1,402
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Advances and trends in biotechnological production of natural astaxanthin by Phaffia rhodozyma yeast

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aguilar-Machado, D., C. Delso, J. M. Martinez, L. Morales-Oyervides, J. Montañez, and J. Raso. 2020. Enzymatic processes triggered by PEF for astaxanthin extraction from Xanthophyllomyces dendrorhous. Frontiers in Bioengineering and Biotechnology 8:857. doi: 10.3389/fbioe.2020.00857.
  • Amado, I. R., and J. A. Vázquez. 2015. Mussel processing wastewater: A low-cost substrate for the production of astaxanthin by Xanthophyllomyces dendrorhous. Microbial Cell Factories 14 (1):177. doi: 10.1186/s12934-015-0375-5.
  • Ambati, R., S. M. Phang, S. Ravi, and R. Aswathanarayana. 2014. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-a review. Marine Drugs 12 (1):128–52. doi: 10.3390/md12010128.
  • An, G. H., M. H. Cho, and E. A. Johnson. 1999. Monocyclic carotenoid biosynthetic pathway in the yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous). Journal of Bioscience and Bioengineering 88 (2):189–93. doi: 10.1016/S1389-1723(99)80200-X.
  • Andrewes, A. G., H. J. Phaff, and M. P. Starr. 1976. Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15 (6):1003–7. doi: 10.1016/S0031-9422(00)84390-3.
  • Andrewes, A. G., and M. P. Starr. 1976. 3R,3′R)-astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry 15 (6):1009–11. ( doi: 10.1016/S0031-9422(00)84391-5.
  • Angell, A., R. de Nys, A. Mangott, and M. J. Vucko. 2018. The effects of concentration and supplementation time of natural and synthetic sources of astaxanthin on the colouration of the prawn Penaeus monodon. Algal Research 35:577–85. doi: 10.1016/j.algal.2018.09.031.
  • Ao, X., and I. H. Kim. 2019. Effects of astaxanthin produced by Phaffia rhodozyma on growth performance, antioxidant activities, and meat quality in Pekin ducks. Poultry Science 98 (10):4954–60. doi: 10.3382/ps/pez256.
  • Barredo, J., C. García-Estrada, K. Kosalkova, and C. Barreiro. 2017. Biosynthesis of astaxanthin as a main carotenoid in the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous. Journal of Fungi 3:44. doi: 10.3390/jof3030044.
  • Batghare, A. H., N. Singh, and V. S. Moholkar. 2018. Investigations in ultrasound-induced enhancement of astaxanthin production by wild strain Phaffia rhodozyma MTCC 7536. Bioresource Technology 254:166–73. doi: 10.1016/j.biortech.2018.01.073.
  • Bennedsen, M., X. Wang, R. Willén, T. Wadström, and L. P. Andersen. 2000. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunology Letters 70 (3):185–9. doi: 10.1016/S0165-2478(99)00145-5.
  • Bhatt, P. C., M. Ahmad, and B. P. Panda. 2013. Enhanced bioaccumulation of astaxanthin in Phaffia rhodozyma by utilising low-cost agro products as fermentation substrate. Biocatalysis and Agricultural Biotechnology 2 (1):58–63. doi: 10.1016/j.bcab.2012.11.002.
  • Borowitzka, M. A., and A. Vonshak. 2017. Scaling up microalgal cultures to commercial scale. European Journal of Phycology 52 (4):407–18. doi: 10.1080/09670262.2017.1365177.
  • Castro, D., A. S. C. Marques, M. R. Almeida, G. B. de Paiva, H. B. S. Bento, D. B. Pedrolli, M. G. Freire, A. P. M. Tavares, and V. C. Santos-Ebinuma. 2021. L-asparaginase production review: Bioprocess design and biochemical characteristics. Applied Microbiology and Biotechnology 105 (11):4515–34. doi: 10.1007/s00253-021-11359-y.
  • Chemspider. 2021. Accessed July 09, 2021. http://www.chemspider.com/.
  • Cheng, X. Y., Y. J. Xiong, M. M. Yang, and M. J. Zhu. 2019. Preparation of astaxanthin mask from Phaffia rhodozyma and its evaluation. Process Biochemistry 79:195–202. doi: 10.1016/j.procbio.2018.12.027.
  • Chi, S., Y. He, J. Ren, Q. Su, X. Liu, Z. Chen, M. Wang, Y. Li, and J. Li. 2015. Overexpression of a bifunctional enzyme, CrtS, enhances astaxanthin synthesis through two pathways in Phaffia rhodozyma. Microbial Cell Factories 14:90. doi: 10.1186/s12934-015-0279-4.
  • Chichester, C. O. 1967. The biosynthesis of carotenoids. Pure and Applied Chemistry 14 (2):215–26. doi: 10.1351/pac196714020215.
  • de Oliveira, F., P. R. Hirai, M. F. S. Teixeira, J. F. B. Pereira, and V. C. Santos-Ebinuma. 2021. Talaromyces amestolkiae cell disruption and colorant extraction using imidazolium-based ionic liquids. Separation and Purification Technology 257:117759. doi: 10.1016/j.seppur.2020.117759.
  • Demirel, P. B., and B. G. Tuna. 2021. Anticancer properties of astaxanthin: A molecule of great promise. In Global perspectives on astaxanthin, eds G. A. Ravishankar, A. R. Rao, 427–45. Academic Press. doi: 10.1016/B978-0-12-823304-7.00003-9.
  • Donoso, A., J. González-Durán, A. A. Muñoz, P. A. González, and C. Agurto-Muñoz. 2021. Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials. Pharmacological Research 166:105479. doi: 10.1016/j.phrs.2021.105479.
  • Fábryová, T., L. Tůmová, D. C. da Silva, D. M. Pereira, P. B. Andrade, P. Valentão, P. Hrouzek, J. Kopecký, and J. Cheel. 2020. Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC). Algal Research 49:101947. doi: 10.1016/j.algal.2020.101947.
  • Fakhri, S., Z. Nouri, S. Z. Moradi, and M. H. Farzaei. 2020. Astaxanthin, COVID-19 and immune response: Focus on oxidative stress, apoptosis and autophagy. Phytotherapy Research 34 (11):2790–2. doi: 10.1002/ptr.6797.
  • Faraone, I., C. Sinisgalli, A. Ostuni, M. F. Armentano, M. Carmosino, L. Milella, D. Russo, F. Labanca, and H. Khan. 2020. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review. Pharmacological Research 155:104689. doi: 10.1016/j.phrs.2020.104689.
  • FMI. 2021. Astaxanthin. Accessed July 09, 2021. www.futuremarketinsights.com.
  • Gervasi, T., V. Pellizzeri, Q. Benameur, C. Gervasi, A. Santini, N. Cicero, and G. Dugo. 2018. Valorization of raw materials from agricultural industry for astaxanthin and β-carotene production by Xanthophyllomyces dendrorhous. Natural Product Research 32 (13):1554–61. doi: 10.1080/14786419.2017.1385024.
  • Gervasi, T., A. Santini, P. Daliu, A. Z. M. Salem, C. Gervasi, V. Pellizzeri, L. Barrega, P. De Pasquale, G. Dugo, N. Cicero, et al. 2020. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low-cost substrate. Agroforestry Systems 94 (4):1229–34. doi: 10.1007/s10457-018-00344-6.
  • Giannaccare, G., M. Pellegrini, C. Senni, et al. 2020. Clinical applications of astaxanthin in the treatment of ocular diseases: Emerging insights. Marine Drugs 18:239. doi: 10.3390/md18050239.
  • Gong, F., C. Zhang, L. Zhang, and J. Liu. 2020. Changes of carotenoids contents and analysis of astaxanthin geometrical isomerization in Haematococcus pluvialis under outdoor high light conditions. Aquaculture Research 51 (2):770–8. doi: 10.1111/are.14427.
  • Goodwin, T. W. 1992. Biosynthesis of carotenoids: An overview. In The biochemistry of the carotenoids: Volume I Plants, eds T. W. Goodwin, 330–40. Springer. doi: 10.1007/978-94-009-5860-9.
  • GVR. 2021. Astaxanthin market. Accessed July 09, 2021. https://www.grandviewresearch.com/industry-analysis/global-astaxanthin-market.
  • Hara, K. Y., Y. Kageyama, N. Tanzawa, Y. Hirono-Hara, H. Kikukawa, and K. Wakabayashi. 2021. Development of astaxanthin production from citrus peel extract using Xanthophyllomyces dendrorhous. Environmental Science and Pollution Research International 28 (10):12640–7. doi: 10.1007/s11356-020-11163-7.
  • Harith, Z. T., M. de Andrade Lima, D. Charalampopoulos, and A. Chatzifragkou. 2020. Optimised production and extraction of astaxanthin from the yeast Xanthophyllomyces dendrorhous. Microorganisms 8:430. doi: 10.3390/microorganisms8030430.
  • Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis. Bioresource Technology 55 (3):207–14. doi: 10.1016/0960-8524(95)00002-X.
  • Hasan, M., M. Azhar, H. Nangia, P. C. Bhatt, and B. P. Panda. 2016. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells. Preparative Biochemistry & Biotechnology 46 (2):116–22. doi: 10.1080/10826068.2014.995807.
  • Hu, Z.-C., Y.-G. Zheng, Z. Wang, and Y.-C. Shen. 2007. Production of astaxanthin by Xanthophyllomyces dendrorhous ZJUT46 with fed-batch fermentation in 2.0 M3 fermentor. Food Technology and Biotechnology 45:209–12.
  • Industryexperts. 2020. Global astaxanthin market – Sources, technologies and applications. Accessed 09 July, 2021. https://industry-experts.com/verticals/healthcare-and-pharma/global-astaxanthin-market-sources-technologies-and-applications.
  • Jackson, H., C. L. Braun, and H. Ernst. 2008. The chemistry of novel xanthophyll carotenoids. The American Journal of Cardiology 101 (10A):50D–7D. doi: 10.1016/j.amjcard.2008.02.008.
  • Jeong, T. H., Y. S. Cho, S.-S. Choi, K.-D. Kim, and H. K. Lim. 2018. Enhanced production of astaxanthin by metabolically engineered non-mevalonate pathway in Escherichia coli. Microbiology and Biotechnology Letters 46 (2):114–9. doi: 10.4014/mbl.1801.01007.
  • Jiang, G. L., L. Y. Zhou, Y. T. Wang, and M. J. Zhu. 2017. Astaxanthin from Jerusalem artichoke: Production by fed-batch fermentation using Phaffia rhodozyma and application in cosmetics. Process Biochemistry 63:16–25. doi: 10.1016/j.procbio.2017.08.013.
  • Kim, H. Y., Y. M. Kim, and S. Hong. 2019. Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a. Scientific Reports 9 (1):9457. doi: 10.1038/s41598-019-45924-3.
  • Kim, J. H., S. W. Kang, S. W. Kim, and H. I. Chang. 2005. High-level production of astaxanthin by xanthophyllomyces dendrorhous mutant JH1 using statistical experimental designs. Bioscience, Biotechnology, and Biochemistry 69 (9):1743–8. doi: 10.1271/bbb.69.1743.
  • Kollár, R., B. B. Reinhold, E. Petráková, H. J. Yeh, G. Ashwell, J. Drgonová, J. C. Kapteyn, F. M. Klis, and E. Cabib. 1997. Architecture of the yeast cell wall. Beta(1->6)-glucan interconnects mannoprotein, beta(1->)3-glucan, and chitin. The Journal of Biological Chemistry 272 (28):17762–75. doi: 10.1074/jbc.272.28.17762.
  • Li, S., X. Ren, Y. Wang, J. Hu, H. Wu, S. Song, and C. Yan. 2020. Fucoxanthin alleviates palmitate-induced inflammation in RAW 264.7 cells through improving lipid metabolism and attenuating mitochondrial dysfunction. Food & Function 11 (4):3361–70. doi: 10.1039/D0FO00442A.
  • Libkind, D., M. Moliné, and F. Colabella. 2018. Isolation and selection of new astaxanthin-producing strains of Phaffia rhodozyma. Methods in Molecular Biology 1852:297–310. doi: 10.1007/978-1-4939-8742-9_18.
  • Liu, H., L. Meihong, F. Xueqi, et al. 2018. Astaxanthin prevents alcoholic fatty liver disease by modulating mouse gut microbiota. Nutrients 10 (9):1298. doi: 10.3390/nu10091298.
  • Liu, Y. S., and J. Y. Wu. 2006. Use of n-hexadecane as an oxygen vector to improve Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Journal of Applied Microbiology 101 (5):1033–8. doi: 10.1111/j.1365-2672.2006.03009.x.
  • Liu, Z. Q., J. F. Zhang, Y. G. Zheng, and Y. C. Shen. 2008. Improvement of astaxanthin production by a newly isolated Phaffia rhodozyma mutant with low-energy ion beam implantation. Journal of Applied Microbiology 104 (3):861–72. doi: 10.1111/j.1365-2672.2007.03603.x.
  • Lorenz, R. T., and G. R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18 (4):160–7. doi: 10.1016/S0167-7799(00)01433-5.
  • Montanti, J., N. P. Nghiem, and D. B. Johnston. 2011. Production of astaxanthin from cellulosic biomass sugars by mutants of the yeast Phaffia rhodozyma. Applied Biochemistry and Biotechnology 164 (5):655–65. doi: 10.1007/s12010-011-9165-7.
  • Muhammad, G., M. A. Alam, W. Xiong, Y. Lv, J. L. Xu. 2020. Microalgae biomass production: An overview of dynamic operational methods. In Microalgae biotechnology for food, Health and High Value Products, eds M. Alam, J. L. Xu, Z. Wang, 415–32. Springer. doi: 10.1007/978-981-15-0169-2_13.
  • Mussagy, C., S. Khan, and A. M. Kot. 2021. Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Critical Reviews in Food Science and Nutrition :1–15. doi: 10.1080/10408398.2021.1908222.
  • Mussagy, C., J. Winterburn, V. C. Santos-Ebinuma, and J. F. B. Pereira. 2019. Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology 103 (3):1095–114. doi: 10.1007/s00253-018-9557-5.
  • Mussagy, C. U., D. Remonatto, A. V. Paula, R. D. Herculano, V. C. Santos-Ebinuma, J. A. P. Coutinho, and J. F. B. Pereira. 2021. Selective recovery and purification of carotenoids and fatty acids from Rhodotorula glutinis using mixtures of biosolvents. Separation and Purification Technology 266:118548. doi: 10.1016/j.seppur.2021.118548.
  • Mussagy, C. U., V. C. Santos-Ebinuma, K. A. Kurnia, A. C. R. V. Dias, P. Carvalho, J. A. P. Coutinho, and J. F. B. Pereira. 2020. Integrative platform for the selective recovery of intracellular carotenoids and lipids from: Rhodotorula glutinis CCT-2186 yeast using mixtures of bio-based solvents. Green Chemistry 22 (23):8478–94. doi: 10.1039/D0GC02992K.
  • Mussagy, C. U., V. C. Santos-Ebinuma, M. Gonzalez-Miquel, J. A. P. Coutinho, and J. F. B. Pereira. 2019. Protic ionic liquids as cell-disrupting agents for the recovery of intracellular carotenoids from yeast Rhodotorula glutinis CCT-2186. ACS Sustainable Chemistry & Engineering 7 (19):16765–76. doi: 10.1021/acssuschemeng.9b04247.
  • Ni, H., G.-q. He, H. Ruan, Q.-h. Chen, and F. Chen. 2005. Application of derivative ratio spectrophotometry for determination of β-carotene and astaxanthin from Phaffia rhodozyma extract. Journal of Zhejiang University. Science. B 6 (6):514–22. doi: 10.1631/jzus.2005.B0514.
  • Ni, H., Q.-h. Chen, H. Ruan, Y.-f. Yang, L.-j. Li, G.-b. Wu, Y. Hu, and G.-q. He. 2007. Studies on optimization of nitrogen sources for astaxanthin production by Phaffia rhodozyma. Journal of Zhejiang University. Science. B 8 (5):365–70. doi: 10.1631/jzus.2007.B0365.
  • Novoveská, L., M. E. Ross, M. S. Stanley, et al. 2019. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs 17 (11):640. doi: 10.3390/md17110640.
  • Panis, G., and J. R. Carreon. 2016. Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research 18:175–90. doi: 10.1016/j.algal.2016.06.007.
  • Parajó, J. C., V. Santos, and M. Vázquez. 1998. Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochemistry 33 (2):181–7. doi: 10.1016/S0032-9592(97)00045-9.
  • Schewe, H., A. Kreutzer, I. Schmidt, C. Schubert, and J. Schrader. 2017. High concentrations of biotechnologically produced astaxanthin by lowering pH in a Phaffia rhodozyma bioprocess. Biotechnology and Bioprocess Engineering 22 (3):319–26. doi: 10.1007/s12257-016-0349-4.
  • Schlegel, H. G. 1977. Aeration without air: Oxygen supply by hydrogen peroxide. Biotechnology and Bioengineering 19 (3):413–24. doi: 10.1002/bit.260190311.
  • Schmidt, I., H. Schewe, S. Gassel, C. Jin, J. Buckingham, M. Hümbelin, G. Sandmann, and J. Schrader. 2011. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Applied Microbiology and Biotechnology 89 (3):555–71. doi: 10.1007/s00253-010-2976-6.
  • Seifried, H. E., D. E. Anderson, E. I. Fisher, and J. A. Milner. 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of Nutritional Biochemistry 18 (9):567–79. doi: 10.1016/j.jnutbio.2006.10.007.
  • Shimidzu, N., M. Goto, and W. Miki. 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science 62:134–7.
  • Stoklosa, R. J., D. B. Johnston, and N. P. Nghiem. 2019. Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet sorghum for astaxanthin generation. Process Biochemistry 83:9–17. doi: 10.1016/j.procbio.2019.04.005.
  • Storebakken, T., M. Sørensen, B. Bjerkeng, J. Harris, P. Monahan, and S. Hiu. 2004. Stability of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, during feed processing: Effects of enzymatic cell wall disruption and extrusion temperature. Aquaculture 231 (1-4):489–500. doi: 10.1016/j.aquaculture.2003.10.034.
  • Sun, S. Q., Y. X. Zhao, S. Y. Li, et al. 2020. Anti-Tumor effects of astaxanthin by inhibition of the expression of STAT3 in prostate cancer. Marine Drugs 18:415. doi: 10.3390/md18080415.
  • Sztretye, M., B. Dienes, M. Gönczi, T. Czirják, L. Csernoch, L. Dux, P. Szentesi, and A. Keller-Pintér. 2019. Astaxanthin: A potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxidative Medicine and Cellular Longevity 2019:3849692. doi: 10.1155/2019/3849692.
  • Teo, I., C. Chui, J. Tang, F. Lau, G. Cheng, R. Wong, S. Kok, C. Cheng, A. Chan, K. Ho, et al. 2005. Antiproliferation and induction of cell death of Phaffia rhodozyma (Xanthophyllomyces dendrorhous) extract fermented by brewer malt waste on breast cancer cells. International Journal of Molecular Medicine. 16 (5):931–936. doi: 10.3892/ijmm.16.5.931.
  • Tominaga, K., N. Hongo, M. Fujishita, Y. Takahashi, and Y. Adachi. 2017. Protective effects of astaxanthin on skin deterioration. Journal of Clinical Biochemistry and Nutrition 61 (1):33–9. doi: 10.3164/jcbn.17-35.
  • Urnau, L., R. Colet, V. F. Soares, E. Franceschi, E. Valduga, and C. Steffens. 2018. Extraction of carotenoids from Xanthophyllomyces dendrorhous using ultrasound-assisted and chemical cell disruption methods. The Canadian Journal of Chemical Engineering 96 (6):1377–81. doi: 10.1002/cjce.23046.
  • Vázquez, M., V. Santos, and J. C. Parajó. 1997. Effect of the carbon source on the carotenoid profiles of Phaffia rhodozyma strains. Journal of Industrial Microbiology & Biotechnology 19 (4):263–8. doi: 10.1038/sj.jim.2900376.
  • Villegas-Méndez, M. Á., A. Papadaki, C. Pateraki, N. Balagurusamy, J. Montañez, A. A. Koutinas, and L. Morales-Oyervides. 2021. Fed-batch bioprocess development for astaxanthin production by Xanthophyllomyces dendrorhous based on the utilization of Prosopis sp. pods extract. Biochemical Engineering Journal 166:107844. doi: 10.1016/j.bej.2020.107844.
  • Visioli, F., and C. Artaria. 2017. Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food & Function 8 (1):39–63. doi: 10.1039/C6FO01721E.
  • Wu, W., M. Lu, and L. Yu. 2010. Citrus residues isolates improve astaxanthin production by Xanthophyllomyces dendrorhous. Zeitschrift fur Naturforschung. C, Journal of Biosciences 65 (9-10):594–8. doi: 10.1515/znc-2010-9-1010.
  • Yamane, Y., K. Higashida, Y. Nakashimada, T. Kakizono, and N. Nishio. 1997. Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: Kinetic and stoichiometric analysis. Applied and Environmental Microbiology 63 (11):4471–8. doi: 10.1128/aem.63.11.4471-4478.1997.
  • Ye, L., W. Xie, P. Zhou, and H. Yu. 2015. Biotechnological production of astaxanthin through metabolic engineering of yeasts. ChemBioEng Reviews 2 (2):107–17. doi: 10.1002/cben.201400023.
  • Yu, W., and J. Liu. 2020. Astaxanthin isomers: Selective distribution and isomerization in aquatic animals. Aquaculture 520:734915. doi: 10.1016/j.aquaculture.2019.734915.
  • Yuan, J. P., and F. Chen. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food Chemistry 68 (4):443–8. doi: 10.1016/S0308-8146(99)00219-8.
  • Zhang, J., Q. Li, J. Liu, Y. Lu, Y. Wang, and Y. Wang. 2020. Astaxanthin overproduction and proteomic analysis of Phaffia rhodozyma under the oxidative stress induced by TiO2. Bioresource Technology 311:123525. doi: 10.1016/j.biortech.2020.123525.
  • Zhao, T., X. Yan, L. Sun, T. Yang, X. Hu, Z. He, F. Liu, and X. Liu. 2019. Research progress on extraction, biological activities and delivery systems of natural astaxanthin. Trends in Food Science and Technology 91:354–61. doi: 10.1016/j.tifs.2019.07.014.
  • Zheng, Y. G., Z. C. Hu, Z. Wang, and Y. C. Shen. 2006. Large-Scale production of astaxanthin by Xanthophyllomyces dendrorhous. Food and Bioproducts Processing 84 (2):164–6. doi: 10.1205/fbp.05030.
  • Zhuang, Y., G. L. Jiang, and M. J. Zhu. 2020. Atmospheric and room temperature plasma mutagenesis and astaxanthin production from sugarcane bagasse hydrolysate by Phaffia rhodozyma mutant Y1. Process Biochemistry 91:330–8. doi: 10.1016/j.procbio.2020.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.