867
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Recent progress on the heavy metals ameliorating potential of engineered nanomaterials in rice paddy: a comprehensive outlook on global food safety with nanotoxicitiy issues

, , ORCID Icon, , &

References

  • Abedin, M. J., J. Feldmann, and A. A. Meharg. 2002. Uptake kinetics of arsenic species in rice plants. Plant Physiology 128 (3):1120–8. doi: 10.1104/pp.010733.
  • Ahmad, M. A., R. Gaur, and M. Gupta. 2012. Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. Journal of Hazardous Materials 217-218:141–8. doi: 10.1016/j.jhazmat.2012.03.005.
  • Ahmed, T., M. Noman, N. Manzoor, M. Shahid, M. Abdullah, L. Ali, G. Wang, A. Hashem, A.-B F. Al-Arjani, A. A. Alqarawi, et al. 2021. Nanoparticle-based amelioration of drought stress and cadmium toxicity in rice via triggering the stress responsive genetic mechanisms and nutrient acquisition. Ecotoxicology and Environmental Safety 209:111829. doi: 10.1016/j.ecoenv.2020.111829.
  • Akhtar, F. Z., K. Archana, V. G. Krishnaswamy, and R. Rajagopal. 2020. Remediation of heavy metals (Cr, Zn) using physical, chemical and biological methods: A novel approach. SN Applied Sciences 2 (2):1–14. doi: 10.1007/s42452-019-1918-x.
  • Ali, M., T. Ahmed, W. Wu, A. Hossain, R. Hafeez, M. Islam Masum, Y. Wang, Q. An, G. Sun, and B. Li. 2020. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10 (6):1146. doi: 10.3390/nano10061146.
  • Ali, S., M. Rizwan, S. Noureen, S. Anwar, B. Ali, M. Naveed, E. F. Abd Allah, A. A. Alqarawi, and P. Ahmad. 2019. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research International 26 (11):11288–99. doi: 10.1007/s11356-019-04554-y.
  • Amin, M., A. Alazba, and U. Manzoor. 2014. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances in Materials Science and Engineering 2014:1–24. doi: 10.1155/2014/825910.
  • Aria, M., and C. Cuccurullo. 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics 11 (4):959–75. doi: 10.1016/j.joi.2017.08.007.
  • Arif, N., N. C. Sharma, V. Yadav, N. Ramawat, N. K. Dubey, D. K. Tripathi, D. K. Chauhan, and S. Sahi. 2019. Understanding heavy metal stress in a rice crop: Toxicity, tolerance mechanisms, and amelioration strategies. Journal of Plant Biology 62 (4):239–53. doi: 10.1007/s12374-019-0112-4.
  • Ayangbenro, A. S., and O. O. Babalola. 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. International Journal of Environmental Research and Public Health 14 (1):94. doi: 10.3390/ijerph14010094.
  • Bardos, P., C. Merly, P. Kvapil, and H. P. Koschitzky. 2018. Status of nanoremediation and its potential for future deployment: Risk‐benefit and benchmarking appraisals. Remediation Journal 28 (3):43–56. doi: 10.1002/rem.21559.
  • Basta, N., J. Ryan, and R. Chaney. 2005. Trace element chemistry in residual‐treated soil: Key concepts and metal bioavailability. Journal of Environmental Quality 34 (1):49–63. doi: 10.2134/jeq2005.0049dup.
  • Batool, R., M. Hameed, M. Ashraf, M. S. A. Ahmad, and S. Fatima. 2015. Physio-anatomical responses of plants to heavy metals. In Phytoremediation for green energy, ed. Münir Öztürk, Muhammad Ashraf, Ahmet Aksoy, Muhammad Sajid, and Aqeel Ahmad, 9–96. Switzerland: Springer. doi: 10.1007/978-94-007-7887-0_5.
  • Boechat, C. L., R. de Souza Miranda, J. J. de Jesus Lacerda, D. G. Coelho, L. S. Sobrinho, and P. C. Saraiva. 2021. Transgenic plants and rhizosphere-associated microbiota in phytoremediation of heavy metals and organic pollutants. In Bioremediation for environmental sustainability, ed. Vineet Kumar, Gaurav Saxena, and Maulin P. Shah, 299–328. New York: Elsevier. doi: 10.1016/B978-0-12-820318-7.00015-0.
  • Buchet, J. P., J. F. Heilier, A. Bernard, D. Lison, T. Jin, X. Wu, Q. Kong, and G. Nordberg. 2003. Urinary protein excretion in humans exposed to arsenic and cadmium. International Archives of Occupational and Environmental Health 76 (2):111–20. doi: 10.1007/s00420-002-0402-9.
  • Cai, F., X. Wu, H. Zhang, X. Shen, M. Zhang, W. Chen, Q. Gao, J. C. White, S. Tao, and X. Wang. 2017. Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryza sativa L.). NanoImpact 5:101–8. doi: 10.1016/j.impact.2017.01.006.
  • Chang, Y. C., Y. Y. Chao, and C. H. Kao. 2012. The role of iron in stress response to cadmium in rice seedlings. Crop. Environment and Bioinformatics 8:175–83. doi: 10.30061/CEB.201209.0004.
  • Chatterjee, C., B. Dube, P. Sinha, and P. Srivastava. 2004. Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Communications in Soil Science and Plant Analysis 35 (1–2):255–65. doi: 10.1081/CSS-120027648.
  • Chen, D., D. Chen, R. Xue, J. Long, X. Lin, Y. Lin, L. Jia, R. Zeng, and Y. Song. 2019. Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. Journal of Hazardous Materials 367:447–55. doi: 10.1016/j.jhazmat.2018.12.111.
  • Cheng, Z., A. L. K. Tan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin. 2012. Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater. International Journal of Photoenergy 2012:1–12. doi: 10.1155/2012/608298.
  • Chen, L., S. Zhou, Y. Shi, C. Wang, B. Li, Y. Li, and S. Wu. 2018. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Science of the Total Environment 615:141–9. doi: 10.1016/j.scitotenv.2017.09.230.
  • Chien, S. W. C., H. H. Wang, Y. M. Chen, M. K. Wang, and C. C. Liu. 2021. Removal of heavy metals from contaminated paddy soils using chemical reductants coupled with dissolved organic carbon solutions. Journal of Hazardous Materials 403:123549. doi: 10.1016/j.jhazmat.2020.123549.
  • Chien, H. F., J. W. Wang, C. C. Lin, and C. H. Kao. 2001. Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regulation 33 (3):205–13. doi: 10.1023/A:1017539616793.
  • Choppala, G., Saifullah, N. Bolan, S. Bibi, M. Iqbal, Z. Rengel, A. Kunhikrishnan, N. Ashwath, and Y. S. Ok. 2014. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences 33 (5):374–91. doi: 10.1080/07352689.2014.903747.
  • Cordier, W., M. Yousaf, M. Nell, and V. Steenkamp. 2021. Underlying mechanisms of cytotoxicity in HepG2 hepatocarcinoma cells exposed to arsenic, cadmium and mercury individually and in combination. Toxicology in Vitro : An International Journal Published in Association with Bibra 72:105101. doi: 10.1016/j.tiv.2021.105101.
  • Corsi, I., M. Winther-Nielsen, R. Sethi, C. Punta, C. Della Torre, G. Libralato, G. Lofrano, L. Sabatini, M. Aiello, L. Fiordi, et al. 2018. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicology and Environmental Safety 154:237–44. doi: 10.1016/j.ecoenv.2018.02.037.
  • Cui, J., Q. Jin, Y. Li, and F. Li. 2019. Oxidation and removal of As (III) from soil using novel magnetic nanocomposite derived from biomass waste. Environmental Science: Nano 6 (2):478–88. doi: 10.1039/C8EN01257A.
  • Cui, J., Y. Li, Q. Jin, and F. Li. 2020. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environmental Science: Nano 7 (1):162–71. doi: 10.1039/C9EN01035A.
  • Cui, J., T. Liu, F. Li, J. Yi, C. Liu, and H. Yu. 2017. Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects. Environmental Pollution (Barking, Essex : 1987) 228:363–9. doi: 10.1016/j.envpol.2017.05.014.
  • da Conceição Gomes, M. A., R. A. Hauser-Davis, A. N. de Souza, and A. P. Vitória. 2016. Metal phytoremediation: General strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicology and Environmental Safety 134:133–47. doi: 10.1016/j.ecoenv.2016.08.024.
  • Davari, M., S. B. Kazazi, and O. A. Pivehzhani. 2017. Nanomaterials: Implications on agroecosystem. In Nanotechnology, ed. Ram Prasad, Manoj Kumar, and Vivek Kumar, 59–71. Switzerland: Springer. doi: 10.1007/978-981-10-4573-8_4.
  • Djahed, B., M. Taghavi, M. Farzadkia, S. Norzaee, and M. Miri. 2018. Stochastic exposure and health risk assessment of rice contamination to the heavy metals in the market of Iranshahr, Iran. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 115:405–12. doi: 10.1016/j.fct.2018.03.040.
  • Du, W., J. L. Gardea-Torresdey, Y. Xie, Y. Yin, J. Zhu, X. Zhang, R. Ji, K. Gu, J. R. Peralta-Videa, and H. Guo. 2017. Elevated CO2 levels modify TiO2 nanoparticle effects on rice and soil microbial communities. The Science of the Total Environment 578:408–16. doi: 10.1016/j.scitotenv.2016.10.197.
  • Fan, H. L., S. F. Zhou, W. Z. Jiao, G. S. Qi, and Y. Z. Liu. 2017. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydrate Polymers 174:1192–200. doi: 10.1016/j.carbpol.2017.07.050.
  • Fan, Y., T. Zhu, M. Li, J. He, and R. Huang. 2017. Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in Central China. Journal of Healthcare Engineering 2017:4124302. doi: 10.1155/2017/4124302.
  • Fasani, E., A. Manara, F. Martini, A. Furini, and G. DalCorso. 2018. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant, Cell & Environment 41 (5):1201–32. doi: 10.1111/pce.12963.
  • Fu, Z., and S. Xi. 2020. The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods 30 (3):167–76. doi: 10.1080/15376516.2019.1701594.
  • Gadhave, A., and J. Waghmare. 2014. Removal of heavy metal ions from wastewater by carbon nanotubes (CNTs). International Journal of Engineering Sciences & Research Technology 3 (7):226–36. doi: 10.1021/acs.iecr.9b01298.s001.
  • Gautam, A., A. K. Pandey, and R. S. Dubey. 2019. Effect of arsenic toxicity on photosynthesis, oxidative stress and alleviation of toxicitywith herbal extracts in growing rice seedlings. Indian Journal of Agricultural Biochemistry 32 (2):143–8. doi: 10.5958/0974-4479.2019.00019.4.
  • George, R., N. Bahadur, N. Singh, R. Singh, A. Verma, and A. Shukla. 2016. Environmentally benign TiO2 nanomaterials for removal of heavy metal ions with interfering ions present in tap water. Materials Today: Proceedings 3 (2):162–6. doi: 10.1016/j.matpr.2016.01.051.
  • Gokila, S., T. Gomathi, P. Sudha, and S. Anil. 2017. Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. International Journal of Biological Macromolecules 104 (Pt B):1459–68. doi: 10.1016/j.ijbiomac.2017.05.117.
  • Guerra, F. D., M. F. Attia, D. C. Whitehead, and F. Alexis. 2018. Nanotechnology for environmental remediation: Materials and applications. Molecules 23 (7):1760. doi: 10.3390/molecules23071760.
  • Gunarathne, V., S. Mayakaduwa, A. Ashiq, S. R. Weerakoon, J. K. Biswas, and M. Vithanage. 2019. Transgenic plants: Benefits, applications, and potential risks in phytoremediation. In Transgenic plant technology for remediation of toxic metals and metalloids, ed. Majeti Narasimha Vara Prasad, 89–102. New York: Elsevier. doi: 10.1016/B978-0-12-814389-6.00005-5.
  • Guo, B., C. Hong, W. Tong, M. Xu, C. Huang, H. Yin, Y. Lin, and Q. Fu. 2020. Health risk assessment of heavy metal pollution in a soil-rice system: A case study in the Jin-Qu Basin of China. Scientific Reports 10 (1):11490–11. doi: 10.1038/s41598-020-68295-6.
  • Guo, Z., J. J. Richardson, B. Kong, and K. Liang. 2020. Nanobiohybrids: Materials approaches for bioaugmentation. Science Advances 6 (12):eaaz0330 doi: 10.1126/sciadv.aaz0330.
  • Halim, M. A., M. M. Rahman, M. Megharaj, and R. Naidu. 2020. Cadmium immobilization in the rhizosphere and plant cellular detoxification: Role of plant-growth-promoting rhizobacteria as a sustainable solution. Journal of Agricultural and Food Chemistry 68 (47):13497–529. doi: 10.1021/acs.jafc.0c04579.
  • Hao, Y., C. Ma, Z. Zhang, Y. Song, W. Cao, J. Guo, G. Zhou, Y. Rui, L. Liu, and B. Xing. 2018. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environmental Pollution (Barking, Essex : 1987) 232:123–36. doi: 10.1016/j.envpol.2017.09.024.
  • Hassan, Z., S. Ali, M. Rizwan, M. Ibrahim, M. Nafees, and M. Waseem. 2017. Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity. In Probiotics in agroecosystem, ed. Vivek Kumar, Manoj Kumar, Shivesh Sharma, and Ram Prasad, 517–37. Switzerland: Springer. doi: 10.1007/978-981-10-4059-7_27.
  • He, L., H. Zhong, G. Liu, Z. Dai, P. C. Brookes, and J. Xu. 2019. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution (Barking, Essex : 1987) 252 (Pt A):846–55. doi: 10.1016/j.envpol.2019.05.151.
  • Hettick, B. E., J. E. Canas-Carrell, A. D. French, and D. M. Klein. 2015. Arsenic: A review of the element’s toxicity, plant interactions, and potential methods of remediation. Journal of Agricultural and Food Chemistry 63 (32):7097–107. doi: 10.1021/acs.jafc.5b02487.
  • Hofmann, T., G. V. Lowry, S. Ghoshal, N. Tufenkji, D. Brambilla, J. R. Dutcher, L. M. Gilbertson, J. P. Giraldo, J. M. Kinsella, and M. P. Landry. 2020. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food 1 (7):416–25. doi: 10.1038/s43016-020-0110-1.
  • Hseu, Z. Y., S. W. Su, H. Y. Lai, H. Y. Guo, T. C. Chen, and Z. S. Chen. 2010. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Science & Plant Nutrition 56 (1):31–52. doi: 10.1111/j.1747-0765.2009.00442.x.
  • Huang, Y., Y. Hu, and Y. Liu. 2009. Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper, cadmium and lead. Acta Ecologica Sinica 29 (6):320–6. doi: 10.1016/j.chnaes.2009.09.011.
  • Huang, Q., Q. Liu, L. Lin, F. J. Li, Y. Han, and Z. G. Song. 2018. Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles. Ecotoxicology and Environmental Safety 159:261–71. doi: 10.1016/j.ecoenv.2018.05.008.
  • Hussain, B., Q. Lin, Y. Hamid, M. Sanaullah, L. Di, M. B. Khan, Z. He, and X. Yang. 2020. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). The Science of the Total Environment 712:136497 doi: 10.1016/j.scitotenv.2020.136497.
  • Igiri, B. E., S. I. Okoduwa, G. O. Idoko, E. P. Akabuogu, A. O. Adeyi, and I. K. Ejiogu. 2018. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A Review. Journal of Toxicology 2018:2568038 doi: 10.1155/2018/2568038.
  • Islam, M. S., R. Proshad, M. Asadul Haque, M. F. Hoque, M. S. Hossin, and M. N. I. Sarker. 2020. Assessment of heavy metals in foods around the industrial areas: Health hazard inference in Bangladesh. Geocarto International 35 (3):280–95. doi: 10.1080/10106049.2018.1516246.
  • Jacob, J. M., C. Karthik, R. G. Saratale, S. S. Kumar, D. Prabakar, K. Kadirvelu, and A. Pugazhendhi. 2018. Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management 217:56–70. doi: 10.1016/j.jenvman.2018.03.077.
  • Jan, A. T., M. Azam, K. Siddiqui, A. Ali, I. Choi, and Q. M. Haq. 2015. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. International Journal of Molecular Sciences 16 (12):29592–630. doi: 10.3390/ijms161226183.
  • Jassal, P., N. Chand, S. Gupta, and R. Singh. 2015. Harnessing magnetic chitosan nanocomposites for the adsorption of heavymetal ions from aqueous medium. Journal of Water Resource and Hydraulic Engineering 4:191–7. doi: 10.5963/JWRHE040209.
  • Jawed, A., V. Saxena, and L. M. Pandey. 2020. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: A review. Journal of Water Process Engineering 33:101009. doi: 10.1016/j.jwpe.2019.101009.
  • Ji, Y., Y. Zhou, C. Ma, Y. Feng, Y. Hao, Y. Rui, W. Wu, X. Gui, Y. Han, and Y. Wang. 2017. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiology and Biochemistry : Ppb 110:82–93. doi: 10.1016/j.plaphy.2016.05.010.
  • Jin, L., Y. Son, J. L. DeForest, Y. J. Kang, W. Kim, and H. Chung. 2014. Single-walled carbon nanotubes alter soil microbial community composition. The Science of the Total Environment 466-467:533–8. doi: 10.1016/j.scitotenv.2013.07.035.
  • Joo, S. H., and D. Zhao. 2017. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. Journal of Hazardous Materials 322:29–47. doi: 10.1016/j.jhazmat.2016.02.068.
  • Kabata, A., and H. Pendias. 2011. Trace metals in soils and plants. Vol. 47. Boca Raton, FL: CRC Press, 739. doi: 10.1017/s0014479711000743.
  • Kabata-Pendias, A., and A. B. Mukherjee. 2007. Trace elements from soil to human. Berlin/Heidelberg, Germany: Springer Science & Business Media. doi: 10.1007/978-3-540-32714-1.
  • Kabir, E., V. Kumar, K. H. Kim, A. C. Yip, and J. R. Sohn. 2018. Environmental impacts of nanomaterials. Journal of Environmental Management 225:261–71. doi: 10.1016/j.jenvman.2018.07.087.
  • Kang, F., X. Qu, P. J. Alvarez, and D. Zhu. 2017. Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: New insights for heavy metals biomineralization on microbial Surfaces. Environmental Science & Technology 51 (5):2776–85. doi: 10.1021/acs.est.6b05930.
  • Karn, B., T. Kuiken, and M. Otto. 2009. Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives 117 (12):1813–31. doi: 10.1289/ehp.0900793.
  • Karri, V., V. Kumar, D. Ramos, E. Oliveira, and M. Schuhmacher. 2018. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line. Toxicology Letters 282:25–36. doi: 10.1016/j.toxlet.2017.10.002.
  • Khandanlou, R., H. R. F. Masoumi, M. B. Ahmad, K. Shameli, M. Basri, and K. Kalantari. 2016. Enhancement of heavy metals sorption via nanocomposites of rice straw and Fe3O4 nanoparticles using artificial neural network (ANN). Ecological Engineering 91:249–56. doi: 10.1016/j.ecoleng.2016.03.012.
  • Khan, A. Z., S. Khan, M. A. Khan, M. Alam, and T. Ayaz. 2020. Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environmental Technology & Innovation 17:100590. doi: 10.1016/j.eti.2019.100590.
  • Khan, F. S. A., N. M. Mubarak, Y. H. Tan, M. Khalid, R. R. Karri, R. Walvekar, E. C. Abdullah, S. Nizamuddin, and S. A. Mazari. 2021. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes . Journal of Hazardous Materials 413:125375 doi: 10.1016/j.jhazmat.2021.125375.
  • Khare, P., A. Yadav, J. Ramkumar, and N. Verma. 2016. Microchannel-embedded metal–carbon–polymer nanocomposite as a novel support for chitosan for efficient removal of hexavalent chromium from water under dynamic conditions. Chemical Engineering Journal 293:44–54. doi: 10.1016/j.cej.2016.02.049.
  • Kharisov, B. I., O. V. Kharissova, and H. R. Dias. 2014. Nanomaterials for environmental protection. Hoboken, New Jersey: John Wiley & Sons. doi: 10.1002/9781118845530.
  • Kim, Y. O., and H. Kang. 2018. Comparative expression analysis of genes encoding metallothioneins in response to heavy metals and abiotic stresses in rice (Oryza sativa) and Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry 82 (9):1656–65. doi: 10.1080/09168451.2018.1486177.
  • Kumar, P. N., V. Dushenkov, H. Motto, and I. Raskin. 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science & Technology 29 (5):1232–8. doi: 10.1021/es00005a014.
  • Kumar, S., S. Prasad, K. K. Yadav, M. Shrivastava, N. Gupta, S. Nagar, Q. V. Bach, H. Kamyab, S. A. Khan, and S. Yadav. 2019. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental Research 179:108792 doi: 10.1016/j.envres.2019.108792.
  • Lauth, V., M. Maas, and K. Rezwan. 2017. An evaluation of colloidal and crystalline properties of CaCO3 nanoparticles for biological applications. Materials Science & Engineering. C, Materials for Biological Applications 78:305–14. doi: 10.1016/j.msec.2017.04.037.
  • Leong, Y. K., and J. S. Chang. 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource Technology 303:122886 doi: 10.1016/j.biortech.2020.122886.
  • Li, Y., L. Liang, W. Li, U. Ashraf, L. Ma, X. Tang, S. Pan, H. Tian, and Z. Mo. 2021. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology 19 (1):19–75. doi: 10.1186/s12951-021-00820-9.
  • Liang, K., J. J. Richardson, J. Cui, F. Caruso, C. J. Doonan, and P. Falcaro. 2016. Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Advanced Materials (Deerfield Beach, Fla.) 28 (36):7910–4. doi: 10.1002/adma.201602335.
  • Liang, J., M. Y. Zulkifli, S. Choy, Y. Li, M. Gao, B. Kong, J. Yun, and K. Liang. 2020. Metal-organic framework-plant nanobiohybrids as living sensors for on-site environmental pollutant detection . Environmental Science & Technology 54 (18):11356–64. doi: 10.1021/acs.est.0c04688.
  • Liao, S., G. Jin, M. A. Khan, Y. Zhu, L. Duan, W. Luo, J. Jia, B. Zhong, J. Ma, and Z. Ye. 2021. The quantitative source apportionment of heavy metals in peri-urban agricultural soils with UNMIX and input fluxes analysis. Environmental Technology & Innovation 21:101232. doi: 10.1016/j.eti.2020.101232.
  • Lin, J., F. He, G. Owens, and Z. Chen. 2021. How do phytogenic iron oxide nanoparticles drive redox reactions to reduce cadmium availability in a flooded paddy soil? Journal of Hazardous Materials 403:123736. doi: 10.1016/j.jhazmat.2020.123736.
  • Lin, L., W. Zhou, H. Dai, F. Cao, G. Zhang, and F. Wu. 2012. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials 235:343–51. doi: 10.1016/j.jhazmat.2012.08.012.
  • Liu, K., F. Li, J. Cui, S. Yang, and L. Fang. 2020. Simultaneous removal of Cd (II) and As (III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. Journal of Hazardous Materials 395:122623. doi: 10.1016/j.jhazmat.2020.122623.
  • Liu, Q., F. Li, H. Lu, M. Li, J. Liu, S. Zhang, Q. Sun, and L. Xiong. 2018. Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chemistry 242:256–63. doi: 10.1016/j.foodchem.2017.09.071.
  • Liu, L., W. Li, W. Song, and M. Guo. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment 633:206–19. doi: 10.1016/j.scitotenv.2018.03.161.
  • Liu, J., M. Simms, S. Song, R. S. King, and G. P. Cobb. 2018. Physiological effects of copper oxide nanoparticles and arsenic on the growth and life cycle of rice (Oryza sativa japonica ‘Koshihikari’). Environmental Science & Technology 52 (23):13728–37. doi: 10.1021/acs.est.8b03731.
  • Liu, G., J. Wang, E. Zhang, J. Hou, and X. Liu. 2016. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Environmental Science and Pollution Research International 23 (9):8709–20. doi: 10.1007/s11356-016-6114-6.
  • Liu, W., Y. S. Yang, Q. Zhou, L. Xie, P. Li, and T. Sun. 2007. Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67 (6):1155–63. doi: 10.1016/j.chemosphere.2006.11.011.
  • Lombi, E., E. Donner, M. Dusinska, and F. Wickson. 2019. A one health approach to managing the applications and implications of nanotechnologies in agriculture. Nature Nanotechnology 14 (6):523–31. doi: 10.1038/s41565-019-0460-8.
  • Lu, A., J. Wang, X. Qin, K. Wang, P. Han, and S. Zhang. 2012. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment 425:66–74. doi: 10.1016/j.scitotenv.2012.03.003.
  • Ma, X., H. Sharifan, F. Dou, and W. Sun. 2020. Simultaneous reduction of arsenic (As) and cadmium (Cd) accumulation in rice by zinc oxide nanoparticles. Chemical Engineering Journal 384:23802. doi: 10.1016/j.cej.2019.123802.
  • Mao, C., Y. Song, L. Chen, J. Ji, J. Li, X. Yuan, Z. Yang, G. A. Ayoko, R. L. Frost, and F. Theiss. 2019. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena 175:339–48. doi: 10.1016/j.catena.2018.12.029.
  • Marty, T., B. Vanstone, and T. Hahn. 2020. News media analytics in finance: A survey. Accounting & Finance 60 (2):1385–434. doi: 10.1111/acfi.12466.
  • Matos, M. P., A. A. S. Correia, and M. G. Rasteiro. 2017. Application of carbon nanotubes to immobilize heavy metals in contaminated soils. Journal of Nanoparticle Research 19 (4):126. doi: 10.1007/s11051-017-3830-x.
  • Micó, C., L. Recatalá, M. Peris, and J. Sánchez. 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65 (5):863–72. doi: 10.1016/j.chemosphere.2006.03.016.
  • Miernicki, M., T. Hofmann, I. Eisenberger, F. von der Kammer, and A. Praetorius. 2019. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nature Nanotechnology 14 (3):208–16. doi: 10.1038/s41565-019-0396-z.
  • Mishra, S., R. N. Bharagava, N. More, A. Yadav, S. Zainith, S. Mani, and P. Chowdhary. 2019. Heavy metal contamination: An alarming threat to environment and human health. In Environmental biotechnology: For sustainable future, ed. Ranbir Chander Sobti, Naveen Kumar Arora, and Richa Kothari, 103–25. Switzerland: Springer. doi: 10.1007/978-981-10-7284-0_5.
  • Mishra, P., and R. Dubey. 2013. Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings. Biometals : An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 26 (1):97–111. doi: 10.1007/s10534-012-9597-8.
  • Mo, Z., J. Qin, Q. Li, Y. Wei, S. Ma, Y. Xiong, G. Liang, L. Qing, Z. Chen, and X. Yang. 2015. Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China. Science of the Total Environment 530:163–70. doi: 10.1016/j.scitotenv.2015.05.100.
  • Mukhopadhyay, R., D. Bhaduri, B. Sarkar, R. Rusmin, D. Hou, R. Khanam, S. Sarkar, J. Kumar Biswas, M. Vithanage, A. Bhatnagar, et al. 2020. Clay-polymer nanocomposites: Progress and challenges for use in sustainable water treatment. Journal of Hazardous Materials 383:121125 doi: 10.1016/j.jhazmat.2019.121125.
  • Mukhopadhyay, R., B. Sarkar, E. Khan, D. S. Alessi, J. K. Biswas, K. Manjaiah, M. Eguchi, K. C. Wu, Y. Yamauchi, and Y. S. Ok. 2021. Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Critical Reviews in Environmental Science and Technology 51:1–50. doi: 10.3390/w13162186.
  • Navarro, E., A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi, and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology (London, England) 17 (5):372–86. doi: 10.1007/s10646-008-0214-0.
  • Njuguna, J., F. Ansari, S. Sachse, H. Zhu, and V. Rodriguez. 2014. Nanomaterials, nanofillers, and nanocomposites: Types and properties. In Health and environmental safety of nanomaterials, ed. James Njuguna, Krzysztof Pielichowski, and Huijun Zhu, 3–27. New York: Elsevier. doi: 10.1016/B978-0-12-820505-1.00011-0.
  • Noman, M., T. Ahmed, S. Hussain, M. B. K. Niazi, M. Shahid, and F. Song. 2020b. Biogenic copper nanoparticles synthesized by using a copper-resistant strain Shigella flexneri SNT22 reduced the translocation of cadmium from soil to wheat plants. Journal of Hazardous Materials 398:123175 doi: 10.1016/j.jhazmat.2020.123175.
  • Noman, M., M. Shahid, T. Ahmed, M. Tahir, T. Naqqash, S. Muhammad, F. Song, H. M. A. Abid, and Z. Aslam. 2020a. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicology and Environmental Safety 192:110303 doi: 10.1016/j.ecoenv.2020.110303.
  • Norton, G. J., D. E. Lou-Hing, A. A. Meharg, and A. H. Price. 2008. Rice-arsenate interactions in hydroponics: Whole genome transcriptional analysis. Journal of Experimental Botany 59 (8):2267–76. doi: 10.1093/jxb/ern097.
  • Palomo, J. M. 2019. Nanobiohybrids: A new concept for metal nanoparticles synthesis. Chemical Communications (Cambridge, England) 55 (65):9583–9. doi: 10.1039/C9CC04944D.
  • Pan, C., Y. Bao, A. Guo, and J. Ma. 2020. Environmentally relevant-level CeO2 NP with ferrous amendment alters soil bacterial community compositions and metabolite profiles in rice-planted soils. Journal of Agricultural and Food Chemistry 68 (31):8172–84. doi: 10.1021/acs.jafc.0c03507.
  • Panaullah, G. M., T. Alam, M. B. Hossain, R. H. Loeppert, J. G. Lauren, C. A. Meisner, Z. U. Ahmed, and J. M. Duxbury. 2009. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant and Soil 317 (1):31–9. doi: 10.1007/s11104-008-9786-y.
  • Pandey, A., A. Gautam, P. Pandey, and R. Dubey. 2019. Alleviation of chromium toxicity in rice seedling using Phyllanthus emblica aqueous extract in relation to metal uptake and modulation of antioxidative defense. South African Journal of Botany 121:306–16. doi: 10.1016/j.sajb.2018.11.014.
  • Pandey, C., and M. Gupta. 2018. Selenium amelioration of arsenic toxicity in rice shows genotypic variation: A transcriptomic and biochemical analysis. Journal of Plant Physiology 231:168–81. doi: 10.1016/j.jplph.2018.09.013.
  • Park, K. 2019. The beginning of the end of the nanomedicine hype. Journal of Controlled Release 305:221–2. doi: 10.1016/j.jconrel.2019.05.044.
  • Pradhan, S., and D. R. Mailapalli. 2017. Interaction of engineered nanoparticles with the agri-environment. Journal of Agricultural and Food Chemistry 65 (38):8279–94. doi: 10.1021/acs.jafc.7b02528.
  • Praveena, S., and N. Omar. 2017. Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis. Food Chemistry 235:203–11. doi: 10.1016/j.foodchem.2017.05.049.
  • Qian, Y., C. Qin, M. Chen, and S. Lin. 2020. Nanotechnology in soil remediation − applications vs. implications. Ecotoxicology and Environmental Safety 201:110815. doi: 10.1016/j.ecoenv.2020.110815.
  • Qiao, J. T., X. M. Li, M. Hu, F. B. Li, L. Y. Young, W. M. Sun, W. L. Huang, and J. H. Cui. 2018a. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil. Environmental Science & Technology 52 (1):61–70. doi: 10.1021/acs.est.7b03771.
  • Qiao, J. T., T. X. Liu, X. Q. Wang, F. B. Li, Y. H. Lv, J. H. Cui, X. D. Zeng, Y. Z. Yuan, and C. P. Liu. 2018. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere 195:260–71. doi: 10.1016/j.chemosphere.2017.12.081.
  • Qiu, Y., Q. Zhang, B. Gao, M. Li, Z. Fan, W. Sang, H. Hao, and X. Wei. 2020. Removal mechanisms of Cr (VI) and Cr (III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. Environmental Pollution 265:115018. doi: 10.1016/j.envpol.2020.115018.
  • Rai, P. K., V. Kumar, S. Lee, N. Raza, K. H. Kim, Y. S. Ok, and D. C. Tsang. 2018. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture. Environment International 119:1–19. doi: 10.1016/j.envint.2018.06.012.
  • Rai, P. K., S. S. Lee, M. Zhang, Y. F. Tsang, and K. H. Kim. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International 125:365–85. doi: 10.1016/j.envint.2019.01.067.
  • Rajput, V., T. Minkina, S. Sushkova, A. Behal, A. Maksimov, E. Blicharska, K. Ghazaryan, H. Movsesyan, and N. Barsova. 2020. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental Geochemistry and Health 42 (1):147–58. doi: 10.1007/s10653-019-00317-3.
  • Ren, J. H., H. J. Sun, S. F. Wang, J. Luo, and L. Q. Ma. 2014. Interactive effects of mercury and arsenic on their uptake, speciation and toxicity in rice seedling. Chemosphere 117:737–44. doi: 10.1016/j.chemosphere.2014.10.035.
  • Rezvani, E., A. Rafferty, C. McGuinness, and J. Kennedy. 2019. Adverse effects of nanosilver on human health and the environment. Acta Biomaterialia 94:145–59. doi: 10.1016/j.actbio.2019.05.042.
  • Richardson, J. J., and K. Liang. 2018. Nano‐biohybrids: In vivo synthesis of metal–organic frameworks inside living plants. Small 14 (3):1702958. doi: 10.1002/smll.201702958.
  • Rizwan, M., S. Ali, B. Ali, M. Adrees, M. Arshad, A. Hussain, M. Z. Ur Rehman, and A. A. Waris. 2019a. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–77. doi: 10.1016/j.chemosphere.2018.09.120.
  • Rizwan, M., S. Ali, M. Z. Ur Rehman, S. Malik, M. Adrees, M. F. Qayyum, S. A. Alamri, M. N. Alyemeni, and P. Ahmad. 2019b. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice Oryza sativa. Acta Physiologiae Plantarum 41 (3):1–12. doi: 10.1007/s11738-019-2828-7.
  • Rizwan, M., S. Noureen, S. Ali, S. Anwar, M. Z. Ur Rehman, M. F. Qayyum, and A. Hussain. 2019c. Influence of biochar amendment and foliar application of iron oxide nanoparticles on growth, photosynthesis, and cadmium accumulation in rice biomass. Journal of Soils and Sediments 19 (11):3749–59. doi: 10.1007/s11368-019-02327-1.
  • Sarwar, N., M. Imran, M. R. Shaheen, W. Ishaque, M. A. Kamran, A. Matloob, A. Rehim, and S. Hussain. 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171:710–21. doi: 10.1016/j.chemosphere.2016.12.116.
  • Satoh-Nagasawa, N., M. Mori, N. Nakazawa, T. Kawamoto, Y. Nagato, K. Sakurai, H. Takahashi, A. Watanabe, and H. Akagi. 2012. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant & Cell Physiology 53 (1):213–24. doi: 10.1093/pcp/pcr166.
  • Sebastian, A., A. Nangia, and M. Prasad. 2018. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. Journal of Cleaner Production 174:355–66. doi: 10.1016/j.jclepro.2017.10.343.
  • Sebastian, A., A. Nangia, and M. Prasad. 2019. Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice. Journal of Hazardous Materials 371:261–72. doi: 10.1016/j.jhazmat.2019.03.021.
  • Setyawati, M. I., C. Y. Tay, and D. T. Leong. 2015. Mechanistic investigation of the biological effects of SiO2, TiO2, and ZnO nanoparticles on intestinal cells. Small (Weinheim an Der Bergstrasse, Germany) 11 (28):3458–68. doi: 10.1002/smll.201403232.
  • Shafi, A., S. Bano, N. Khan, S. Sultana, Z. Rehman, M. M. Rahman, S. Sabir, F. Coulon, and M. Z. Khan. 2021. Nanoremediation Technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 34:130065. doi: 10.1016/j.chemosphere.2021.130065.
  • Shao, J. F., J. Xia, N. Yamaji, R. F. Shen, and J. F. Ma. 2018. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. Journal of Experimental Botany 69 (10):2743–52. doi: 10.1093/jxb/ery107.
  • Su, D., X. Liu, L. Wang, C. Ma, H. Xie, H. Zhang, X. Meng, Y. Huang, and X. Huang. 2016. Bio-inspired engineering proteinosomes with a cell-wall-like protective shell by self-assembly of a metal-chelated complex. Chemical Communications (Cambridge, England) 52 (95):13803–6. doi: 10.1039/c6cc07655f.
  • Sun, C., J. Liu, Y. Wang, L. Sun, and H. Yu. 2013. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui Northeast China. Chemosphere 92 (5):517–23. doi: 10.1016/j.chemosphere.2013.02.063.
  • Tabatabai, M. A., D. L. Sparks, L. Al-Amoodi, and W. Dick. 2005. Chemical processes in soils. Soil Science Society of America Inc. doi: 10.2136/sssabookser8.
  • Tang, Z., Y. Chen, A. J. Miller, and F. J. Zhao. 2019. The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice. Plant & Cell Physiology 60 (7):1525–35. doi: 10.1093/pcp/pcz054.
  • Tang, Y., L. Wang, A. Carswell, T. Misselbrook, J. Shen, and J. Han. 2020. Fate and transfer of heavy metals following repeated biogas slurry application in a rice-wheat crop rotation. Journal of Environmental Management 270:110938. doi: 10.1016/j.jenvman.2020.11093.
  • Tinkov, A. A., T. Filippini, O. P. Ajsuvakova, J. Aaseth, Y. G. Gluhcheva, J. M. Ivanova, G. Bjørklund, M. G. Skalnaya, E. R. Gatiatulina, and E. V. Popova. 2017. The role of cadmium in obesity and diabetes. Science of the Total Environment 601:741–55. doi: 10.1016/j.scitotenv.2017.05.224.
  • Tripathi, D. K., V. P. Singh, D. Kumar, and D. K. Chauhan. 2012. Rice seedlings under cadmium stress: Effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chemistry and Ecology 28 (3):281–91. doi: 10.1080/02757540.2011.644789.
  • Uchimiya, M., D. Bannon, H. Nakanishi, M. B. McBride, M. A. Williams, and T. Yoshihara. 2020. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. Journal of Agricultural and Food Chemistry 68 (46):12856–69. doi: 10.1021/acs.jafc.0c00183.
  • USEPA. 2012. Nanotechnology fact sheet. http://epa.gov/research/priorities/docs/nanotechnology-fact-sheet20121204.pdf: Jun. 28, 2013.
  • Vareda, J. P., A. J. Valente, and L. Durães. 2019. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management 246:101–18. doi: 10.1016/j.jenvman.2019.05.126.
  • Verma, S., and A. Kuila. 2019. Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation 14:100369. doi: 10.1016/j.eti.2019.100369.
  • Vítková, M., M. Komárek, V. Tejnecký, and H. Šillerová. 2015. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. Journal of Hazardous Materials 293:7–14. doi: 10.1016/j.jhazmat.2015.03.033.
  • Wang, C., T. Cheng, H. Liu, F. Zhou, J. Zhang, M. Zhang, X. Liu, W. Shi, and T. Cao. 2021. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. Journal of Environmental Sciences 103:336–46. doi: 10.1016/j.jes.2020.11.005.
  • Wang, S., B. Gao, Y. Li, A. E. Creamer, and F. He. 2017. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. Journal of Hazardous Materials 322:172–81. doi: 10.1016/j.jhazmat.2016.01.052.
  • Wang, F., W. Guan, L. Xu, Z. Ding, H. Ma, A. Ma, and N. Terry. 2019. Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Applied Sciences 9 (8):1534. doi: 10.3390/app9081534.
  • Wang, X., Y. Guo, L. Yang, M. Han, J. Zhao, and X. Cheng. 2012. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. Journal of Environmental & Analytical Toxicology 2 (7):154–8. doi: 10.4172/2161-0525.1000154.
  • Wang, L., D. Hou, Z. Shen, J. Zhu, X. Jia, Y. S. Ok, F. M. Tack, and J. Rinklebe. 2020. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Critical Reviews in Environmental Science and Technology 50 (24):2724–74. doi: 10.1080/10643389.2019.1705724.
  • Wang, Y., C. Peng, H. Fang, L. Sun, H. Zhang, J. Feng, D. Duan, T. Liu, and J. Shi. 2015. Mitigation of Cu (II) phytotoxicity to rice (Oryza sativa) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. Environmental Toxicology and Chemistry 34 (7):1588–96. doi: 10.1002/etc.2953.
  • Wang, X., W. Sun, and X. Ma. 2019. Differential impacts of copper oxide nanoparticles and Copper (II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Environmental Pollution 252:967–73. doi: 10.1016/j.envpol.2019.06.052.
  • Wang, X., W. Sun, S. Zhang, H. Sharifan, and X. Ma. 2018a. Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a hydroponic system. Environmental Science & Technology 52 (17):10040–7. doi: 10.1021/acs.est.8b01664.
  • Williams, R. J., S. Harrison, V. Keller, J. Kuenen, S. Lofts, A. Praetorius, C. Svendsen, L. C. Vermeulen, and J. van Wijnen. 2019. Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability 36:105–15. doi: 10.1016/j.cosust.2018.11.002.
  • Wuana, R. A., and F. E. Okieimen. 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices 2011:1–20. doi: 10.5402/2011/402647.
  • Wu, F., Q. Fang, S. Yan, L. Pan, X. Tang, and W. Ye. 2020a. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): Germination, early growth, and arsenic uptake. Environmental Science and Pollution Research 27:26974–81. doi: 10.1007/s11356-020-08965-0.
  • Wu, X., J. Hu, F. Wu, X. Zhang, B. Wang, Y. Yang, G. Shen, J. Liu, S. Tao, and X. Wang. 2020b. Application of TiO2 nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. Journal of Hazardous Materials :124047. doi: 10.1016/j.jhazmat.2020.124047.
  • Xiang, M., Y. Li, J. Yang, K. Lei, Y. Li, F. Li, D. Zheng, X. Fang, and Y. Cao. 2021. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environmental Pollution 278:116911. doi: 10.1016/j.envpol.2021.116911.
  • Xu, D. M., R. B. Fu, H. Q. Liu, and X. P. Guo. 2020. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. Journal of Cleaner Production 24:124989. doi: 10.1016/j.jclepro.2020.124989.
  • Xu, C., C. Peng, L. Sun, S. Zhang, H. Huang, Y. Chen, and J. Shi. 2015. Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biology and Biochemistry 86:24–33. doi: 10.1016/j.soilbio.2015.03.011.
  • Yadav, K. K., N. Gupta, V. Kumar, P. Choudhary, and S. A. Khan. 2018. GIS-based evaluation of groundwater geochemistry and statistical determination of the fate of contaminants in shallow aquifers from different functional areas of Agra city, India: Levels and spatial distributions. RSC Advances 8 (29):15876–89. doi: 10.1039/C8RA00577J.
  • Yan, A., Y. Wang, S. N. Tan, M. L. M. Yusof, S. Ghosh, and Z. Chen. 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11:359. doi: 10.3389/fpls.2020.00359.
  • Yang, Z., F. Jing, X. Chen, W. Liu, B. Guo, G. Lin, R. Huang, and W. Liu. 2018. Spatial distribution and sources of seven available heavy metals in the paddy soil of red region in Hunan Province of China. Environmental Monitoring and Assessment 190 (10):1–10. doi: 10.1007/s10661-018-6995-6.
  • Yuan, Y., Y. Wu, X. Ge, D. Nie, M. Wang, H. Zhou, and M. Chen. 2019. In vitro toxicity evaluation of heavy metals in urban air particulate matter on human lung epithelial cells. Science of the Total Environment 678:301–8. doi: 10.1016/j.scitotenv.2019.04.431.
  • Yuanan, H., K. He, Z. Sun, G. Chen, and H. Cheng. 2020. Quantitative source apportionment of heavy metal (loid) s in the agricultural soils of an industrializing region and associated model uncertainty. Journal of Hazardous Materials 391:122244. doi: 10.1016/j.jhazmat.2020.122244.
  • Yue, L., F. Lian, Y. Han, Q. Bao, Z. Wang, and B. Xing. 2019. The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Science of the Total Environment 656:9–18. doi: 10.1016/j.scitotenv.2018.11.364.
  • Zhang, W., J. Long, J. Geng, J. Li, and Z. Wei. 2020. Impact of titanium dioxide nanoparticles on Cd phytotoxicity and bioaccumulation in rice (Oryza sativa L.). International Journal of Environmental Eesearch and Public Health 17 (9):2979. doi: 10.3390/ijerph17092979.
  • Zhang, W., J. Long, J. Li, M. Zhang, G. Xiao, X. Ye, W. Chang, and H. Zeng. 2019. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice. Environmental Science and Pollution Research International 26 (22):23119–28. doi: 10.1007/s11356-019-05551-x.
  • Zhang, X., T. Zhong, L. Liu, and X. Ouyang. 2015. Impact of soil heavy metal pollution on food safety in China. PLoS One 10 (8):e0135182. doi: 10.1371/journal.pone.0135182.
  • Zhao, K., X. Liu, J. Xu, and H. Selim. 2010. Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. Journal of Hazardous Materials 181 (1–3):778–87. doi: 10.1016/j.jhazmat.2010.05.081.
  • Zhou, J., B. Du, H. Liu, H. Cui, W. Zhang, X. Fan, J. Cui, and J. Zhou. 2020. The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice. Journal of Hazardous Materials 384:121285. doi: 10.1016/j.jhazmat.2019.121285.
  • Zhou, S., L. Peng, M. Lei, Y. Pan, and D. Lan. 2015. Control of As soil to rice transfer (Oryza sativa L.) with nano-manganese dioxide. Acta Scientiae Circumstantiae 35:855–61. doi: 10.234/a.scir.2016.05.072.
  • Zhu, F., L. Li, S. Ma, and Z. Shang. 2016. Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles. Chemical Engineering Journal 302:663–9. doi: 10.1016/j.cej.2016.05.072.
  • Zulfiqar, F., and M. Ashraf. 2021. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry : PPB 160:257–68. doi: 10.1016/j.plaphy.2021.01.028.
  • Zulfiqar, F., M. Navarro, M. Ashraf, N. A. Akram, and S. Munné-Bosch. 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science : An International Journal of Experimental Plant Biology 289:110270. doi: 10.1016/j.plantsci.2019.110270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.