5,004
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Target-based screening for natural products against Staphylococcus aureus biofilms

, , &

References

  • Ali, S. S., M. S. Moawad, M. A. Hussein, M. Azab, E. A. Abdelkarim, A. Badr, J. Sun, and M. Khalil. 2021. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets. International Journal of Food Microbiology 344:109116. doi: 10.1016/j.ijfoodmicro.2021.109116.
  • Alonso, V. P. P., A. M. M. Harada, and D. Y. Kabuki. 2020. Competitive and/or Cooperative interactions of Listeria monocytogenes with Bacillus cereus in dual-Species Biofilm formation. Frontiers in Microbiology 11:177. doi: 10.3389/fmicb.2020.00177.
  • Alonso, V. P. P., and D. Y. Kabuki. 2019. Formation and dispersal of biofilms in dairy substrates. International Journal of Dairy Technology 72 (3):472–8. doi: 10.1111/1471-0307.12587.
  • Al-Shabib, N. A., F. M. Husain, I. Ahmad, and M. H. Baig. 2017a. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnology & Biotechnological Equipment 31 (2):387–96. doi: 10.1080/13102818.2017.1281761.
  • Al-Shabib, N. A., F. M. Husain, I. Ahmad, M. S. Khan, R. A. Khan, and J. M. Khan. 2017b. Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control 79:325–32. doi: 10.1016/j.foodcont.2017.03.004.
  • Archer, N. K., M. J. Mazaitis, J. W. Costerton, J. G. Leid, M. E. Powers, and M. E. Shirtliff. 2011. Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence 2 (5):445–59. doi: 10.4161/viru.2.5.17724.
  • Arciola, C. R., D. Campoccia, P. Speziale, L. Montanaro, and J. W. Costerton. 2012. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33 (26):5967–82. doi: 10.1016/j.biomaterials.2012.05.031.
  • Avila-Novoa, M. G., M. Iñíguez-Moreno, O. A. Solís-Velázquez, J. P. González-Gómez, P. J. Guerrero-Medina, and M. Gutiérrez-Lomelí. 2018. Biofilm Formation by Staphylococcus aureus isolated from food contact surfaces in the dairy industry of Jalisco. Journal of Food Quality 2018:1–8. doi: 10.1155/2018/1746139.
  • Basanisi, M. G., G. La Bella, G. Nobili, I. Franconieri, and G. La Salandra. 2017. Genotyping of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and dairy products in South Italy. Food Microbiology 62:141–6. doi: 10.1016/j.fm.2016.10.020.
  • Bazargani, M. M., and J. Rohloff. 2016. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156–64. doi: 10.1016/j.foodcont.2015.09.036.
  • Boles, B. R., and A. R. Horswill. 2008. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens 4 (4):e1000052. doi: 10.1371/journal.ppat.1000052.
  • Burt, S. A., V. T. A. Ojo-Fakunle, J. Woertman, and E. J. A. Veldhuizen. 2014. The natural antimicrobial carvacrol inhibits quorum sensing in chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One. 9 (4):e93414. doi: 10.1371/journal.pone.0093414.
  • Carvalho, L. G., M. M. A. Alvim, R. L. Fabri, and A. C. M. Apolônio. 2021. Staphylococcus aureus biofilm formation in Minas Frescal cheese packaging. International Journal of Dairy Technology 74 (3):575–80. doi: 10.1111/1471-0307.12783.
  • Carvalho, J. S., A. F. L. Neto, I. M. Melo, L. M. Varjão, C. A. D. N. Andrade, D. E. Xavier, N. C. Leal, and R. C. De Castro Almeida. 2020. Occurrence of methicillin-resistant Staphylococcus aureus in ready-to-eat raw fish from Japanese Cuisine Restaurants in Salvador, Brazil. Journal of Food Protection 83 (6):991–5. doi: 10.4315/0362-028X.JFP-19-375.
  • Cattò, C., and F. Cappitelli. 2019. Testing anti-biofilm polymeric surfaces: Where to start?International Journal of Molecular Sciences 20 (15):3794–854. doi: 10.3390/ijms20153794.
  • Cech, N. B., and A. R. Horswill. 2013. Small-molecule quorum quenchers to prevent Staphylococcus aureus infection. Future Microbiology 8 (12):1511–4. doi: 10.2217/fmb.13.134.
  • Chen, Y., T. Liu, K. Wang, C. Hou, S. Cai, Y. Huang, Z. Du, H. Huang, J. Kong, and Y. Chen. 2016. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS ONE 11 (4):e0153468. doi: 10.1371/journal.pone.0153468.
  • Chen, X., S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B. L. Bassler, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415 (6871):545–9. doi: 10.1038/415545a.
  • Chen, X., L. Zhang, M. Zhang, H. Liu, P. Lu, and K. Lin. 2018. Quorum sensing inhibitors: A patent review (2014-2018). ). Expert Opinion on Therapeutic Patents 28 (12):849–65. doi: 10.1080/13543776.2018.1541174.
  • Cluzel, M. E., I. Zanella-Cléon, A. J. Cozzone, K. Fütterer, B. Duclos, and V. Molle. 2010. The Staphylococcus aureus autoinducer-2 synthase LuxS is regulated by Ser/Thr phosphorylation. Journal of Bacteriology 192 (23):6295–301. doi: 10.1128/JB.00853-10.
  • Dai, J., S. Wu, J. Huang, Q. Wu, F. Zhang, J. Zhang, J. Wang, Y. Ding, S. Zhang, X. Yang, et al. 2019. Prevalence and characterization of Staphylococcus aureus isolated from pasteurized milk in China. Frontiers in Microbiology 10 (641):1–10. doi: 10.3389/fmicb.2019.00641.
  • de Souza, E. L., Q. G. S. Meira, I. de, M. Barbosa, A. J. A. A. Athayde, M. L. da Conceição, and J. P. de Siqueira. 2014. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers. Brazilian Journal of Microbiology 45 (1):67–75. doi: 10.1590/s1517-83822014000100010.
  • DeFrancesco, A. S., N. Masloboeva, A. K. Syed, A. DeLoughery, N. Bradshaw, G. W. Li, M. S. Gilmore, S. Walker, and R. Losick. 2017. Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America 114 (29):E5969–E5978. doi: 10.1073/pnas.1704544114.
  • Dong, G., H. Liu, X. Yu, X. Zhang, H. Lu, T. Zhou, and J. Cao. 2018. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Natural Product Research 32 (18):2225–8. doi: 10.1080/14786419.2017.1366485.
  • Dutra, T. V., M. d S. Fernandes, M. R. F. G. Perdoncini, M. M. dos Anjos, and B. A. d Abreu Filho. 2018. Capacity of Escherichia coli and Staphylococcus aureus to produce biofilm on stainless steel surfaces in the presence of food residues. Journal of Food Processing and Preservation 42 (4):e13574. doi: 10.1111/jfpp.13574.
  • Elmasri, W. A., T. Yang, P. Tran, M. E. F. Hegazy, A. N. Hamood, Y. Mechref, and P. W. Paré. 2015. Teucrium polium phenylethanol and iridoid glycoside characterization and flavonoid inhibition of biofilm-forming staphylococcus aureus. Journal of Natural Products 78 (1):2–9. doi: 10.1021/np5004092.
  • Espina, L., D. Berdejo, P. Alfonso, D. García-Gonzalo, and R. Pagán. 2017. Potential use of carvacrol and citral to inactivate biofilm cells and eliminate biofouling. Food Control. 82:256–65. doi: 10.1016/j.foodcont.2017.07.007.
  • Farha, A. K., Q. Q. Yang, G. Kim, D. Zhang, V. Mavumengwana, O. Habimana, H. Bin Li, H. Corke, and R. Y. Gan. 2020. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control. 112:107154. doi: 10.1016/j.foodcont.2020.107154.
  • Gao, C., I. Uzelac, J. Gottfries, and L. A. Eriksson. 2016. Exploration of multiple sortase A protein conformations in virtual screening. Scientific Reports 6 (1):20413. doi: 10.1038/srep20413.
  • Guo, M., S. Gamby, Y. Zheng, and H. O. Sintim. 2013. Small molecule inhibitors of AI-2 signaling in bacteria: State-of-the-art and future perspectives for anti-quorum sensing agents. International Journal of Molecular Sciences 14 (9):17694–728. doi: 10.3390/ijms140917694.
  • Guo, L., Y. Wang, X. Bi, K. Duo, Q. Sun, X. Yun, Y. Zhang, P. Fei, and J. Han. 2020. Antimicrobial activity and mechanism of action of the Amaranthus tricolor crude Extract against Staphylococcus aureus and potential application in cooked meat. Foods 9 (3):359. doi: 10.3390/foods9030359.
  • Guo, N., X. Zhao, W. Li, C. Shi, R. Meng, Z. Liu, and L. Yu. 2015. The synergy of berberine chloride and totarol against Staphylococcus aureus grown in planktonic and biofilm cultures. Journal of Medical Microbiology 64 (8):891–900. doi: 10.1099/jmm.0.000106.
  • Horswill, A. R., and C. P. Gordon. 2020. Structure-activity relationship studies of small molecule modulators of the staphylococcal accessory gene regulator. Journal of Medicinal Chemistry 63 (6):2705–30. doi: 10.1021/acs.jmedchem.9b00798.
  • Jabra-Rizk, M. A., M. Shirtliff, C. James, and T. Meiller. 2006. Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. FEMS Yeast Research 6 (7):1063–73. doi: 10.1111/j.1567-1364.2006.00121.x.
  • Kang, J., W. Jin, J. Wang, Y. Sun, X. Wu, and L. Liu. 2019. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT 101:639–45. doi: 10.1016/j.lwt.2018.11.093.
  • Kang, S., F. Kong, X. Shi, H. Han, M. Li, B. Guan, M. Yang, X. Cao, D. Tao, Y. Zheng, et al. 2020. Antibacterial activity and mechanism of lactobionic acid against Pseudomonas fluorescens and Methicillin-resistant Staphylococcus aureus and its application on whole milk. Food Control. 108:106876. doi: 10.1016/j.foodcont.2019.106876.
  • Kim, M. K., A. Zhao, A. Wang, Z. Z. Brown, T. W. Muir, H. A. Stone, and B. L. Bassler. 2017. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nature Microbiology 2 (8):17080. doi: 10.1038/nmicrobiol.2017.80.
  • Kot, B., H. Sytykiewicz, I. Sprawka, and M. Witeska. 2020. Effect of trans-Cinnamaldehyde on methicillin-resistant Staphylococcus Aureus biofilm formation: Metabolic activity assessment and analysis of the biofilm-associated genes expression. International Journal of Molecular Sciences 21 (1):102–16. doi: 10.3390/ijms21010102.
  • Landini, P., D. Antoniani, J. G. Burgess, and R. Nijland. 2010. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Applied Microbiology and Biotechnology 86 (3):813–23. doi: 10.1007/s00253-010-2468-8.
  • Lemos, A. S. O., L. M. Campos, L. Melo, M. C. M. R. Guedes, L. G. Oliveira, T. P. Silva, R. C. N. Melo, V. N. Rocha, J. A. K. Aguiar, A. C. M. Apolônio, et al. 2018. Antibacterial and antibiofilm activities of psychorubrin, a pyranonaphthoquinone isolated from Mitracarpus frigidus (Rubiaceae). Frontiers in Microbiology 9:724–35. doi: 10.3389/fmicb.2018.00724.
  • Li, W. L., X. C. Zhao, Z. W. Zhao, Y. J. Huang, X. Z. Zhu, R. Z. Meng, C. Shi, L. Yu, and N. Guo. 2016. In vitro antimicrobial activity of honokiol against Staphylococcus aureus in biofilm mode. Journal of Asian Natural Products Research 18 (12):1178–85. doi: 10.1080/10286020.2016.1194829.
  • Liang, Z., Y. Qi, S. Guo, K. Hao, M. Zhao, and N. Guo. 2019. Effect of AgWPA nanoparticles on the inhibition of Staphylococcus aureus growth in biofilms. Food Control 100:240–6. doi: 10.1016/j.foodcont.2019.01.030.
  • Lin, M. H., F. R. Chang, M. Y. Hua, Y. C. Wu, and S. T. Liu. 2011. Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 55 (3):1021–7. doi: 10.1128/AAC.00843-10.
  • Lin, Q., H. Sun, K. Yao, J. Cai, Y. Ren, and Y. Chi. 2019. The Prevalence, Antibiotic resistance and biofilm formation of Staphylococcus aureus in bulk ready-to-eat foods. Biomolecules 9 (10):524–35. doi: 10.3390/biom9100524.
  • Lister, J. L., and A. R. Horswill. 2014. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology 4:178–87. doi: 10.3389/fcimb.2014.00178.
  • Liu, J., W. Li, X. Zhu, H. Zhao, Y. Lu, C. Zhang, and Z. Lu. 2019. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Applied Microbiology and Biotechnology 103 (11):4565–74. doi: 10.1007/s00253-019-09808-w.
  • Liu, T., J. Wang, X. Gong, X. Wu, L. Liu, and F. Chi. 2020. Rosemary and tea tree essential oils exert antibiofilm activities in vitro against staphylococcus aureus and Escherichia coli. Journal of Food Protection 83 (7):1261–7. doi: 10.4315/0362-028X.JFP-19-337.
  • Liu, M., X. Wu, J. Li, L. Liu, R. Zhang, D. Shao, and X. Du. 2017. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control. 73:613–8. doi: 10.1016/j.foodcont.2016.09.015.
  • Liu, X., Y. Yue, Y. Wu, K. Zhong, Q. Bu, and H. Gao. 2021. Discovering the antibacterial mode of action of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a natural phenolic compound, against Staphylococcus aureus through an integrated transcriptomic and proteomic approach. Journal of Food Safety 41 (1):1–11. doi: 10.1111/jfs.12861.
  • Llorens, A., E. Lloret, P. A. Picouet, R. Trbojevich, and A. Fernandez. 2012. Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends in Food Science & Technology 24 (1):19–29. doi: 10.1016/j.tifs.2011.10.001.
  • Lopes, L. A. A., J. B. dos Santos Rodrigues, M. Magnani, E. L. de Souza, and J. P. de Siqueira-Júnior. 2017. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microbial Pathogenesis 107:193–7. doi: 10.1016/j.micpath.2017.03.033.
  • Ma, R., S. Qiu, Q. Jiang, H. Sun, T. Xue, G. Cai, and B. Sun. 2017. AI-2 quorum sensing negatively regulates rbf expression and biofilm formation in Staphylococcus aureus. International Journal of Medical Microbiology 307 (4–5):257–67. doi: 10.1016/j.ijmm.2017.03.003.
  • Mann, E. E., K. C. Rice, B. R. Boles, J. L. Endres, D. Ranjit, L. Chandramohan, L. H. Tsang, M. S. Smeltzer, A. R. Horswill, and K. W. Bayles. 2009. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4 (6):e5822. doi: 10.1371/journal.pone.0005822.
  • Maresso, A. W., R. Wu, J. W. Kern, R. Zhang, D. Janik, D. M. Missiakas, M. E. Duban, A. Joachimiak, and O. Schneewind. 2007. Activation of inhibitors by sortase triggers irreversible modification of the active site. The Journal of Biological Chemistry 282 (32):23129–39. doi: 10.1074/jbc.M701857200.
  • Meesilp, N., and N. Mesil. 2019. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Science and Biotechnology 28 (1):289–96. doi: 10.1007/s10068-018-0448-4.
  • Merghni, A., E. Noumi, O. Hadded, N. Dridi, H. Panwar, O. Ceylan, M. Mastouri, and M. Snoussi. 2018. Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microbial Pathogenesis 118:74–80. doi: 10.1016/j.micpath.2018.03.006.
  • Miao, J., Y. Liang, L. Chen, W. Wang, J. Wang, B. Li, L. Li, D. Chen, and Z. Xu. 2017. Formation and development of Staphylococcus biofilm: With focus on food safety. Journal of Food Safety 37 (4):1–12. doi: 10.1111/jfs.12358.
  • Ming, D., D. Wang, F. Cao, H. Xiang, D. Mu, J. Cao, B. Li, L. Zhong, X. Dong, X. Zhong, et al. 2017. Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Frontiers in Microbiology 8:2263–74. doi: 10.3389/fmicb.2017.02263.
  • Mu, D., Y. Luan, L. Wang, Z. Gao, P. Yang, S. Jing, Y. Wang, H. Xiang, T. Wang, and D. Wang. 2020. The combination of salvianolic acid A with latamoxef completely protects mice against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus. Emerging Microbes & Infections 9 (1):169–79. doi: 10.1080/22221751.2020.1711817.
  • Mu, D., H. Xiang, H. Dong, D. Wang, and T. Wang. 2018. Isovitexin, a potential candidate inhibitor of sortase a of staphylococcus aureus USA300. Journal of Microbiology and Biotechnology 28 (9):1426–32. doi: 10.4014/jmb.1802.02014.
  • Nelson, J. W., A. G. Chamessian, P. J. McEnaney, R. P. Murelli, B. I. Kazmierczak, B. I. Kazmiercak, and D. A. Spiegel. 2010. A Biosynthetic strategy for re-engineering the Staphylococcus aureus cell wall with non-native small molecules. ACS Chemical Biology 5 (12):1147–55. doi: 10.1021/cb100195d.
  • Nicod, S. S., R. O. J. Weinzierl, L. Burchell, A. Escalera-Maurer, E. H. James, and S. Wigneshweraraj. 2014. Systematic mutational analysis of the LytTR DNA binding domain of Staphylococcus aureus virulence gene transcription factor agrA. Nucleic Acids Research 42 (20):12523–36. doi: 10.1093/nar/gku1015.
  • Nitulescu, G., D. P. Mihai, I. M. Nicorescu, O. T. Olaru, A. Ungurianu, A. Zanfirescu, G. M. Nitulescu, and D. Margina. 2019. Discovery of natural naphthoquinones as sortase A inhibitors and potential anti-infective solutions against Staphylococcus aureus. Drug Development Research 80 (8):1136–45. doi: 10.1002/ddr.21599.
  • Nitulescu, G., I. M. Nicorescu, O. T. Olaru, A. Ungurianu, D. P. Mihai, A. Zanfirescu, G. M. Nitulescu, and D. Margina. 2017. Molecular docking and screening studies of new natural sortase A inhibitors. International Journal of Molecular Sciences 18 (10):2217–32. doi: 10.3390/ijms18102217.
  • Nitulescu, G., A. Zanfirescu, O. T. Olaru, I. M. Nicorescu, G. M. Nitulescu, and D. Margina. 2016. Structural analysis of sortase A inhibitors. Molecules 21 (11):1591–601. doi: 10.3390/molecules21111591.
  • Oliveira, A. P. D. d., M. M. da Costa, D. M. Nogueira, and F. S. Dias. 2020. Characterisation of Staphylococcus Aureus strains from Milk and Goat Cheese and evaluation of their inhibition by gallic acid, nisin and velame of the Brazilian caatinga. International Journal of Dairy Technology 73 (2):345–56. doi: 10.1111/1471-0307.12673.
  • Ou, C., D. Shang, J. Yang, B. Chen, J. Chang, F. Jin, and C. Shi. 2020. Prevalence of multidrug-resistant Staphylococcus aureus isolates with strong biofilm formation ability among animal-based food in Shanghai. Food Control. 112:107106. doi: 10.1016/j.foodcont.2020.107106.
  • Ouyang, P., X. He, Z. W. Yuan, Z. Q. Yin, H. Fu, J. Lin, C. He, X. Liang, C. Lv, G. Shu, et al. 2018. Erianin against staphylococcus aureus infection via inhibiting sortase A. Toxins 10 (10):385–99. doi: 10.3390/toxins10100385.
  • Parai, D., E. Islam, J. Mitra, and S. K. Mukherjee. 2017. Effect of Bacoside A on growth and biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. Canadian Journal of Microbiology 63 (2):169–78. doi: 10.1139/cjm-2016-0365.
  • Park, J. H., J. H. Lee, C. J. Kim, J. C. Lee, M. H. Cho, and J. Lee. 2012. Extracellular protease in actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnology Letters 34 (4):655–61. doi: 10.1007/s10529-011-0825-z.
  • Peng, D., A. Chen, B. Shi, X. Min, T. Zhang, Z. Dong, H. Yang, X. Chen, Y. Tian, and Z. Chen. 2018. Preliminary study on the effect of Brazilin on biofilms of Staphylococcus aureus. Experimental and Therapeutic Medicine 16 (3):2108–18. doi: 10.3892/etm.2018.6403.
  • Qin, N., X. Tan, Y. Jiao, L. Liu, W. Zhao, S. Yang, and A. Jia. 2014. RNA-Seq-based transcriptome analysis of methicillin-resistant staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Scientific Reports 4 (1):5467. doi: 10.1038/srep05467.
  • Rajamani, S., and R. T. Sayre. 2011. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi. Journal of Microbiological Methods 84 (2):189–93. doi: 10.1016/j.mimet.2010.11.017.
  • Rossi, C., C. Chaves-López, A. Serio, M. Casaccia, F. Maggio, and A. Paparella. 2020. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Critical Reviews in Food Science and Nutrition Advance online publication. doi: 10.1080/10408398.2020.1851169.
  • Rowe, S. E., C. Campbell, C. Lowry, S. T. O’Donnell, M. E. Olson, J. K. Lindgren, E. M. Waters, P. D. Fey, and J. P. O’Gara. 2016. AraC-type regulator Rbf controls the Staphylococcus epidermidis biofilm phenotype by negatively regulating the icaADBC repressor SarR. Journal of Bacteriology 198 (21):2914–24. doi: 10.1128/JB.00374-16.
  • Rubini, D., S. F. Banu, B. N. Veda Hari, D. Ramya Devi, S. Gowrishankar, S. Karutha Pandian, and P. Nithyanand. 2018a. Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin- resistant Staphylococcus aureus. Food and Chemical Toxicology 118:733–44. doi: 10.1016/j.fct.2018.06.017.
  • Rubini, D., S. F. Banu, P. Nisha, R. Murugan, S. Thamotharan, M. J. Percino, P. Subramani, and P. Nithyanand. 2018b. Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microbial Pathogenesis 122:162–73. doi: 10.1016/j.micpath.2018.06.028.
  • Sayed, A. M., H. A. Alhadrami, S. S. El‐Hawary, R. Mohammed, H. M. Hassan, M. E. Rateb, U. R. Abdelmohsen, and W. Bakeer. 2020. Discovery of two brominated oxindole alkaloids as staphylococcal DNA gyrase and pyruvate kinase inhibitors via inverse virtual screening. Microorganisms 8 (2):293–307. doi: 10.3390/microorganisms8020293.
  • Sharifi, A., A. Mohammadzadeh, T. Z. Salehi, and P. Mahmoodi. 2018. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. Journal of Applied Microbiology 124 (2):379–88. doi: 10.1111/jam.13639.
  • Shen, F., X. Tang, Y. Wang, Z. Yang, X. Shi, C. Wang, Q. Zhang, Y. An, W. Cheng, K. Jin, et al. 2015. Phenotype and expression profile analysis of Staphylococcus aureus biofilms and planktonic cells in response to licochalcone A. Applied Microbiology and Biotechnology 99 (1):359–73. doi: 10.1007/s00253-014-6076-x.
  • Silva, L. N., G. C. A. Da Hora, T. A. Soares, M. S. Bojer, H. Ingmer, A. J. Macedo, and D. S. Trentin. 2017. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Scientific Reports 7 (1):2823–49. doi: 10.1038/s41598-017-02712-1.
  • Simões, M., L. C. Simões, and M. J. Vieira. 2010. A review of current and emergent biofilm control strategies. LWT—Food Science and Technology 43 (4):573–83. doi: 10.1016/j.lwt.2009.12.008.
  • Srivastava, S. K., K. Rajasree, A. Fasim, G. Arakere, and B. Gopal. 2014. Influence of the AgrC-AgrA complex on the response time of Staphylococcus aureus quorum sensing. Journal of Bacteriology 196 (15):2876–88. doi: 10.1128/JB.01530-14.
  • Sullivan, D. J., S. Azlin-Hasim, M. Cruz-Romero, E. Cummins, J. P. Kerry, and M. A. Morris. 2020. Antimicrobial effect of benzoic and sorbic acid salts and nano-solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and chicken microbiota biofilms. Food Control. 107:106786. doi: 10.1016/j.foodcont.2019.106786.
  • Truchado, P., M. Larrosa, I. Castro-Ibáñez, and A. Allende. 2015. Plant food extracts and phytochemicals: Their role as quorum sensing inhibitors. Trends in Food Science & Technology 43 (2):189–204. doi: 10.1016/j.tifs.2015.02.009.
  • Unlu, A., T. Sar, G. Seker, A. G. Erman, E. Kalpar, and M. Y. Akbas. 2018. Biofilm formation by Staphylococcus Aureus strains and their control by selected phytochemicals. International Journal of Dairy Technology 71 (3):637–46. doi: 10.1111/1471-0307.12520.
  • Vijayakumar, K., and T. Ramanathan. 2018. Antiquorum sensing and biofilm potential of 5-Hydroxymethylfurfural against Gram positive pathogens. Microbial Pathogenesis 125:48–50. doi: 10.1016/j.micpath.2018.09.008.
  • Wang, L., C. Bi, H. Cai, B. Liu, X. Zhong, X. Deng, T. Wang, H. Xiang, X. Niu, and D. Wang. 2015. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Frontiers in Microbiology 6:1031–43. doi: 10.3389/fmicb.2015.01031.
  • Wang, B., and T. W. Muir. 2016. Regulation of virulence in Staphylococcus aureus: Molecular mechanisms and remaining puzzles. Cell Chemical Biology 23 (2):214–24. doi: 10.1016/j.chembiol.2016.01.004.
  • Wu, S. C., F. Liu, K. Zhu, and J. Z. Shen. 2019a. Natural products that target virulence factors in antibiotic-resistant Staphylococcus aureus. Journal of Agricultural and Food Chemistry 67 (48):13195–211. doi: 10.1021/acs.jafc.9b05595.
  • Wu, X., and Y. C. Su. 2014. Effects of frozen storage on survival of Staphylococcus aureus and enterotoxin production in precooked tuna meat. Journal of Food Science 79 (8):M1554–1559. doi: 10.1111/1750-3841.12530.
  • Wu, Y. P., X. Y. Liu, J. R. Bai, H. C. Xie, S. L. Ye, K. Zhong, Y. N. Huang, and H. Gao. 2019b. Inhibitory effect of a natural phenolic compound, 3-p-trans-coumaroyl-2-hydroxyquinic acid against the attachment phase of biofilm formation of Staphylococcus aureus through targeting sortase A. RSC Advances 9 (56):32453–61. doi: 10.1039/C9RA05883D.
  • Xie, Q., A. Zhao, P. D. Jeffrey, M. K. Kim, B. L. Bassler, H. A. Stone, R. P. Novick, and T. W. Muir. 2019. Identification of a molecular latch that regulates Staphylococcal virulence. Cell Chemical Biology 26 (4):548–58. doi: 10.1016/j.chembiol.2019.01.006.
  • Xu, Y., C. Shi, Q. Wu, Z. Zheng, P. Liu, G. Li, X. Peng, and X. Xia. 2017. Antimicrobial activity of punicalagin against Staphylococcus aureus and its effect on biofilm formation. Foodborne Pathogens and Disease 14 (5):282–7. doi: 10.1089/fpd.2016.2226.
  • Xu, S., T. Sun, Q. Xu, C. Duan, Y. Dai, L. Wang, and Q. Song. 2018. Preparation and antibiofilm properties of zinc oxide/porous anodic alumina composite films. Nanoscale Research Letters 13 (1):201–12. doi: 10.1186/s11671-018-2568-4.
  • Yan, X., S. Gu, X. Cui, Y. Shi, S. Wen, H. Chen, and J. Ge. 2019. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis 127:12–20. doi:10.1016/j.micpath.2018.11.039.
  • Yan, X., S. Gu, Y. Shi, X. Cui, S. Wen, and J. Ge. 2017. The effect of emodin on Staphylococcus aureus strains in planktonic form and biofilm formation in vitro. Archives of Microbiology 199 (9):1267–75. doi: 10.1007/s00203-017-1396-8.
  • Zhang, J., H. Liu, K. Zhu, S. Gong, S. Dramsi, Y.-T. Wang, J. Li, F. Chen, R. Zhang, L. Zhou, et al. 2014. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proceedings of the National Academy of Sciences of the United States of America 111 (37):13517–22. doi:10.1073/pnas.1408601111.
  • Zhang, B., Z. Teng, X. Li, G. Lu, X. Deng, X. Niu, and J. Wang. 2017. Chalcone Attenuates Staphylococcus aureus virulence by targeting sortase A and alpha-hemolysin. Frontiers in Microbiology 8:1715–27. doi: 10.3389/fmicb.2017.01715.
  • Zhao, X., Z. Liu, Z. Liu, R. Meng, C. Shi, X. Chen, X. Bu, and N. Guo. 2018. Phenotype and RNA-seq-based transcriptome profiling of Staphylococcus aureus biofilms in response to tea tree oil. Microbial Pathogenesis 123:304–13. doi: 10.1016/j.micpath.2018.07.027.