3,876
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Citrus polyphenols and risk of type 2 diabetes: Evidence from mechanistic studies

&

References

  • Abad-García, B., S. Garmón-Lobato, L. A. Berrueta, B. Gallo, and F. Vicente. 2012. On line characterization of 58 phenolic compounds in citrus fruit juices from Spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry. Talanta 99:213–24. doi: 10.1016/j.talanta.2012.05.042.
  • Abbas, M., F. Saeed, F. M. Anjum, M. Afzaal, T. Tufail, M. S. Bashir, A. Ishtiaq, S. Hussain, and H. A. R. Suleria. 2017. Natural polyphenols: An overview. International Journal of Food Properties 20 (8):1689–99. doi: 10.1080/10942912.2016.1220393.
  • Actis-Goretta, L., T. P. Dew, A. Lévèques, G. Pereira-Caro, M. Rein, A. Teml, C. Schäfer, U. Hofmann, M. Schwab, M. Eichelbaum, et al. 2015. Gastrointestinal absorption and metabolism of hesperetin-7-O-rutinoside and hesperetin-7-O-glucoside in healthy humans. Molecular Nutrition & Food Research 59 (9):1651–62. doi: 10.1002/mnfr.201500202.
  • Ahmed, O. M., M. A. Hassan, S. M. Abdel-Twab, and M. N. Abdel Azeem. 2017. Navel orange peel hydroethanolic extract, naringin and naringenin have anti-diabetic potentials in type 2 diabetic rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 94:197–205. doi: 10.1016/j.biopha.2017.07.094.
  • Aja, P. M., F. I. Izekwe, A. C. Famurewa, E. U. Ekpono, F. E. Nwite, I. O. Igwenyi, J. N. Awoke, O. G. Ani, C. Aloke, N. A. Obasi, et al. 2020. Hesperidin protects against cadmium-induced pancreatitis by modulating insulin secretion, redox imbalance and inos/nf-ĸb signaling in rats. Life Sciences 259:118268. doi: 10.1016/j.lfs.2020.118268.
  • Akiyama, S., S. I. Katsumata, K. Suzuki, Y. Ishimi, J. Wu, and M. Uehara. 2010. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. Journal of Clinical Biochemistry and Nutrition 46 (1):87–92. doi: 10.3164/jcbn.09-82.
  • Akiyama, S., S.-I. Katsumata, K. Suzuki, Y. Nakaya, Y. Ishimi, and M. Uehara. 2009. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in goto-kakizaki rats with type 2 diabetes. Bioscience, Biotechnology, and Biochemistry 73 (12):2779–82. doi: 10.1271/bbb.90576.
  • Alam, M. A., N. Subhan, M. M. Rahman, S. J. Uddin, H. M. Reza, and S. D. Sarker. 2014. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Advances in Nutrition (Bethesda, Md.) 5 (4):404–17. doi: 10.3945/an.113.005603.
  • Ali, M. Y., S. Zaib, M. M. Rahman, S. Jannat, J. Iqbal, S. K. Park, and M. S. Chang. 2019. Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of pi3k/akt signaling pathway in insulin-resistant hepg2 cells. Chemico-Biological Interactions 305:180–94. doi: 10.1016/j.cbi.2019.03.018.
  • Allister, E. M., N. M. Borradaile, J. Y. Edwards, and M. W. Huff. 2005. Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein b100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes 54 (6):1676–83. doi: 10.2337/diabetes.54.6.1676.
  • Alu’datt, M. H., T. Rababah, M. N. Alhamad, M. A. Al-Mahasneh, K. Ereifej, G. Al-Karaki, M. Al-Duais, J. E. Andrade, C. C. Tranchant, S. Kubow, et al. 2017. Profiles of free and bound phenolics extracted from citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food & Function 8 (9):3187–97. doi: 10.1039/C7FO00212B.
  • Annadurai, T., A. R. Muralidharan, T. Joseph, M. J. Hsu, P. A. Thomas, and P. Geraldine. 2012. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. Journal of Physiology and Biochemistry 68 (3):307–18. doi: 10.1007/s13105-011-0142-y.
  • Aronoff, S. L., K. Berkowitz, B. Shreiner, and L. Want. 2004. Glucose metabolism and regulation: Beyond insulin and glucagon. Diabetes Spectrum 17 (3):183–90. doi: 10.2337/diaspect.17.3.183.
  • Aschoff, J. K., S. Kaufmann, O. Kalkan, S. Neidhart, R. Carle, and R. M. Schweiggert. 2015. In vitro bioaccessibility of carotenoids, flavonoids, and vitamin c from differently processed oranges and orange juices [Citrus sinensis (l.) Osbeck]. Journal of Agricultural and Food Chemistry 63 (2):578–87. doi: 10.1021/jf505297t.
  • Ballistreri, G., S. Fabroni, F. V. Romeo, N. Timpanaro, M. Amenta, and P. Rapisarda. 2019. Anthocyanins and other polyphenols in citrus genus: Biosynthesis, chemical profile, and biological activity. In Polyphenols in plants, ed. R. R. Watson, 2nd Edition, 191–215. London: Academic Press. doi: 10.1016/B978-0-12-813768-0.00014-1.
  • Bhattacharya, S., N. Oksbjerg, J. F. Young, and P. B. Jeppesen. 2014. Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in ins-1e cells. Diabetes, Obesity & Metabolism 16 (7):602–12. doi: 10.1111/dom.12236.
  • Bhupathiraju, S. N., D. K. Tobias, V. S. Malik, A. Pan, A. Hruby, J. E. Manson, W. C. Willett, and F. B. Hu. 2014. Glycemic index, glycemic load, and risk of type 2 diabetes: Results from 3 large us cohorts and an updated meta-analysis. The American Journal of Clinical Nutrition 100 (1):218–32. doi: 10.3945/ajcn.113.079533.
  • Borges, G., M. E. J. Lean, S. A. Roberts, and A. Crozier. 2013. Bioavailability of dietary (poly)phenols: A study with ileostomists to discriminate between absorption in small and large intestine. Food & Function 4 (5):754–62. doi: 10.1039/c3fo60024f.
  • Borges, G., W. Mullen, A. Mullan, M. E. J. Lean, S. A. Roberts, and A. Crozier. 2010. Bioavailability of multiple components following acute ingestion of a polyphenol-rich juice drink. Molecular Nutrition & Food Research 54 (S2):S268–S77. doi: 10.1002/mnfr.200900611.
  • Borradaile, N. M., L. E. de Dreu, and M. W. Huff. 2003. Inhibition of net hepg2 cell apolipoprotein b secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 52 (10):2554–61. doi: 10.2337/diabetes.52.10.2554.
  • Brett, G. M., W. Hollands, P. W. Needs, B. Teucher, J. R. Dainty, B. D. Davis, J. S. Brodbelt, and P. A. Kroon. 2009. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. British Journal of Nutrition 101 (5):664–75. doi: 10.1017/S000711450803081X.
  • Butterworth, P. J., F. J. Warren, and P. R. Ellis. 2011. Human α-amylase and starch digestion: An interesting marriage. Starch - Stärke 63 (7):395–405. doi: 10.1002/star.201000150.
  • Cantley, J., and F. M. Ashcroft. 2015. Q&A: Insulin secretion and type 2 diabetes: why do β-cells fail?BMC Biology 13 (1):33. doi: 10.1186/s12915-015-0140-6.
  • Cao, H., J. Ou, L. Chen, Y. Zhang, T. Szkudelski, D. Delmas, M. Daglia, and J. Xiao. 2019. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Critical Reviews in Food Science and Nutrition 59 (20):3371–9. doi: 10.1080/10408398.2018.1492900.
  • Cao, R., Y. Zhao, Z. Zhou, and X. Zhao. 2018. Enhancement of the water solubility and antioxidant activity of hesperidin by chitooligosaccharide. Journal of the Science of Food and Agriculture 98 (6):2422–7. doi: 10.1002/jsfa.8734.
  • Casacchia, T., M. A. Occhiuzzi, F. Grande, B. Rizzuti, M. C. Granieri, C. Rocca, A. Gattuso, A. Garofalo, T. Angelone, and G. Statti. 2019. A pilot study on the nutraceutical properties of the citrus hybrid tacle® as a dietary source of polyphenols for supplementation in metabolic disorders. Journal of Functional Foods 52:370–81. doi: 10.1016/j.jff.2018.11.030.
  • Cerletti, C., F. Gianfagna, C. Tamburrelli, A. De Curtis, M. D’Imperio, W. Coletta, L. Giordano, R. Lorenzet, P. Rapisarda, G. Reforgiato Recupero, et al. 2015. Orange juice intake during a fatty meal consumption reduces the postprandial low-grade inflammatory response in healthy subjects. Thrombosis Research 135 (2):255–9. doi: 10.1016/j.thromres.2014.11.038.
  • Chadt, A., and H. Al-Hasani. 2020. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Archiv: European Journal of Physiology 472 (9):1273–98. doi: 10.1007/s00424-020-02417-x.
  • Chudnovskiy, R., A. Thompson, K. Tharp, M. Hellerstein, J. L. Napoli, and A. Stahl. 2014. Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice. Ed. Makoto Makishima. PLoS One 9 (10):e108408. doi: 10.1371/journal.pone.0108408.
  • Claussnitzer, M., T. Skurk, H. Hauner, H. Daniel, and M. J. Rist. 2011. Effect of flavonoids on basal and insulin-stimulated 2-deoxyglucose uptake in adipocytes. Molecular Nutrition & Food Research 55 (S1):S26–S34. doi: 10.1002/mnfr.201000372.
  • Constantin, R. P., R. P. Constantin, A. Bracht, N. S. Yamamoto, E. L. Ishii-Iwamoto, and J. Constantin. 2014. Molecular mechanisms of citrus flavanones on hepatic gluconeogenesis. Fitoterapia 92:148–62. doi: 10.1016/j.fitote.2013.11.003.
  • Coughlan, K., R. Valentine, N. Ruderman, and A. Saha. 2014. AMPK activation: A therapeutic target for type 2 diabetes?Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 7:241–53. doi: 10.2147/DMSO.S43731.
  • Deacon, C. F. 2019. Physiology and pharmacology of dpp-4 in glucose homeostasis and the treatment of type 2 diabetes. Frontiers in Endocrinology 10:80. doi: 10.3389/fendo.2019.00080.
  • De Ancos, B., A. Cilla, R. Barberá, C. Sánchez-Moreno, and M. P. Cano. 2017. Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chemistry 225:114–24. doi: 10.1016/j.foodchem.2016.12.098.
  • de la Garza, A. L., U. Etxeberria, M. P. Lostao, B. San Román, J. Barrenetxe, J. A. Martínez, and F. I. Milagro. 2013. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats. Journal of Agricultural and Food Chemistry 61 (49):12012–9. doi: 10.1021/jf4021569.
  • de Paiva, A., D. Gonçalves, P. Ferreira, E. Baldwin, and T. Cesar. 2019. Postprandial effect of fresh and processed orange juice on the glucose metabolism, antioxidant activity and prospective food intake. Journal of Functional Foods 52:302–9. doi: 10.1016/j.jff.2018.11.013.
  • Díaz-García, M. C., J. M. Obón, M. R. Castellar, J. Collado, and M. Alacid. 2013. Quantification by UHPLC of total individual polyphenols in fruit juices. Food Chemistry 138 (2-3):938–49. doi: 10.1016/j.foodchem.2012.11.061.
  • do Nascimento, G. S., R. P. Constantin, E. H. Gilglioni, C. V. de Castro Ghizoni, A. Bracht, K. S. Utsunomiya, N. S. Yamamoto, E. L. Ishii-Iwamoto, J. Constantin, and R. P. Constantin. 2018. The acute effects of citrus flavanones on the metabolism of glycogen and monosaccharides in the isolated perfused rat liver. Toxicology Letters 291:158–72. doi: 10.1016/j.toxlet.2018.04.001.
  • Domínguez-Avila, J. A., A. Wall-Medrano, G. R. Velderrain-Rodríguez, C.-Y. O. Chen, N. J. Salazar-López, M. Robles-Sánchez, and G. A. González-Aguilar. 2017. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food & Function 8 (1):15–38. doi: 10.1039/C6FO01475E.
  • Dong, H., C. Rendeiro, A. Kristek, L. J. Sargent, C. Saunders, L. Harkness, I. Rowland, K. G. Jackson, J. P. E. P. Spencer, and J. A. Lovegrove. 2016. Addition of orange pomace to orange juice attenuates the increases in peak glucose and insulin concentrations after sequential meal ingestion in men with elevated cardiometabolic risk. The Journal of Nutrition 146 (6):1197–203. doi: 10.3945/jn.115.226001.
  • Erlund, I., E. Meririnne, G. Alfthan, and A. Aro. 2001. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. The Journal of Nutrition 131 (2):235–41. doi: 10.1093/jn/131.2.235.
  • Fallico, B., G. Ballistreri, E. Arena, S. Brighina, and P. Rapisarda. 2017. Bioactive compounds in blood oranges (Citrus sinensis (l.) Osbeck): Level and intake. Food Chemistry 215:67–75. doi: 10.1016/j.foodchem.2016.07.142.
  • Fan, J., M. H. Johnson, M. A. Lila, G. Yousef, and E. G. de Mejia. 2013. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase iv: Implications in diabetes management. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:479505–13. doi: 10.1155/2013/479505.
  • Fei, Q., Y. Gao, X. Zhang, Y. Sun, B. Hu, L. Zhou, S. Jabbar, and X. Zeng. 2014. Effects of Oolong tea polyphenols, EGCG, and EGCG3″me on pancreatic α-amylase activity in vitro. Journal of Agricultural and Food Chemistry 62 (39):9507–14. doi: 10.1021/jf5032907.
  • Frankenberg, A. D v., A. F. Reis, and F. Gerchman. 2017. Relationships between adiponectin levels, the metabolic syndrome, and type 2 diabetes: A literature review. Archives of Endocrinology and Metabolism 61 (6):614–22. doi: 10.1590/2359-3997000000316.
  • Fu, Z., E. R. Gilbert, and D. Liu. 2012. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Current Diabetes Reviews 9 (1):25–53. doi: 10.2174/15733998130104.
  • Fujioka, K., F. Greenway, J. Sheard, and Y. Ying. 2006. The effects of grapefruit on weight and insulin resistance: Relationship to the metabolic syndrome. Journal of Medicinal Food 9 (1):49–54. doi: 10.1089/jmf.2006.9.49.
  • Gamo, K., H. Miyachi, K. Nakamura, and N. Matsuura. 2014. Hesperetin glucuronides induce adipocyte differentiation via activation and expression of peroxisome proliferator-activated receptor-γ. Bioscience, Biotechnology, and Biochemistry 78 (6):1052–9. doi: 10.1080/09168451.2014.910097.
  • Gao, Z., W. Gao, S.-L. Zeng, P. Li, and E.-H. Liu. 2018. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. Journal of Functional Foods 40:498–509. doi: 10.1016/j.jff.2017.11.036.
  • Gattuso, G., D. Barreca, C. Gargiulli, U. Leuzzi, and C. Caristi. 2007. Flavonoid composition of citrus juices. Molecules (Basel, Switzerland) 12 (8):1641–73. doi: 10.3390/12081641.
  • Gee, J., and I. Johnson. 2001. Polyphenolic compounds: Interactions with the gut and implications for human health. Current Medicinal Chemistry 8 (11):1245–55. doi: 10.2174/0929867013372256.
  • Gil-Izquierdo, A., M. I. Gil, F. Ferreres, and F. A. Tomás-Barberán. 2001. In vitro availability of flavonoids and other phenolics in orange juice. Journal of Agricultural and Food Chemistry 49 (2):1035–41. doi: 10.1021/jf0000528.
  • Gong, Y., X.-Y. Qin, Y.-Y. Zhai, H. Hao, J. Lee, and Y.-D. Park. 2017. Inhibitory effect of hesperetin on α-glucosidase: Molecular dynamics simulation integrating inhibition kinetics. International Journal of Biological Macromolecules 101:32–9. doi: 10.1016/j.ijbiomac.2017.03.072.
  • Goodman, B. E. 2010. Insights into digestion and absorption of major nutrients in humans. Advances in Physiology Education 34 (2):44–53. doi: 10.1152/advan.00094.2009.
  • Greenwood, D. C., D. E. Threapleton, C. E. L. Evans, C. L. Cleghorn, C. Nykjaer, C. Woodhead, and V. J. Burley. 2013. Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: Systematic review and dose-response meta-analysis of prospective studies. Diabetes Care 36 (12):4166–71. doi: 10.2337/dc13-0325.
  • Guo, J., H. Tao, Y. Cao, C.-T. Ho, S. Jin, and Q. Huang. 2016. Prevention of obesity and type 2 diabetes with aged citrus peel (Chenpi) extract. Journal of Agricultural and Food Chemistry 64 (10):2053–61. doi: 10.1021/acs.jafc.5b06157.
  • Gupta, A., G. A. Jacobson, J. R. Burgess, H. F. Jelinek, D. S. Nichols, C. K. Narkowicz, and H. A. Al-Aubaidy. 2018. Citrus bioflavonoids dipeptidyl peptidase-4 inhibition compared with gliptin antidiabetic medications. Biochemical and Biophysical Research Communications 503 (1):21–5. doi: 10.1016/j.bbrc.2018.04.156.
  • Hardy, O. T., M. P. Czech, and S. Corvera. 2012. What causes the insulin resistance underlying obesity?Current Opinion in Endocrinology, Diabetes, and Obesity 19 (2):81–7. doi: 10.1097/MED.0b013e3283514e13.
  • Harmon, A. W., and Y. M. Patel. 2003. Naringenin inhibits phosphoinositide 3-kinase activity and glucose uptake in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications 305 (2):229–34. doi: 10.1016/S0006-291X(03)00720-4.
  • Hayanga, J. A., S. P. Ngubane, A. N. Murunga, and P. M. O. Owira. 2016. Grapefruit juice improves glucose intolerance in streptozotocin-induced diabetes by suppressing hepatic gluconeogenesis. European Journal of Nutrition 55 (2):631–8. doi: 10.1007/s00394-015-0883-4.
  • Horiba, T., I. Nishimura, Y. Nakai, K. Abe, and R. Sato. 2010. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Molecular and Cellular Endocrinology 323 (2):208–14. doi: 10.1016/j.mce.2010.03.020.
  • Huang, X., G. Liu, J. Guo, and Z. Su. 2018. The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences 14 (11):1483–96. doi: 10.7150/ijbs.27173.
  • Hwang, J.-T., H. J. Yang, K.-C. Ha, B.-O. So, E.-K. Choi, and S.-W. Chae. 2015. A randomized, double-blind, placebo-controlled clinical trial to investigate the anti-diabetic effect of Citrus junos Tanaka peel. Journal of Functional Foods 18:532–7. doi: 10.1016/j.jff.2015.08.019.
  • Johnston, K., P. Sharp, M. Clifford, and L. Morgan. 2005. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Letters 579 (7):1653–7. doi: 10.1016/j.febslet.2004.12.099.
  • Jones, A. G., and A. T. Hattersley. 2013. The clinical utility of c-peptide measurement in the care of patients with diabetes. Diabetic Medicine: A Journal of the British Diabetic Association 30 (7):803–17. doi: 10.1111/dme.12159.
  • Jung, U. J., M.-K. Lee, K.-S. Jeong, and M.-S. Choi. 2004. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. The Journal of Nutrition 134 (10):2499–503. doi: 10.1093/jn/134.10.2499.
  • Jung, U. J., M.-K. Lee, Y. B. Park, M. A. Kang, and M.-S. Choi. 2006. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. The International Journal of Biochemistry & Cell Biology 38 (7):1134–45. doi: 10.1016/j.biocel.2005.12.002.
  • Kalt, W., A. Cassidy, L. R. Howard, R. Krikorian, A. J. Stull, F. Tremblay, and R. Zamora-Ros. 2020. Recent research on the health benefits of blueberries and their anthocyanins. Advances in Nutrition (Bethesda, Md.) 11 (2):224–36. doi: 10.1093/advances/nmz065.
  • Kanda, K., K. Nishi, A. Kadota, S. Nishimoto, M. C. Liu, and T. Sugahara. 2012. Nobiletin suppresses adipocyte differentiation of 3T3-L1 cells by an insulin and ibmx mixture induction. Biochimica et Biophysica Acta 1820 (4):461–8. doi: 10.1016/j.bbagen.2011.11.015.
  • Kannappan, S., and C. V. Anuradha. 2010. Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. European Journal of Nutrition 49 (2):101–9. doi: 10.1007/s00394-009-0054-6.
  • Kelebek, H., S. Selli, A. Canbas, and T. Cabaroglu. 2009. HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Microchemical Journal 91 (2):187–92. doi: 10.1016/j.microc.2008.10.008.
  • Kerimi, A., J. S. Gauer, S. Crabbe, J. W. Cheah, J. Lau, R. Walsh, P. F. Cancalon, and G. Williamson. 2019. Effect of the flavonoid hesperidin on glucose and fructose transport, sucrase activity and glycaemic response to orange juice in a crossover trial on healthy volunteers. The British Journal of Nutrition 121 (7):782–92. doi: 10.1017/S0007114519000084.
  • Kerimi, A., H. Nyambe-Silavwe, A. Pyner, E. Oladele, J. S. Gauer, Y. Stevens, and G. Williamson. 2019. Nutritional implications of olives and sugar: Attenuation of post-prandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein. European Journal of Nutrition 58 (3):1315–6. doi: 10.1007/s00394-018-1662-9.
  • Khan, M. K., Zill-E-Huma, and O. Dangles. 2014. A comprehensive review on flavanones, the major citrus polyphenols. Journal of Food Composition and Analysis 33 (1):85–104. doi: 10.1016/j.jfca.2013.11.004.
  • Kim, G.-N., J.-G. Shin, and H.-D. Jang. 2009. Antioxidant and antidiabetic activity of dangyuja (Citrus grandis Osbeck) extract treated with aspergillus saitoi. Food Chemistry 117 (1):35–41. doi: 10.1016/j.foodchem.2009.03.072.
  • Kim, H.-i., and Y.-h. Ahn. 2004. Role of peroxisome proliferator-activated receptor- in the glucose-sensing apparatus of liver and -cells. Diabetes 53 (Supplement 1):S60–S65. doi: 10.2337/diabetes.53.2007.S60.
  • Kim, M. S., H. J. Hur, D. Y. Kwon, and J.-T. Hwang. 2012. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Molecular and Cellular Endocrinology 358 (1):127–34. doi: 10.1016/j.mce.2012.03.013.
  • Kocot, J., P. Dziemidok, M. Kiełczykowska, A. Hordyjewska, G. Szcześniak, and I. Musik. 2017. Adipokine profile in patients with type 2 diabetes depends on degree of obesity. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 23:4995–5004. doi: 10.12659/MSM.904318.
  • Kunimasa, K., S. Kuranuki, N. Matsuura, N. Iwasaki, M. Ikeda, A. Ito, Y. Sashida, Y. Mimaki, M. Yano, M. Sato, et al. 2009. Identification of nobiletin, a polymethoxyflavonoid, as an enhancer of adiponectin secretion. Bioorganic & Medicinal Chemistry Letters 19 (7):2062–4. doi: 10.1016/j.bmcl.2009.02.002.
  • Kwon, O., P. Eck, S. Chen, C. P. Corpe, J. Lee, M. Kruhlak, and M. Levine. 2007. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 21 (2):366–77. doi: 10.1096/fj.06-6620com.
  • Lee, Y.-S., B.-Y. Cha, K. Saito, H. Yamakawa, S.-S. Choi, K. Yamaguchi, T. Yonezawa, T. Teruya, K. Nagai, and J.-T. Woo. 2010. Nobiletin improves hyperglycemia and insulin resistance in obese diabetic ob/ob mice. Biochemical Pharmacology 79 (11):1674–83. doi: 10.1016/j.bcp.2010.01.034.
  • Li, J. M., C. T. Che, C. B. S. Lau, P. S. Leung, and C. H. K. Cheng. 2006. Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin. The International Journal of Biochemistry & Cell Biology 38 (5-6):985–95. doi: 10.1016/j.biocel.2005.10.002.
  • Li, R. W., A. G. Theriault, K. Au, T. D. Douglas, A. Casaschi, E. M. Kurowska, and R. Mukherjee. 2006. Citrus polymethoxylated flavones improve lipid and glucose homeostasis and modulate adipocytokines in fructose-induced insulin resistant hamsters. Life Sciences 79 (4):365–73. doi: 10.1016/j.lfs.2006.01.023.
  • Li, S., Y. Zhang, Y. Sun, G. Zhang, J. Bai, J. Guo, X. Su, H. Du, X. Cao, J. Yang, et al. 2019. Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutrition & Diabetes 9 (1):28. doi: 10.1038/s41387-019-0095-8.
  • Lim, S., K. Soh, and U. Kuppusamy. 2008. Effects of naringenin on lipogenesis, lipolysis and glucose uptake in rat adipocyte primary culture: A natural antidiabetic agent. The Internet Journal of Alternative Medicine 5 (2):1–5. doi: 10.5580/22f3.
  • Lin, A. H.-M., B.-H. Lee, and W.-J. Chang. 2016. Small intestine mucosal α-glucosidase: A missing feature of in vitro starch digestibility. Food Hydrocolloids. 53:163–71. doi: 10.1016/j.foodhyd.2015.03.002.
  • Liu, L., S. Shan, K. Zhang, Z.-Q. Ning, X.-P. Lu, and Y.-Y. Cheng. 2008. Naringenin and hesperetin, two flavonoids derived from citrus aurantium up-regulate transcription of adiponectin. Phytotherapy Research: PTR 22 (10):1400–3. doi: 10.1002/ptr.2504.
  • Livesey, G., R. Taylor, T. Hulshof, and J. Howlett. 2008. Glycemic response and health - A systematic review and meta-analysis: Relations between dietary glycemic properties and health outcomes. American Journal of Clinical Nutrition. 87:258S–268S. doi: 10.1093/ajcn/87.1.258s.
  • Livesey, G., R. Taylor, H. F. Livesey, A. E. Buyken, D. J. A. Jenkins, L. S. A. Augustin, J. L. Sievenpiper, A. W. Barclay, S. Liu, T. M. S. Wolever, et al. 2019. Dietary glycemic index and load and the risk of type 2 diabetes: Assessment of causal relations. Nutrients 11 (6):1436. doi: 10.3390/nu11061436.
  • Lo Piparo, E., H. Scheib, N. Frei, G. Williamson, M. Grigorov, and C. J. Chou. 2008. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human alpha-amylase. Journal of Medicinal Chemistry 51 (12):3555–61. doi: 10.1021/jm800115x.
  • Manzano, S., and G. Williamson. 2010. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells. Molecular Nutrition & Food Research 54 (12):1773–80. doi: 10.1002/mnfr.201000019.
  • Mayneris-Perxachs, J., J. M. Alcaide-Hidalgo, E. de la Hera, J. M. del Bas, L. Arola, and A. Caimari. 2019. Supplementation with biscuits enriched with hesperidin and naringenin is associated with an improvement of the metabolic syndrome induced by a cafeteria diet in rats. Journal of Functional Foods 61:103504. doi: 10.1016/j.jff.2019.103504.
  • Menichini, F., M. R. Loizzo, M. Bonesi, F. Conforti, D. De Luca, G. A. Statti, B. de Cindio, F. Menichini, and R. Tundis. 2011. Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica l. cv diamante flowers, leaves and fruits at two maturity stages. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 49 (7):1549–55. doi: 10.1016/j.fct.2011.03.048.
  • Miyata, Y., H. Tanaka, A. Shimada, T. Sato, A. Ito, T. Yamanouchi, and H. Kosano. 2011. Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sciences 88 (13-14):613–8. doi: 10.1016/j.lfs.2011.01.024.
  • Mulvihill, E. E., E. M. Allister, B. G. Sutherland, D. E. Telford, C. G. Sawyez, J. Y. Edwards, J. M. Markle, R. A. Hegele, and M. W. Huff. 2009. Naringenin prevents dyslipidemia, apolipoprotein b overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58 (10):2198–210. doi: 10.2337/db09-0634.
  • Mulvihill, E. E., J. M. Assini, J. K. Lee, E. M. Allister, B. G. Sutherland, J. B. Koppes, C. G. Sawyez, J. Y. Edwards, D. E. Telford, A. Charbonneau, et al. 2011. Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes 60 (5):1446–57. doi: 10.2337/db10-0589.
  • Murugesan, N., K. Woodard, R. Ramaraju, F. L. Greenway, A. A. Coulter, and C. J. Rebello. 2020. Naringenin increases insulin sensitivity and metabolic rate: A case study. Journal of Medicinal Food 23 (3):343–8. doi: 10.1089/jmf.2019.0216.
  • Nguyen, T. T. H., S.-H. Yu, J. Kim, E. An, K. Hwang, J.-S. Park, and D. Kim. 2015. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties. Functional Foods in Health and Disease 5 (12):437. doi: 10.31989/ffhd.v5i12.221.
  • Nguyen‐Ngo, C., J. C. Willcox, and M. Lappas. 2019. Anti-diabetic, anti-inflammatory, and anti-oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Molecular Nutrition & Food Research 63 (19):e1900224. doi: 10.1002/mnfr.201900224.
  • Nomura, M., T. Takahashi, N. Nagata, K. Tsutsumi, S. Kobayashi, T. Akiba, K. Yokogawa, S. Moritani, and K. Miyamoto. 2008. Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biological & Pharmaceutical Bulletin 31 (7):1403–9. doi: 10.1248/bpb.31.1403.
  • Nyambe-Silavwe, H., J. A. Villa-Rodriguez, I. Ifie, M. Holmes, E. Aydin, J. M. Jensen, and G. Williamson. 2015. Inhibition of human α-amylase by dietary polyphenols. Journal of Functional Foods 19:723–32. doi: 10.1016/j.jff.2015.10.003.
  • O’Neil, C. E., T. A. Nicklas, G. C. Rampersaud, and V. L. Fulgoni. III. 2012. 100% orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults: National health and nutrition examination survey, 2003-2006. Nutrition Journal 11 (1):107. doi: 10.1186/1475-2891-11-107.
  • Oboh, G., and A. O. Ademosun. 2011. Shaddock peels (Citrus maxima) phenolic extracts inhibit α-amylase, α-glucosidase and angiotensin i-converting enzyme activities: A nutraceutical approach to diabetes management. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 5 (3):148–52. doi: 10.1016/j.dsx.2012.02.008.
  • Okabe, Y., T. Shimada, T. Horikawa, K. Kinoshita, K. Koyama, K. Ichinose, M. Aburada, and K. Takahashi. 2014. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 21 (6):800–6. doi: 10.1016/j.phymed.2014.01.014.
  • Onda, K., N. Horike, T. Suzuki, and T. Hirano. 2013. Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes. Phytotherapy Research: PTR 27 (2):312–6. doi: 10.1002/ptr.4730.
  • Ortiz-Andrade, R. R., J. C. Sánchez-Salgado, G. Navarrete-Vázquez, S. P. Webster, M. Binnie, S. García-Jiménez, I. León-Rivera, P. Cigarroa-Vázquez, R. Villalobos-Molina, and S. Estrada-Soto. 2008. Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes, Obesity and Metabolism 10 (11):1097–104. doi: 10.1111/j.1463-1326.2008.00869.x.
  • Owira, P. M. O., and J. A. O. Ojewole. 2009. Grapefruit juice improves glycemic control but exacerbates metformin-induced lactic acidosis in non-diabetic rats. Methods and Findings in Experimental and Clinical Pharmacology 31 (9):563–70. doi: 10.1358/mf.2009.31.9.1435463.
  • Park, H.-J., U. J. Jung, S.-J. Cho, H.-K. Jung, S. Shim, and M.-S. Choi. 2013. Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. The Journal of Nutritional Biochemistry 24 (2):419–27. doi: 10.1016/j.jnutbio.2011.12.009.
  • Park, J. B. 1999. Flavonoids are potential inhibitors of glucose uptake in U937 cells. Biochemical and Biophysical Research Communications 260 (2):568–74. doi: 10.1006/bbrc.1999.0890.
  • Parmar, H. S., P. Jain, D. S. Chauhan, M. K. Bhinchar, V. Munjal, M. Yusuf, K. Choube, A. Tawani, V. Tiwari, E. Manivannan, et al. 2012. DPP-iv inhibitory potential of naringin: An in silico, in vitro and in vivo study. Diabetes Research and Clinical Practice 97 (1):105–11. doi: 10.1016/j.diabres.2012.02.011.
  • Pereira-Caro, G., G. Borges, I. Ky, A. Ribas, L. Calani, D. Del Rio, M. N. Clifford, S. A. Roberts, and A. Crozier. 2015. In vitro colonic catabolism of orange juice (poly)phenols. Molecular Nutrition & Food Research 59 (3):465–75. doi: 10.1002/mnfr.201400779.
  • Pereira-Caro, G., G. Borges, J. van der Hooft, M. N. Clifford, D. Del Rio, M. E. J. Lean, S. A. Roberts, M. B. Kellerhals, and A. Crozier. 2014. Orange juice (poly)phenols are highly bioavailable in humans. The American Journal of Clinical Nutrition 100 (5):1378–84. doi: 10.3945/ajcn.114.090282.
  • Pereira-Caro, G., I. A. Ludwig, T. Polyviou, D. Malkova, A. García, J. M. Moreno-Rojas, and A. Crozier. 2016. Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: Analysis by high-performance liquid chromatography-high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry 64 (28):5724–35. doi: 10.1021/acs.jafc.6b02088.
  • Petersen, M. C., D. F. Vatner, and G. I. Shulman. 2017. Regulation of hepatic glucose metabolism in health and disease. Nature Reviews. Endocrinology 13 (10):572–87. doi: 10.1038/nrendo.2017.80.
  • Ponce, O., R. Benassi, and T. Cesar. 2019. Orange juice associated with a balanced diet mitigated risk factors of metabolic syndrome: A randomized controlled trial. Journal of Nutrition & Intermediary Metabolism 17 (May):100101. doi: 10.1016/j.jnim.2019.100101.
  • Priscilla, D. H., D. Roy, A. Suresh, V. Kumar, and K. Thirumurugan. 2014. Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chemico-Biological Interactions 210 (1):77–85. doi: 10.1016/j.cbi.2013.12.014.
  • Proença, C., M. Freitas, D. Ribeiro, S. M. Tomé, A. N. Araújo, A. M. S. Silva, P. A. Fernandes, and E. Fernandes. 2019. The dipeptidyl peptidase-4 inhibitory effect of flavonoids is hindered in protein rich environments. Food & Function 10 (9):5718–31. doi: 10.1039/C9FO00722A.
  • Pu, P., D.-M. Gao, S. Mohamed, J. Chen, J. Zhang, X.-Y. Zhou, N.-J. Zhou, J. Xie, and H. Jiang. 2012. Naringin ameliorates metabolic syndrome by activating amp-activated protein kinase in mice fed a high-fat diet. Archives of Biochemistry and Biophysics 518 (1):61–70. doi: 10.1016/j.abb.2011.11.026.
  • Purushotham, A., M. Tian, and M. A. Belury. 2009. The citrus fruit flavonoid naringenin suppresses hepatic glucose production from fao hepatoma cells. Molecular Nutrition & Food Research 53 (2):300–7. doi: 10.1002/mnfr.200700514.
  • Pyner, A., H. Nyambe-Silavwe, and G. Williamson. 2017. Inhibition of human and rat sucrase and maltase activities to assess antiglycemic potential: Optimization of the assay using acarbose and polyphenols. Journal of Agricultural and Food Chemistry 65 (39):8643–51. doi: 10.1021/acs.jafc.7b03678.
  • Rampersaud, G. C., and M. F. Valim. 2017. 100% citrus juice: Nutritional contribution, dietary benefits, and association with anthropometric measures. Critical Reviews in Food Science and Nutrition 57 (1):129–40. doi: 10.1080/10408398.2013.862611.
  • Rasouli, H., S. M.-B. Hosseini-Ghazvini, H. Adibi, and R. Khodarahmi. 2017. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food & Function 8 (5):1942–54. doi: 10.1039/C7FO00220C.
  • Razavi, B. M., and H. Hosseinzadeh. 2019. A review of the effects of Citrus paradisi (grapefruit) and its flavonoids, naringin, and naringenin in metabolic syndrome. In Bioactive food as dietary interventions for diabetes, ed. R. R. Watson and V. R. Preedy, 515–43. London: Academic Press. doi: 10.1016/B978-0-12-813822-9.00034-5.
  • Rebello, C. J., F. L. Greenway, F. H. Lau, Y. Lin, J. M. Stephens, W. D. Johnson, and A. A. Coulter. 2019. Naringenin promotes thermogenic gene expression in human white adipose tissue. Obesity 27 (1):103–11. doi: 10.1002/oby.22352.
  • Ren, B., W. Qin, F. Wu, S. Wang, C. Pan, L. Wang, B. Zeng, S. Ma, and J. Liang. 2016. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. European Journal of Pharmacology 773:13–23. doi: 10.1016/j.ejphar.2016.01.002.
  • Richard, A. J., Z. Amini-Vaughan, D. M. Ribnicky, and J. M. Stephens. 2013. Naringenin inhibits adipogenesis and reduces insulin sensitivity and adiponectin expression in adipocytes. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:549750–10. doi: 10.1155/2013/549750.
  • Rines, A. K., K. Sharabi, C. D. J. Tavares, and P. Puigserver. 2016. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nature Reviews. Drug Discovery 15 (11):786–804. doi: 10.1038/nrd.2016.151.
  • Röder, P. V., B. Wu, Y. Liu, and W. Han. 2016. Pancreatic regulation of glucose homeostasis. Experimental & Molecular Medicine 48:e219. doi: 10.1038/emm.2016.6.
  • Saito, T., D. Abe, and K. Sekiya. 2007. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications 357 (2):371–6. doi: 10.1016/j.bbrc.2007.03.169.
  • Sathiyabama, R. G., G. Rajiv Gandhi, M. Denadai, G. Sridharan, G. Jothi, P. Sasikumar, J. d. S. Siqueira Quintans, N. Narain, L. E. Cuevas, et al. 2018. Evidence of insulin-dependent signalling mechanisms produced by Citrus sinensis (l.) Osbeck fruit peel in an insulin resistant diabetic animal model. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 116 (Pt B):86–99. doi: 10.1016/j.fct.2018.03.050.
  • Sayem, A., A. Arya, H. Karimian, N. Krishnasamy, A. Ashok Hasamnis, and C. Hossain. 2018. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules 23 (2):258. doi: 10.3390/molecules23020258.
  • Schulze, C., A. Bangert, G. Kottra, K. E. Geillinger, B. Schwanck, H. Vollert, W. Blaschek, and H. Daniel. 2014. Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols from apple reduces postprandial blood glucose levels in mice and humans. Molecular Nutrition & Food Research 58 (9):1795–808. doi: 10.1002/mnfr.201400016.
  • Sdiri, S., A. Bermejo, P. Aleza, P. Navarro, and A. Salvador. 2012. Phenolic composition, organic acids, sugars, vitamin c and antioxidant activity in the juice of two new triploid late-season mandarins. Food Research International 49 (1):462–8. doi: 10.1016/j.foodres.2012.07.040.
  • Shahidi, F., and H. Peng. 2018. Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives 4:11–68. doi: 10.31665/JFB.2018.4162.
  • Sharabi, K., C. D. J. Tavares, A. K. Rines, and P. Puigserver. 2015. Molecular pathophysiology of hepatic glucose production. Molecular Aspects of Medicine 46:21–33. doi: 10.1016/j.mam.2015.09.003.
  • Shen, W., Y. Xu, and Y.-H. Lu. 2012. Inhibitory effects of citrus flavonoids on starch digestion and antihyperglycemic effects in HepG2 cells. Journal of Agricultural and Food Chemistry 60 (38):9609–19. doi: 10.1021/jf3032556.
  • Smith, U., and B. B. Kahn. 2016. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. Journal of Internal Medicine 280 (5):465–75. doi: 10.1111/joim.12540.
  • Sun, L., and M. Miao. 2020. Dietary polyphenols modulate starch digestion and glycaemic level: A review. Critical Reviews in Food Science and Nutrition 60 (4):541–55. doi: 10.1080/10408398.2018.1544883.
  • Sun, Y., W. Tao, H. Huang, X. Ye, and P. Sun. 2019. Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chemistry 279:321–7. doi: 10.1016/j.foodchem.2018.12.019.
  • Sundaram, R., P. Shanthi, and P. Sachdanandam. 2014. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 21 (6):793–9. doi: 10.1016/j.phymed.2014.01.007.
  • Tadera, K., Y. Minami, K. Takamatsu, and T. Matsuoka. 2006. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. Journal of Nutritional Science and Vitaminology 52 (2):149–53. doi: 10.3177/jnsv.52.149.
  • Tomás-Navarro, M., F. Vallejo, E. Sentandreu, J. L. Navarro, and F. A. Tomás-Barberán. 2014. Volunteer stratification is more relevant than technological treatment in orange juice flavanone bioavailability. Journal of Agricultural and Food Chemistry 62 (1):24–7. doi: 10.1021/jf4048989.
  • Tomás-Navarro, M., F. Vallejo, and F. A. Tomás-Barberán. 2014. Bioavailability and metabolism of citrus fruit beverage flavanones in humans. In Polyphenols in human health and disease, vol. 1, 537–51. Academic Press, London Ronald R.Watson, Victor R. Preedy and Sherma Zibadi, eds. doi: 10.1016/B978-0-12-398456-2.00040-2.
  • Tommasini, S., M. L. Calabrò, R. Stancanelli, P. Donato, C. Costa, S. Catania, V. Villari, P. Ficarra, and R. Ficarra. 2005. The inclusion complexes of hesperetin and its 7-rhamnoglucoside with (2-hydroxypropyl)-beta-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis 39 (3-4):572–80. doi: 10.1016/j.jpba.2005.05.009.
  • Tripoli, E., M. L. Guardia, S. Giammanco, D. D. Majo, and M. Giammanco. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry 104 (2):466–79. doi: 10.1016/j.foodchem.2006.11.054.
  • Turner, T., and B. Burri. 2013. Potential nutritional benefits of current citrus consumption. Agriculture 3 (1):170–87. doi: 10.3390/agriculture3010170.
  • Tweedle, D., and P. Nightingale. 1989. Anesthesia and gastrointestinal surgery. Acta Chirurgica Scandinavica. Supplementum 550:131–9.
  • Uddin, N., M. R. Hasan, M. M. Hossain, A. Sarker, A. H. M. N. Hasan, A. F. M. M. Islam, M. M. H. Chowdhury, M. S. Rana, A. H. M. Nazmul Hasan, A. F. M. Mahmudul Islam, et al. 2014. In vitro α–amylase inhibitory activity and in vivo hypoglycemic effect of methanol extract of Citrus macroptera Montr. fruit. Asian Pacific Journal of Tropical Biomedicine 4 (6):473–9. doi: 10.12980/APJTB.4.2014C1173.
  • Vallejo, F., M. Larrosa, E. Escudero, M. P. Zafrilla, B. Cerdá, J. Boza, M. T. García-Conesa, J. C. Espín, and F. A. Tomás-Barberán. 2010. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. Journal of Agricultural and Food Chemistry 58 (10):6516–24. doi: 10.1021/jf100752j.
  • Vidal-Puig, A. J., R. V. Considine, M. Jimenez-Liñan, A. Werman, W. J. Pories, J. F. Caro, and J. S. Flier. 1997. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. Journal of Clinical Investigation 99 (10):2416–22. doi: 10.1172/JCI119424.
  • Villa-Rodriguez, J. A., E. Aydin, J. S. Gauer, A. Pyner, G. Williamson, and A. Kerimi. 2017. Green and chamomile teas, but not acarbose, attenuate glucose and fructose transport via inhibition of GLUT2 and GLUT5. Molecular Nutrition & Food Research 61 (12):1700566. doi: 10.1002/mnfr.201700566.
  • Visvanathan, R., M. J. Houghton, and G. Williamson. 2021. Maltoheptaoside hydrolysis with chromatographic detection and starch hydrolysis with reducing sugar analysis: Comparison of assays allows assessment of the roles of direct α-amylase inhibition and starch complexation. Food Chemistry 343:128423. doi: 10.1016/j.foodchem.2020.128423.
  • Visvanathan, R., C. Jayathilake, R. Liyanage, and R. Sivakanesan. 2019. Applicability and reliability of the glucose oxidase method in assessing α-amylase activity. Food Chemistry 275:265–72. doi: 10.1016/j.foodchem.2018.09.114.
  • WHO. 2016. Global report on diabetes. World Health Organization. Geneva, Switzerland: WHO Press.
  • Williamson, G. 2013. Possible effects of dietary polyphenols on sugar absorption and digestion. Molecular Nutrition & Food Research 57 (1):48–57. doi: 10.1002/mnfr.201200511.
  • Williamson, G. 2017. The role of polyphenols in modern nutrition. Nutrition Bulletin 42 (3):226–35. doi: 10.1111/nbu.12278.
  • Williamson, G., C. D. Kay, and A. Crozier. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety 17 (5):1054–112. doi: 10.1111/1541-4337.12351.
  • Wu, S., and L. Tian. 2017. Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (punica granatum). Molecules (Basel, Switzerland) 22 (10):1606. doi: 10.3390/molecules22101606.
  • Xing, B., F. Yang, and X. Wu. 2016. Naringenin enhances the efficacy of human embryonic stem cell-derived pancreatic endoderm in treating gestational diabetes mellitus mice. Journal of Pharmacological Sciences 131 (2):93–100. doi: 10.1016/j.jphs.2016.04.014.
  • Yang, H., and L. Yang. 2016. Targeting camp/pka pathway for glycemic control and type 2 diabetes therapy. Journal of Molecular Endocrinology 57 (2):R93–108. doi: 10.1530/JME-15-0316.
  • Yang, Y., J. Wolfram, K. Boom, X. Fang, H. Shen, and M. Ferrari. 2013. Hesperetin impairs glucose uptake and inhibits proliferation of breast cancer cells. Cell Biochemistry and Function 31 (5):374–9. doi: 10.1002/cbf.2905.
  • Yoshida, H., W. Watanabe, H. Oomagari, E. Tsuruta, M. Shida, and M. Kurokawa. 2013. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. The Journal of Nutritional Biochemistry 24 (7):1276–84. doi: 10.1016/j.jnutbio.2012.10.003.
  • Zhao, C., C. Zhao, and H. Zhao. 2020. Defective insulin receptor signaling in patients with gestational diabetes is related to dysregulated miR-140 which can be improved by naringenin. The International Journal of Biochemistry & Cell Biology 128:105824. doi: 10.1016/j.biocel.2020.105824. PMC: 32814161.
  • Zheng, M., S. Lu, and J. Xing. 2021. Enhanced antioxidant, anti-inflammatory and α-glucosidase inhibitory activities of citrus hesperidin by acid-catalyzed hydrolysis. Food Chemistry 336:127539. doi: 10.1016/j.foodchem.2020.127539.
  • Zygmunt, K., B. Faubert, J. MacNeil, and E. Tsiani. 2010. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochemical and Biophysical Research Communications 398 (2):178–83. doi: 10.1016/j.bbrc.2010.06.048.