524. doi: 10.1007/BF01420762.
  • Vardhanabhuti, B., E. A. Foegeding, M. K. McGuffey, C. R. Daubert, and H. E. Swaisgood. 2001. Gelation properties of dispersions containing polymerized and native whey protein isolate. Food Hydrocolloids 15 (2):165–175. doi: 10.1016/S0268-005X(00)00062-X.
  • Wang, X. Y., and M. C. Heuzey. 2016. Pickering emulsion gels based on insoluble chitosan/gelatin electrostatic complexes. RSC Advances 6 (92):89776–89784. doi: 10.1039/C6RA10378B.
  • Wang, Q. L., J. Jiang, and Y. L. L. Xiong. 2019. Genipin-aided protein cross-linking to modify structural and rheological properties of emulsion-filled hempseed protein hydrogels. Journal of Agricultural and Food Chemistry 67 (46):12895–12903. doi: 10.1021/acs.jafc.9b05665.
  • Wang, Y., D. Li, L. J. Wang, M. Wu, and N. Ozkan. 2011. Rheological study and fractal analysis of flaxseed gum gels. Carbohydrate Polymers 86 (2):594–599. doi: 10.1016/j.carbpol.2011.04.078.
  • Wang, X. F., K. Y. Luo, S. T. Liu, B. Adhikari, and J. Chen. 2019. Improvement of gelation properties of soy protein isolate emulsion induced by calcium cooperated with magnesium. Journal of Food Engineering 244:32–39. doi: 10.1016/j.jfoodeng.2018.09.025.
  • Wang, X. F., K. Y. Luo, S. T. Liu, M. M. Zeng, B. Adhikari, Z. Y. He, and J. Chen. 2018. Textural and rheological properties of soy protein isolate tofu-type emulsion gels: Influence of soybean variety and coagulant type. Food Biophysics 13 (3):324–332. doi: 10.1007/s11483-018-9538-3.
  • Wang, X. Y., J. Wang, D. Rousseau, and C. H. Tang. 2020. Chitosan-stabilized emulsion gels via pH-induced droplet flocculation. Food Hydrocolloids 105:105811. doi: 10.1016/j.foodhyd.2020.105811.
  • Wang, X., Y. L. Xiong, and H. Sato. 2017. Rheological enhancement of pork myofibrillar protein-lipid emulsion composite gels via glucose oxidase oxidation/transglutaminase cross-linking pathway. Journal of Agricultural and Food Chemistry 65 (38):8451–8458. doi: 10.1021/acs.jafc.7b03007.
  • Wang, S. X., Y. M. Zhang, L. Chen, X. L. Xu, G. H. Zhou, Z. X. Li, and X. C. Feng. 2018. Dose-dependent effects of rosmarinic acid on formation of oxidatively stressed myofibrillar protein emulsion gel at different NaCl concentrations. Food Chemistry 243:50–57. doi: 10.1016/j.foodchem.2017.09.114.
  • Wen, Y. X., Q. T. Che, H. W. Kim, and H. J. Park. 2021. Potato starch altered the rheological, printing, and melting properties of 3D-printable fat analogs based on inulin emulsion-filled gels. Carbohydrate Polymers 269:118285. doi: 10.1016/j.carbpol.2021.118285.
  • Wu, C., X. Na, W. Ma, C. Ren, Q. Zhong, T. Wang, and M. Du. 2021. Strong, elastic, and tough high internal phase emulsions stabilized solely by cod myofibers for multidisciplinary applications. Chemical Engineering Journal 412:128724. doi: 10.1016/j.cej.2021.128724.
  • Wu, M. G., Y. L. Xiong, and J. Chen. 2011. Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein-peanut oil emulsion composite gels. Meat Science 88 (3):384–390. doi: 10.1016/j.meatsci.2011.01.014.
  • Xu, Q. Q., B. K. Qi, L. Han, D. Q. Wang, S. Zhang, L. Z. Jiang, F. Y. Xie, and Y. Li. 2021. Study on the gel properties, interactions, and pH stability of pea protein isolate emulsion gels as influenced by inulin. LWT 137:110421. doi: 10.1016/j.lwt.2020.110421.
  • Yang, X., T. Gong, D. Li, A. Q. Li, L. J. Sun, and Y. R. Guo. 2019. Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydrate Polymers 226:115278. doi: 10.1016/j.carbpol.2019.115278.
  • Yang, X., T. Gong, Y. H. Lu, A. Q. Li, L. J. Sun, and Y. R. Guo. 2020. Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydrate Polymers 229:115468. doi: 10.1016/j.carbpol.2019.115468.
  • Yang, X., A. Q. Li, W. Y. Yu, X. X. Li, L. J. Sun, J. Xue, and Y. R. Guo. 2020. Structuring oil-in-water emulsion by forming egg yolk/alginate complexes: Their potential application in fabricating low-fat mayonnaise-like emulsion gels and redispersible solid emulsions. International Journal of Biological Macromolecules 147:595–606. doi: 10.1016/j.ijbiomac.2020.01.106.
  • Yang, F. L., M. Zhang, B. Bhandari, and Y. P. Liu. 2018. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT 87:67–76. doi: 10.1016/j.lwt.2017.08.054.
  • Yan, J., X. P. Liang, C. C. Ma, D. J. McClements, X. B. Liu, and F. G. Liu. 2021. Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocolloids 113:106473. doi: 10.1016/j.foodhyd.2020.106473.
  • Yan, C., D. J. McClements, Y. Q. Zhu, L. Q. Zou, W. Zhou, and W. Liu. 2019. Fabrication of OSA starch/chitosan polysaccharide-based high internal phase emulsion via altering interfacial behaviors. Journal of Agricultural and Food Chemistry 67 (39):10937–10946. doi: 10.1021/acs.jafc.9b04009.
  • Zhang, H. B., F. Zhang, and J. Wu. 2013. Physically crosslinked hydrogels from polysaccharides prepared by freeze-thaw technique. Reactive and Functional Polymers 73 (7):923–928. doi: 10.1016/j.reactfunctpolym.2012.12.014.
  • Zhang, J. Y., J. K. Pandya, D. J. McClements, J. Lu, and A. J. Kinchla. 2021. Advancements in 3D food printing: A comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition :1–18. doi: 10.1080/10408398.2021.1878103. PMC: 33533641.
  • Zhang, M. Q., N. C. Acevedo, and Y. J. Yang. 2020. Effect of oil content and composition on the properties of egg-SPI proteins stabilized emulsion gel. Journal of the American Oil Chemists Society 97:52–52. doi: 10.1007/s11483-020-09646-8.
  • Zhang, Y. J., and P. S. Cremer. 2006. Interactions between macromolecules and ions: The Hofmeister series. Current Opinion in Chemical Biology 10 (6):658–663. doi: 10.1016/j.cbpa.2006.09.020.
  • Zhao, L. L., M. Zhang, B. Chitrakar, and B. Adhikari. 2020. Recent advances in functional 3D printing of foods: A review of functions of ingredients and internal structures. Critical Reviews in Food Science and Nutrition 1:1–15. doi: 10.1080/10408398.2020.1799327.
  • Zhao, Z. L., Q. Wang, B. W. Yan, W. H. Gao, X. D. Jiao, J. L. Huang, J. X. Zhao, H. Zhang, W. Chen, and D. M. Fan. 2021. Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innovative Food Science & Emerging Technologies 67:102546. doi: 10.1016/j.ifset.2020.102546.
  • Zhou, F. Z., X. H. Yu, J. J. Zhu, S. W. Yin, Y. G. Yu, C. H. Tang, and X. Q. Yang. 2020. Hofmeister effect-assistant fabrication of all-natural protein-based porous materials templated from Pickering emulsions. Journal of Agricultural and Food Chemistry 68 (40):11261–11272. doi: 10.1021/acs.jafc.0c01079.
  • Zhu, Y. Q., X. Chen, D. J. McClements, L. Q. Zou, and W. Liu. 2018. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content. Journal of Dispersion Science and Technology 39 (6):826–835. doi: 10.1080/01932691.2017.1398660.
  • Zhu, Y., S. Q. Huan, L. Bai, A. Ketola, X. T. Shi, X. Zhang, J. A. Ketoja, and O. J. Rojas. 2020. High internal phase oil-in-water Pickering emulsions stabilized by chitin nanofibrils: 3D structuring and solid Foam . ACS Applied Materials & Interfaces 12 (9):11240–11251. doi: 10.1021/acsami.9b23430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.