565
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer’s and Parkinson’s diseases: a critical analysis on mechanistic insight

, ORCID Icon, & ORCID Icon

References

  • Abbasi, E., M. Nassiri-Asl, M. Shafeei, and M. Sheikhi. 2012. Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole-induced seizure in rats. Chemical Biology & Drug Design 80 (2):274–8. doi: 10.1111/j.1747-0285.2012.01400.x.
  • Abbasi, E., M. Nassiri-Asl, M. Sheikhi, and M. Shafiee. 2013. Effects of vitexin on scopolamine-induced memory impairment in rats. Chinese Journal of Physiology 56 (3):184–9. doi: 10.4077/CJP.2013.BAB123.
  • Abdallah, W. E., W. M. Elsayed, R. A. Hassan, N. M. Nazif, M. I. Ali, and K. A. Abdelshafeek. 2019. Acetylcholinesterase inhibition, antioxidant and identification of some chemical constituents of Phyllanthus atropurpureus cultivated in Egypt. Brazilian Journal of Pharmaceutical Sciences 55:e18083. doi: 10.1590/s2175-97902019000118083.
  • Adhikari-Devkota, A., Y. Kurauchi, T. Yamada, H. Katsuki, T. Watanabe, and H. P. Devkota. 2019. Anti-neuroinflammatory activities of extract and polymethoxyflavonoids from immature fruit peels of Citrus ‘Hebesu’. Journal of Food Biochemistry 43 (6):e12813 doi: 10.1111/jfbc.12813.
  • Ali, F., and Y. H. Siddique. 2019. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming Alzheimer’s disease. CNS Neurol Disord Drug Targets 18 (5):352–62. doi: 10.2174/1871527318666190319141835.
  • Amedu, N. O., and G. O. Omotoso. 2020. Lead acetate- induced neurodegenerative changes in the dorsolateral prefrontal cortex of mice: The role of Vitexin. Environmental Analysis, Health and Toxicology 35 (1):e2020001 doi: 10.5620/eaht.e2020001.
  • An, F., G. Yang, J. Tian, and S. Wang. 2012. Antioxidant effects of the orientin and vitexin in Trollius chinensis Bunge in D-galactose-aged mice. Neural Regeneration Research 7 (33):2565–75. doi: 10.3969/j.issn.1673-5374.2012.33.001.
  • Angeloni, C., M. C. Barbalace, and S. Hrelia. 2019. Icariin and its metabolites as potential protective phytochemicals against Alzheimer’s disease. Frontiers in Pharmacology 10:271 doi: 10.3389/fphar.2019.00271.
  • Angelopoulou, E., E. Pyrgelis, and C. Piperi. 2020. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochemistry International 132:104612 doi: 10.1016/j.neuint.2019.104612.
  • Arora, A., M. G. Nair, and G. M. Strasburg. 1998. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biology and Medicine 24 (9):1355–63. doi: 10.1016/s0891-5849(97)00458-9.
  • Arredondo, F., C. Echeverry, F. Blasina, L. Vaamonde, M. Díaz, F. Rivera, M. Martínez, J. A. Abin-Carriquiry, and F. Dajas. 2015. Chapter 25 - Flavones and flavonols in brain and disease: Facts and pitfalls. In Bioactive nutraceuticals and dietary supplements in neurological and brain disease: Prevention and therapy, ed. R. R. Watson and V. R. Preedy, 229–36. London, UK: Academic Press, Elsevier Inc. doi: 10.1016/B978-0-12-411462-3.00025-4.
  • Aseervatham, G. S., U. Suryakala, S. Doulethunisha, P. C. Bose, and T. Sivasudha. 2016. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomedicine & Pharmacotherapy 82:54–64. doi: 10.1016/j.biopha.2016.04.066.
  • Ashrafizadeh, M., Z. Ahmadi, R. Mohammadinejad, and E. G. Afshar. 2020. Tangeretin: A mechanistic review of its pharmacological and therapeutic effects. Journal of Basic and Clinical Physiology and Pharmacology 31 (4):1–10. doi: 10.1515/jbcpp-2019-0191.
  • Ayaz, M., A. Sadiq, M. Junaid, F. Ullah, M. Ovais, I. Ullah, J. Ahmed, and M. Shahid. 2019. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Frontiers in Aging Neuroscience 11:155 doi: 10.3389/fnagi.2019.00155.
  • Babaei, F., Moafizad, A. Z. Darvishvand, M. Mirzababaei, H. Hosseinzadeh, and M. Nassiri‐Asl. 2020. Review of the effects of vitexin in oxidative stress-related diseases. Food Science and Nutrition 8 (6):2569–80. doi: 10.1002/fsn3.1567.
  • Barreca, D., G. Mandalari, A. Calderaro, A. Smeriglio, D. Trombetta, M. R. Felice, and G. Gattuso. 2020. Citrus flavones: An update on sources, biological functions, and health promoting properties. Plants 9 (3):288. doi: 10.3390/plants9030288.
  • Borghi, S. M., T. T. Carvalho, L. Staurengo-Ferrari, M. S. N. Hohmann, P. Pinge-Filho, R. Casagrande, and W. A. Verri. 2013. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. Journal of Natural Products 76 (6):1141–9. doi: 10.1021/np400222v.
  • Bors, W., W. Heller, C. Michel, and M. Saran. 1990. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods in Enzymology 186:343–55. doi: 10.1016/0076-6879(90)86128-i.
  • Bucar, F., S. M. Jachak, Y. Noreem, T. Kartnig, P. Perera, L. Bohlin, and M. Schubert-Zsilavecz. 1998. Amentoflavone from Biophytum sensitivum and its effect on COX-1/COX-2 catalysed prostaglandin biosynthesis. Planta Medica 64 (4):373–4. doi: 10.1055/s-2006-957455.
  • Butterweck, V., A. Nahrstedt, J. Evans, S. Hufeisen, L. Rauser, J. Savage, B. Popadak, P. Ernsberger, and B. L. Roth. 2002. In vitro receptor screening of pure constituents of St. John’s wort reveals novel interactions with a number of GPCRs. Psychopharmacology 162 (2):193–202. doi: 10.1007/s00213-002-1073-7.
  • Can, O. D., U. D. Özkay, and U. I. Üçel. 2013. Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. European Journal of Pharmacology 699 (1–3):250–7. doi: 10.1016/j.ejphar.2012.10.017.
  • Cao, B., M. Zeng, Q. Zhang, B. Zhang, Y. Cao, Y. Wu, W. Feng, and X. Zheng. 2021. Amentoflavone ameliorates memory deficits and abnormal autophagy in Aβ25-35-induced mice by mTOR signaling. Neurochemical Research 46 (4):921–34. doi: 10.1007/s11064-020-03223-8.
  • Cao, Q., L. Qin, F. Huang, X. Wang, L. Yang, H. Shi, H. Wu, B. Zhang, Z. Chen, and X. Wu. 2017. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicology and Applied Pharmacology 319:80–90. doi: 10.1016/j.taap.2017.01.019.
  • Cassani, J., A. Dorantes-Barrón, L. Novales, G. Real, and R. Estrada-Reyes. 2014. Anti-depressant-like effect of kaempferitrin isolated from Justicia spicigera Schltdl (Acanthaceae) in two behavior models in mice: Evidence for the involvement of the serotonergic system. Molecules (Basel, Switzerland) 19 (12):21442–61. doi: 10.3390/molecules191221442.
  • Catarino, M. D., J. M. Alves-Silva, O. R. Pereira, and S. M. Cardoso. 2015. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Current Topics in Medicinal Chemistry 15 (2):105–19. PMID: 25547095
  • Chandran, G. Muralidhara. 2013. Neuroprotective effect of aqueous extract of Selaginella delicatula as evidenced by abrogation of rotenone-induced motor deficits, oxidative dysfunctions, and neurotoxicity in mice. Cellular and Molecular Neurobiology 33:929–42. doi: 10.1007/s10571-013-9959-y.
  • Chen, C., B. Li, G. Cheng, X. Yang, N. Zhao, and R. Shi. 2018. Amentoflavone ameliorates Aβ1-42-induced memory deficits and oxidative stress in cellular and rat model. Neurochemical Research 43 (4):857–68. doi: 10.1007/s11064-018-2489-8.
  • Chen, L., B. Zhang, S. Shan, and X. Zhao. 2016. Neuroprotective effects of vitexin against isoflurane-induced neurotoxicity by targeting the TRPV1 and NR2B signaling pathways. Molecular Medicine Reports 14 (6):5607–13. doi: 10.3892/mmr.2016.5948.
  • Chen, L., H. Teng, Z. Xie, H. Cao, W. S. Cheang, K. Skalicka-Woniak, M. I. Georgiev, and J. Xiao. 2018. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Critical Reviews in Food Science and Nutrition 58 (4):513–27. doi: 10.1080/10408398.2016.1196334.
  • Choi, E. Y., S. S. Kang, S. K. Lee, and B. H. Han. 2020. Polyphenolic biflavonoids inhibit amyloid-beta fibrillation and disaggregate preformed amyloid-beta fibrils. Biomolecules & Therapeutics 28 (2):145–51. doi: 10.4062/biomolther.2019.113.
  • Colovic, M., C. Fracasso, and S. Caccia. 2008. Brain-to-plasma distribution ratio of the biflavone amentoflavone in the mouse. Drug Metabolism Letters 2 (2):90–4. doi: 10.2174/187231208784040988.
  • Cui, Y., X. Zhang, N. Wang, M. Zheng, and J. Yan. 2019. Vitexin protects against ischemia/reperfusion-induced brain endothelial permeability. European Journal of Pharmacology 853:210–9. doi: 10.1016/j.ejphar.2019.03.015.
  • Dajas, F., A. J. Andrés, A. Florencia, E. Carolina, and R. Felicia. 2013. Neuroprotective actions of flavones and flavonols: Mechanisms and relationship to flavonoid structural features. Central Nervous System Agents in Medicinal Chemistry 13 (1):30–5. doi: 10.2174/1871524911313010005..
  • Dauer, W., and S. Przedborski. 2003. Parkinson’s diseases: Mechanisms and models. Neuron 39 (6):889–909. doi: 10.1016/s0896-6273(03)00568-3.
  • de-Oliveira, D. D., C. P. da-Silva, B. B. Iglesias, and R. O. Beleboni. 2020. Vitexin possesses anticonvulsant and anxiolytic-like effects in murine animal models. Frontiers in Pharmacology 11:1181 doi: 10.3389/fphar.2020.01181.
  • DeTure, M. A., and D. W. Dickson. 2019. The neuropathological diagnosis of Alzheimer’s disease. Molecular Neurodegeneration 14 (1):32 doi: 10.1186/s13024-019-0333-5.
  • Ding, Y-q, Y. Xiong, B. Zhou, M-z Deng, and K-z Deng. 2015. Isolation and structural identification of flavonoids from Aurantii Fructus. Zhongguo Zhong Yao za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica 40 (12):2352–6.
  • Duan, L., L. Dou, K. Yu, L. Guo, C. Bai-Zhong, P. Li, and E. Liu. 2017. Polymethoxyflavones in peel of Citrus reticulata ‘Chachi’ and their biological activities. Food Chemistry 234:254–61. doi: 10.1016/j.foodchem.2017.05.018.
  • Dugger, B. N., and D. W. Dickson. 2017. Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology 9 (7):a028035. doi: 10.1101/cshperspect.a028035.
  • Echeverry, C., F. Arredondo, J. A. Abin-Carriquiry, J. O. Midiwo, C. Ochieng, L. Kerubo, and F. Dajas. 2010. Pretreatment with natural flavones and neuronal cell survival after oxidative stress: A structure-activity relationship study . Journal of Agricultural and Food Chemistry 58 (4):2111–5. doi: 10.1021/jf902951v.
  • Echeverry, C., F. Arredondo, M. Martínez, J. A. Abin-Carriquiry, J. Midiwo, and F. Dajas. 2015. Antioxidant activity, cellular bioavailability, and iron and calcium management of neuroprotective and nonneuroprotective flavones. Neurotoxicity Research 27 (1):31–42. doi: 10.1007/s12640-014-9483-y.
  • Emili, M., S. Guidi, B. Uguagliati, A. Giacomini, R. Bartesaghi, and F. Stagni. 2020. Treatment with the flavonoid 7, 8-dihydroxyflavone: A promising strategy for a constellation of body and brain disorders. Critical Reviews in Food Science and Nutrition 11:1–38. doi: 10.1080/10408398.2020.1810625.
  • Erdogan-Orhan, I., M. L. Altun, B. Sever-Yilmaz, and G. Saltan. 2011. Anti-acetylcholinesterase and antioxidant assets of the major components (salicin, amentoflavone, and chlorogenic acid) and the extracts of Viburnum opulus and Viburnum lantana and their total phenol and flavonoid contents. Journal of Medicinal Food 14 (4):434–40. doi: 10.1089/jmf.2010.0053.
  • Fang, S. H., Y. K. Rao, and Y. M. Tzeng. 2005. Inhibitory effects of flavonol glycosides from Cinnamomum osmophloeum on inflammatory mediators in LPS/IFN-gamma-activated murine macrophages. Bioorganic & Medicinal Chemistry 13 (7):2381–8. doi: 10.1016/j.bmc.2005.01.050.
  • Farooqui, T., and A. A. Farooqui. 2011. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinson’s Disease 2011:247467 doi: 10.4061/2011/247467.
  • Feng, X., Y. Chen, L. Li, Y. Zhang, L. Zhang, and Z. Zhang. 2020. Preparation, evaluation and metabolites study in rats of novel amentoflavone-loaded TPGS/soluplus mixed nanomicelles. Drug Delivery 27 (1):137–50. doi: 10.1080/10717544.2019.1709920.
  • Francis, P. T., A. M. Palmer, M. Snape, and G. K. Wilcock. 1999. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. Journal of Neurology, Neurosurgery, and Psychiatry 66 (2):137–47. doi: 10.1136/jnnp.66.2.137.
  • Frandsen, J. R., and P. Narayanasamy. 2018. Neuroprotection through flavonoid: Enhancement of the glyoxalase pathway. Redox Biology 14:465–73. doi: 10.1016/j.redox.2017.10.015.
  • Furukawa, Y. 2021. Search for neuroprotective compounds -from 4-methycatechol to citrus compounds. Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan 141 (1):67–79. doi: 10.1248/yakushi.20-00164.
  • Furukawa, Y., S. Okuyama, Y. Amakura, A. Sawamoto, M. Nakajima, M. Yoshimura, M. Igase, N. Fukuda, T. Tamai, and T. Yoshida. 2021. Isolation and characterization of neuroprotective components from citrus peel and their application as functional food. Chemical & Pharmaceutical Bulletin 69 (1):2–10. doi: 10.1248/cpb.c20-00265.
  • Furukawa, Y., S. Okuyama, Y. Amakura, S. Watanabe, T. Fukata, M. Nakajima, M. Yoshimura, and T. Yoshida. 2012. Isolation and characterization of activators of ERK/MAPK from citrus plants. International Journal of Molecular Sciences 13 (2):1832–45. doi: 10.3390/ijms13021832.
  • G. B. D. 2016. 2019. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 18 (5):459–80. doi: 10.1016/S1474-4422(18)30499-X.
  • Galland, M., S. Boutet-Mercey, I. Lounifi, B. Godin, S. Balzergue, O. Grandjean, H. Morin, F. Perreau, I. Debeaujon, and L. Rajjou. 2014. Compartmentation and dynamics of flavone metabolism in dry and germinated rice seeds. Plant & Cell Physiology 55 (9):1646–59. doi: 10.1093/pcp/pcu095.
  • Gandhi, M. K., S. K. Raina, A. Bhardwaj, and A. Sood. 2020. Prevalence of major neurological disorders in predominantly rural northwest India. Journal of Family Medicine and Primary Care 9 (9):4627–32. doi: 10.4103/jfmpc.jfmpc_1048_19.
  • Gong, G., Y. Guan, Z. Zhang, K. Rahman, S. Wang, S. Zhou, X. Luan, and H. Zhang. 2020. Isorhamnetin: A review of pharmacological effects. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 128 (110301):110301. doi: 10.1016/j.biopha.2020.110301.
  • González-Trujano, M. E., F. Domínguez, G. Pérez-Ortega, M. Aguillón, D. Martínez-Vargas, S. Almazán-Alvarado, and A. Martínez. 2017. Justicia spicigera Schltdl. and kaempferitrin as potential anticonvulsant natural products. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 92:240–8. doi: 10.1016/j.biopha.2017.05.075.
  • Gosslau, A., C. Ho, and S. Li. 2019. The role of rutin and diosmin, two citrus polyhydroxyflavones in disease prevention and treatment. Journal of Food Bioactives 5:43–56. doi: 10.31665/JFB.2019.5177.
  • Gou, K., R. Zeng, Y. Dong, Q. Hu, H. W. Hu, K. G. Maffucci, Q. Dou, Q. Yang, X. Qin, and Y. Qu. 2017. Anti-inflammatory and analgesic effects of Polygonum orientale L. extracts. Frontiers in Pharmacology 8 (562):1–13. doi: 10.3389/fphar.2017.00562.
  • Gourie-Devi, M. 2014. Epidemiology of neurological disorders in India: Review of background, prevalence and incidence of epilepsy, stroke, Parkinson’s disease and tremors . Neurology India 62 (6):588–98. doi: 10.4103/0028-3886.149365.
  • Grundmann, O., J. Wang, G. P. McGregor, and V. Butterweck. 2008. Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Medica 74 (15):1769–73. doi: 10.1055/s-0028-1088322.
  • Gu, C., M. Cai, X. Yuan, and Y. Zu. 2015. Research progress on plant resources distribution of vitexin and its pharmacological effects. Zhongguo Zhong Yao za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica 40 (3):382–9.
  • Gutmann, H., R. Bruggisser, W. Schaffner, K. Bogman, A. Botomino, and J. Drewe. 2002. Transport of amentoflavone across the blood-brain barrier in vitro. Planta Medica 68 (9):804–7. doi: 10.1055/s-2002-34401.
  • Hamada, Y., M. Nakajima, K. Tsuzuki, Y. Amakura, M. Yoshimura, S. Okuyama, and Y. Furukawa. 2017. Heptamethoxyflavone reduces phosphodiesterase activity and T-cell growth in vitro. International Archives of Allergy and Immunology 174 (3–4):113–20. doi: 10.1159/000481094.
  • Hamdan, D., M. Z. El-Readi, A. Tahrani, F. Herrmann, D. Kaufmann, N. Farrag, A. El-Shazly, and M. Wink. 2011. Chemical composition and biological activity of Citrus jambhiri Lush. Food Chemistry 127 (2):394–403. doi: 10.1016/j.foodchem.2010.12.129.
  • Hammer, K. D. P., M. L. Hillwig, A. K. S. Solco, P. M. Dixon, K. Delate, P. A. Murphy, E. S. Wurtele, and D. F. Birt. 2007. Inhibition of prostaglandin E(2) production by anti-inflammatory hypericum perforatum extracts and constituents in RAW264.7 Mouse Macrophage Cells. Journal of Agricultural and Food Chemistry 55 (18):7323–31. doi: 10.1021/jf0710074.
  • Hassanin, M., M. Tolba, M. Tadros, M. Elmazar, and A.-N. Singab. 2019. Wogonin a promising component of Scutellaria baicalensis: A review on its chemistry, pharmacokinetics, and biological activities. Archives of Pharmaceutical Sciences Ain Shams University 3 (2):170–9. doi: 10.21608/aps.2019.18854.1016.
  • He, M., J.-W. Min, W.-L. Kong, X.-H. He, J.-X. Li, and B.-W. Peng. 2016. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85. doi: 10.1016/j.fitote.2016.09.011.
  • Hole, K. L., and R. L. Williams. 2021. Flavonoids as an intervention for Alzheimer’s disease: Progress and hurdles towards defining a mechanism of action. Brain Plasticity 6 (2):167–92. doi: 10.3233/BPL-200098.
  • Hostetler, G. L., R. A. Ralston, and S. J. Schwartz. 2017. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition (Bethesda, Md.) 8 (3):423–35. doi: 10.3945/an.116.012948.
  • Houng, W. R., M. Yang, S. Lee, C. T. Horng, Y. C. Ho, R. H. Liu, and Y. Kuan. 2018. MAPKs-NF-kappaB pathway plays a crucial role in the antiinflammatory effects of amentoflavone in Lipopolysaccharide-treated BV2 microglia. Indian Journal of Pharmaceutical Sciences 80 (01):204–10. doi: 10.4172/pharmaceutical-sciences.1000346.
  • Hu, M., F. Li, and W. Wang. 2018. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson’s disease through PI3K/Akt signaling pathway. Drug Design, Development and Therapy 12:565–73. doi: 10.2147/DDDT.S156920.
  • Hu, Y., J. Liu, H. Li, W. Tang, X. Li, and Y. Guo. 2020. Chemical constituents from Citrus changshan-huyou and their anti-inflammatory activities. Chemistry & Biodiversity 17 (11):e2000503 doi: 10.1002/cbdv.202000503.
  • Huang, N., L. Rizshsky, C. C. Hauck, B. J. Nikolau, P. A. Murphy, and D. F. Birt. 2012. The inhibition of lipopolysaccharide-induced macrophage inflammation by 4 compounds in Hypericum perforatum extract is partially dependent on the activation of SOCS3. Phytochemistry 76:106–16. doi: 10.1016/j.phytochem.2011.12.001.
  • Ihara, H., H. Yamamoto, T. Ida, H. Tsutsuki, T. Sakamoto, T. Fujita, T. Okada, and S. Kozaki. 2012. Inhibition of nitric oxide production and inducible nitric oxide synthase expression by a polymethoxyflavone from young fruits of Citrus unshiu in rat primary astrocytes. Bioscience, Biotechnology, and Biochemistry 76 (10):1843–8. doi: 10.1271/bbb.120215.
  • Ishola, I. O., M. Chatterjee, S. Tota, N. Tadigopulla, O. O. Adeyemi, G. Palit, and R. Shukla. 2018. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacology Biochemistry and Behavior 103 (2):322–31. doi: 10.1016/j.pbb.2012.08.017.
  • Ishola, I. O., O. E. Agbaje, T. Narender, O. O. Adeyemi, and R. Shukla. 2012. Bioactivity guided isolation of analgesic and anti-inflammatory constituents of Cnestis ferruginea Vahl ex DC (Connaraceae) root. Journal of Ethnopharmacology 142 (2):383–9. doi: 10.1016/j.jep.2012.05.004.
  • Ishola, I. O., S. Tota, O. O. Adeyemi, E. O. Agbaje, T. Narender, and R. Shukla. 2013. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: A behavioural and biochemical study. Pharmaceutical Biology 51 (7):825–35. doi: 10.3109/13880209.2013.76736.
  • Iura, S., Y. Ojima, Y. Amakura, M. Yoshimura, A. Sawamoto, S. Okuyama, Y. Furukawa, and M. Nakajima. 2019. T-cell activation-inhibitory assay: A proposed novel method for screening caloric restriction mimetics. Biomedical Research 40 (6):235–41. doi: 10.2220/biomedres.40.235.
  • Iyda, J. H., A. Fernandes, F. D. Ferreira, M. J. Alves, T. C. S. P. Pires, L. Barros, J. S. Amaral, and I. C. F. R. Ferreira. 2019. Chemical composition and bioactive properties of the wild edible plant Raphanus raphanistrum L. Food Research International (Ottawa, Ont.) 121:714–22. doi: 10.1016/j.foodres.2018.12.046.
  • Jackson, R., B. McNeil, C. Taylor, G. Holl, D. Ruff, and E. T. Gwebu. 2002. Effect of aged garlic extract on caspase-3 activity, in vitro. Nutritional Neuroscience 5 (4):287–90. doi: 10.1080/10284150290032012.
  • Jasielski, P. P., F. Piędel, V. Petit, and K. Rejdak. 2019. Icariin as a new potential drug in Alzheimer disease treatment-a review. Journal of Pre-Clinical and Clinical Research 13 (4):167–9. doi: 10.26444/jpccr/114763.
  • Jeong, E. J., H. Seo, H. Yang, J. Kim, S. H. Sung, and Y. C. Kim. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264.7 macrophage cells. Journal of Enzyme Inhibition and Medicinal Chemistry 27 (6):875–9. doi: 10.3109/14756366.2011.625025.
  • Jeong, E. J., L. Hwang, M. Lee, K. Y. Lee, M. Ahn, and S. H. Sung. 2014. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 64:397–402. doi: 10.1016/j.fct.2013.12.003.
  • Jiang, J., J. Dai, and H. Cui. 2018. Vitexin reverses the autophagy dysfunction to attenuate MCAO-induced cerebral ischemic stroke via mTOR/Ulk1 pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 99:583–90. doi: 10.1016/j.biopha.2018.01.067.
  • Jiang, N., A. I. Doseff, and E. Grotewold. 2016. Flavones: From biosynthesis to health benefits. Plants 5 (2):27. doi: 10.3390/plants5020027.
  • Jiang, W., R. Wang, D. Liu, M. Zuo, C. Zhao, T. Zhang, and W. Li. 2018. Protective effects of kaempferitrin on advanced glycation end products induce mesangial cell apoptosis and oxidative stress. International Journal of Molecular Sciences 19 (11):3334. doi: 10.3390/ijms19113334.
  • Jie, L. H., I. Jantan, S. D. Yusoff, J. Jalil, and K. Husain. 2020. Sinensetin: An insight on its pharmacological activities, mechanisms of action and toxicity. Frontiers in Pharmacology 11:553404 doi: 10.3389/fphar.2020.553404.
  • Jodie, T. 2016. Anti-inflammatory action of the flavonoid, vitexin. Australian Journal of Herbal Medicine 28 (3):90.
  • Juárez, M. C., A. J. Alonso, and A. García. 2013. Kaempferitrin induces immunostimulatory effects in vitro. Journal of Ethnopharmacology 148 (1):337–40. doi: 10.1016/j.jep.2013.03.072.
  • Kadam, R. U., D. Garg, A. T. Paul, K. K. Bhutani, and N. Roy. 2007. Evaluation of proinflammatory cytokine pathway inhibitors for p38 MAPK inhibitory potential. Journal of Medicinal Chemistry 50 (25):6337–42. doi: 10.1021/jm0706923.
  • Kang, S. S., J. Y. Lee, Y. K. Choi, S. S. Song, J. S. Kim, S. J. Jeon, Y. N. Han, K. H. Son, and B. H. Han. 2005. Neuroprotective effects of naturally occurring biflavonoids. Bioorganic & Medicinal Chemistry Letters 15 (15):3588–91. doi: 10.1016/j.bmcl.2005.05.078.
  • Khan, A., S. Jahan, Z. Imtiyaz, S. Alshahrani, H. Antar Makeen, B. Mohammed Alshehri, A. Kumar, A. Arafah, and M. Rehman. 2020. Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals. Biomedicines 8 (8):284. doi: 10.3390/biomedicines8080284.
  • Kim, D., M. D. Nguyen, M. M. Dobbin, A. Fischer, F. Sananbenesi, J. T. Rodgers, I. Delalle, J. A. Baur, G. Sui, S. M. Armour, et al. 2007. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. The EMBO Journal 26 (13):3169–79. doi: 10.1038/sj.emboj.7601758.
  • Kim, H. K., K. H. Son, H. W. Chang, S. S. Kang, and H. P. Kim. 1998. Amentoflavone, a plant biflavone: A new potential anti-inflammatory agent. Archives of Pharmacal Research 21 (4):406–10. doi: 10.1007/BF02974634.
  • Kim, H., Y. Jeong, J. Kim, and Y. Park. 2018. 3,5,6,7,8,3’,4’-Heptamethoxyflavone, a citrus flavonoid, inhibits collagenase activity and induces type I procollagen synthesis in HDFn cells. International Journal of Molecular Sciences 19 (2):620. doi: 10.3390/ijms19020620.
  • Kim, J. H., B. C. Lee, J. H. Kim, G. S. Sim, D. H. Lee, K. E. Lee, Y. P. Yun, and H. B. Pyo. 2005. The isolation and antioxidative effects of vitexin from Acer palmatum. Archives of Pharmacal Research 28 (2):195–202. doi: 10.1007/BF02977715.
  • Kitagawa, H., M. Munekage, T. Matsumoto, C. Sadakane, M. Fukutake, K. Aoki, J. Watanabe, K. Maemura, T. Hattori, Y. Kase, et al. 2015. Pharmacokinetic profiles of active ingredients and its metabolites derived from rikkunshito, a ghrelin enhancer, in healthy Japanese volunteers: A cross-over, randomized study. PLoS One 10 (7):e0133159 doi: 10.1371/journal.pone.0133159.
  • Koelzer, J., D. A. Pereira, J. B. Dalmarco, M. G. Pizzolatti, and T. S. Fröde. 2009. Evaluation of the anti-inflammatory efficacy of Lotus corniculatus. Food Chemistry 117 (3):444–50. doi: 10.1016/j.foodchem.2009.04.044.
  • Koga, Y., Tsurumaki, H. H. Aoki-Saito, M. Sato, M. Yatomi, K. Takehara, T. Hisada. and T. 2019. Roles of cyclic AMP response element binding activation in the ERK1/2 and p38 MAPK signalling pathway in central nervous system, cardiovascular system, osteoclast differentiation and mucin and cytokine production. International Journal of Molecular Sciences 20 (6):1346. doi: 10.3390/ijms20061346.
  • Krishnan, M., and S. C. Kang. 2019. Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in zebrafish larvae. Neurotoxicology and Teratology 74 (106811):106811. doi: 10.1016/j.ntt.2019.106811.
  • Ku, W., Y. Chang, S. Wu, H. Shih, Y. Tzeng, H. Kuo, K. Chang, D. C. Agrawal, B. Liu, C. Chang, et al. 2017. A comparative proteomic study of secretomes in kaempferitrin-treated CTX TNA2 astrocytic cells. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 36:137–44. doi: 10.1016/j.phymed.2017.09.015.
  • Kuruppuarachchi, A., and A. Faigl. 2021. Parkinson disease. Armando Hasudungan. https://armandoh.org/disease/parkinsons-disease/
  • Lam, K. Y., A. P. K. Ling, R. Y. Koh, Y. P. Wong, and Y. H. Say. 2016. A review on medicinal properties of orientin. Advances in Pharmacological Sciences 2016:4104595 doi: 10.1155/2016/4104595.
  • Lee, E. B., J. H. Kim, Y. Cha, M. Kim, S. B. Song, D. S. Cha, H. Jeon, J. S. Eun, S. Han, and D. K. Kim. 2015. Lifespan extending and stress resistant properties of vitexin from Vigna angularis in Caenorhabditis elegans. Biomolecules & Therapeutics 23 (6):582–9. doi: 10.4062/biomolther.2015.128.
  • Li, H., X. Ying, and J. Lu. 2010. The mechanism of vitexin-4’’-O-glucoside protecting ECV-304 cells against tertbutyl hydroperoxide induced injury. Natural Product Research 24 (18):1695–703. doi: 10.1080/14786410902853847.
  • Li, M., B. Li, Y. Hou, Y. Tian, L. Chen, S. Liu, N. Zhang, and J. Dong. 2019. Anti-inflammatory effects of chemical components from Ginkgo biloba L. male flowers on lipopolysaccharide-stimulated RAW264.7 macrophages. Phytotherapy Research : PTR 33 (4):989–97. doi: 10.1002/ptr.6292.
  • Li, Y., J. Zhao, and C. Hölscher. 2017. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs 31 (8):639–52. doi: 10.1007/s40263-017-0451-y.
  • Liao, S., Q. Ren, C. Yang, T. Zhang, J. Li, X. Wang, X. Qu, X. Zhang, Z. Zhou, Z. Zhang, et al. 2015. Liquid chromatography-tandem mass spectrometry determination and pharmacokinetic analysis of amentoflavone and its conjugated metabolites in rats. Journal of Agricultural and Food Chemistry 63 (7):1957–66. doi: 10.1021/jf5019615.
  • Lima, L. K. F., S. K. S. Pereira, R. D. S. S. Junior, F. P. S. Santos, A. S. N. Nascimento, C. M. Feitosa, J. S. Figuerêdo, A. N. Cavalcante, E. C. C. Araújo, and M. A. Rai. 2018. A brief review on the neuroprotective mechanisms of Vitexin. BioMed Research International 2018:4785089 doi: 10.1155/2018/4785089.
  • Lin, T., J. Liao, S. Chang, and S. Wang. 2011. Antidyslipidemic activity of hot-water extracts from leaves of Cinnamomum osmophloeum Kaneh. Phytotherapy Research 25 (9):1317–22. doi: 10.1002/ptr.3408.
  • Liu, L., X. Hu, L. Guo, R. Wang, and Q. Zhao. 2018. Anti-inflammatory effect of the compounds from the flowers of Trollius chinensis. Pakistan Journal of Pharmaceutical Sciences 31 (5):1951–7.
  • Liu, Z., F. Wang, H. Ma, H. Xia, J. Tian, and T. Sun. 2020. Amentoflavone induces cell cycle arrest, apoptosis, and autophagy in BV-2 cells. Frontiers in Bioscience (Landmark Edition) 25:798–816. doi: 10.2741/4835.
  • Luo, W., J. Min, W. Huang, X. Wang, Y. Peng, S. Han, J. Yin, W. Liu, X. He, and B. Peng. 2018. Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1. Journal of Neuroinflammation 15 (1):186 doi: 10.1186/s12974-018-1221-6.
  • Lyu, Z., J. Cao, W. Wang, and H. Lian. 2018. Protective effect of vitexin reduces sevoflurane-induced neuronal apoptosis through HIF-1α, VEGF and p38 MAPK signaling pathway in vitro and in newborn rats. Experimental and Therapeutic Medicine 15 (3):3117–23. doi: 10.3892/etm.2018.5758.
  • Ma, D., D. S. Chan, G. Wei, H. Zhong, H. Yang, L. T. Leung, E. A. Gullen, P. Chiu, Y. C. Cheng, and C. Leung. 2014. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library. Chemical Communications (Cambridge, England) 50 (90):13885–8. doi: 10.1039/c4cc04498c.
  • MacGill, M. 2020. What to know about Alzheimer disease. Medical News Today. https://www.medicalnewstoday.com/articles/159442.
  • Magalingam, K. B., A. K. Radhakrishnan, and N. Haleagrahara. 2015. Protective mechanisms of flavonoids in Parkinson’s disease. Oxidative Medicine and Cellular Longevity 2015:1–14. doi: 10.1155/2015/314560.
  • Maher, P. 2019. The potential of flavonoids for the treatment of neurodegenerative diseases. International Journal of Molecular Sciences 20 (12):3056. doi: 10.3390/ijms20123056.
  • Malar, D. S., M. I. Prasanth, R. B. Shafreen, K. Balamurugan, and K. P. Devi. 2018a. Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro-2a cells from glutamate toxicity. Life Sciences 203:233–41. doi: 10.1016/j.lfs.2018.04.047.
  • Malar, D. S., R. B. Shafreen, S. K. Pandian, and K. P. Devi. 2017. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study. Pharmaceutical Biology 55 (1):381–93. doi: 10.1080/13880209.2016.1241811.
  • Malar, D. S., V. Suryanarayanan, M. I. Prasanth, S. K. Singh, K. Balamurugan, and K. P. Devi. 2018b. Vitexin inhibits Aβ25-35 induced toxicity in Neuro-2a cells by augmenting Nrf-2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR-α. Toxicology in Vitro : An International Journal Published in Association with BIBRA 50:160–71. doi: 10.1016/j.tiv.2018.03.003.
  • Manthey, J. A., Bendele. P., and P. 2008. Anti-inflammatory activity of an orange peel polymethoxylated flavone, 3’,4’,3,5,6,7,8-heptamethoxyflavone, in the rat carrageenan/paw edema and mouse lipopolysaccharide-challenge assays. Journal of Agricultural and Food Chemistry 56 (20):9399–403. doi: 10.1021/jf801222h.
  • Martens, S., and A. Mithöfer. 2005. Flavones and flavone synthases. Phytochemistry 66 (20):2399–407. doi: 10.1016/j.phytochem.2005.07.013.
  • Matsuzaki, K., and Y. Ohizumi. 2021. Beneficial effects of citrus-derived polymethoxylated flavones for central nervous system disorders. Nutrients 13 (1):145. doi: 10.3390/nu13010145.
  • Melo, G. O. D., D. C. Malvar, F. A. Vanderlinde, F. F. Rocha, P. A. Pires, E. A. Costa, L. G. Matos, C. R. Kaiser, and S. S. Costa. 2009. Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. Journal of Ethnopharmacology 124 (2):228–32. doi: 10.1016/j.jep.2009.04.024.
  • Min, J., J. Hu, M. He, R. M. Sanchez, W. Huang, Y. Liu, N. B. Bsoul, S. Han, J. Yin, W. Liu, et al. 2015. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 99:38–50. doi: 10.1016/j.neuropharm.2015.07.007.
  • Min, J., W. Kong, S. Han, N. Bsoul, W. Liu, X. He, R. M. Sanchez, and B. Peng. 2017. Vitexin protects against hypoxic-ischemic injury via inhibiting Ca2+/Calmodulin-dependent protein kinase II and apoptosis signaling in the neonatal mouse brain. Oncotarget 8 (15):25513–24. doi: 10.18632/oncotarget.16065.
  • Moreira, M. D., M. C. Picanço, L. C. A. Barbosa, R. N. C. Guedes, M. R. Campos, G. A. Silva, and J. C. Martins. 2007. Plant compounds insecticide activity against Coleoptera pests of stored products. Pesquisa Agropecuária Brasileira 42 (7):909–15. doi: 10.1590/S0100-204X2007000700001.
  • Mutha, R. E., A. K. U. Tatiya, and S. J. Surana. 2021. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Future Journal of Pharmaceutical Sciences 7 (1):25 doi: 10.1186/s43094-020-00161-8.
  • N.W.G. 2000. Inflammation and Alzheimer’s disease. Neurobiology of Aging 21 (3):383–421. doi: 10.4103/0974-8520.68203.
  • Nabavi, S. F., H. Khan, G. D’onofrio, D. Šamec, S. Shirooie, A. R. Dehpour, S. Argüelles, S. Habtemariam, and E. Sobarzo-Sanchez. 2018. Apigenin as neuroprotective agent: Of mice and men. Pharmacological Research 128:359–65. doi: 10.1016/j.phrs.2017.10.008.
  • Nabavi, S. F., N. Braidy, O. Gortzi, E. Sobarzo-Sanchez, M. Daglia, K. Skalicka-Woźniak, and S. M. Nabavi. 2015. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Research Bulletin 119 (Pt A):1–11. doi: 10.1016/j.brainresbull.2015.09.002.
  • Nabavi, S. F., N. Braidy, S. Habtemariam, I. E. Orhan, M. Daglia, A. Manayi, O. Gortzi, and S. M. Nabavi. 2015. Neuroprotective effects of chrysin: From chemistry to medicine. Neurochemistry International 90:224–31. doi: 10.1016/j.neuint.2015.09.006.
  • Nakajima, A., and Y. Ohizumi. 2019. Potential benefits of nobiletin, A citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. International Journal of Molecular Sciences 20 (14):3380. doi: 10.3390/ijms20143380.
  • Nakajima, M., M. Ogawa, Y. Amakura, M. Yoshimura, S. Okuyama, and Y. Furukawa. 2016. 3,5,6,7,8,3’,4’-Heptamethoxyflavone reduces interleukin-4 production in the spleen cells of mice. Biomedical Research (Tokyo, Japan) 37 (2):95–9. doi: 10.2220/biomedres.37.95.
  • Neugroschl, J., and S. Wang. 2011. Alzheimer’s disease: Diagnosis and treatment across the spectrum of disease severity. The Mount Sinai Journal of Medicine, New York 78 (4):596–612. doi: 10.1002/msj.20279.
  • Nita, M., and A. Grzybowski. 2016. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Medicine and Cellular Longevity 2016:3164734 doi: 10.1155/2016/3164734.
  • Nurdiana, S., Y. M. Goh, A. Hafandi, S. M. Dom, A. N. Syimal’ain, N. M. N. Syaffinaz, and M. Ebrahimi. 2018. Improvement of spatial learning and memory, cortical gyrification patterns and brain oxidative stress markers in diabetic rats treated with Ficus deltoidea leaf extract and vitexin. Journal of Traditional and Complementary Medicine 8 (1):190–202. doi: 10.1016/j.jtcme.2017.05.006.
  • Oh, J., H. S. Rho, Y. Yang, J. Y. Yoon, J. Lee, Y. D. Hong, H. C. Kim, S. S. Choi, T. W. Kim, S. S. Shin, et al. 2013. Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera. Mediators of Inflammation 2013:761506 doi: 10.1155/2013/761506.
  • Okuyama, S. 2015. Effects of bioactive substances from citrus on the central nervous system and utilization as food material. Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan 135 (10):1153–9. doi: 10.1248/yakushi.15-00205.
  • Okuyama, S., K. Miyazaki, R. Yamada, Y. Amakura, M. Yoshimura, A. Sawamoto, M. Nakajima, and Y. Furukawa. 2017. Permeation of polymethoxyflavones into the mouse brain and their effect on MK-801-induced locomotive hyperactivity. International Journal of Molecular Sciences 18 (3):489. doi: 10.3390/ijms18030489.
  • Okuyama, S., K. Miyoshi, Y. Tsumura, Y. Amakura, M. Yoshimura, T. Yoshida, M. Nakajima, and Y. Furukawa. 2015. 3,5,6,7,8,3’,4’-heptamethoxyflavone, a citrus polymethoxylated flavone, attenuates inflammation in the mouse hippocampus. Brain Sciences 5 (2):118–29. doi: 10.3390/brainsci5020118.
  • Okuyama, S., K. Yamamoto, H. Mori, N. Toyoda, M. Yoshimura, Y. Amakura, T. Yoshida, K. Sugawara, M. Sudo, M. Nakajima, et al. 2014b. Auraptene in the peels of Citrus kawachiensis (Kawachi Bankan) ameliorates lipopolysaccharide-induced inflammation in the mouse brain. Evid Evidence-Based Complementary and Alternative Medicine 2014:408503 doi: 10.1155/2014/408503.
  • Okuyama, S., M. Morita, K. Miyoshi, Y. Nishigawa, M. Kaji, A. Sawamoto, T. Terugo, N. Toyoda, N. Makihata, Y. Amakura, et al. 2014a. 3,5,6,7,8,3′,4′-Heptamethoxyflavone, a citrus flavonoid, on protection against memory impairment and neuronal cell death in a global cerebral ischemia mouse model. Neurochemistry International 70:30–8. doi: 10.1016/j.neuint.2014.03.008.
  • Okuyama, S., N. Shimada, M. Kaji, M. Morita, K. Miyoshi, S. Minami, Y. Amakura, M. Yoshimura, T. Yoshida, S. Watanabe, et al. 2012. Heptamethoxyflavone, a citrus flavonoid, enhances brain-derived neurotrophic factor production and neurogenesis in the hippocampus following cerebral global ischemia in mice. Neuroscience Letters 528 (2):190–5. doi: 10.1016/j.neulet.2012.08.079.
  • Ouyang, X. L., Z. R. Zhu, Y. M. Pan, and H. S. Wang. 2015. Metal Ion Complexes of Kaempferitrin as DNA Topoisomerase I Inhibitors and Its’ Cytotoxicities. Asian Journal of Chemistry 27 (2):503. doi: 10.14233/ajchem.2015.16997.
  • Özkay, U. D., and O. D. Can. 2013. Anti-nociceptive effect of vitexin mediated by the opioid system in mice. Pharmacology Biochemistry and Behavior 109:23–30. doi: 10.1016/j.pbb.2013.04.014.
  • Panche, A. N., A. D. Diwan, and S. R. Chandra. 2016. Flavonoids: An overview. Journal of Nutritional Science 5:e47 doi: 10.1017/jns.2016.41.
  • Parihar, M. S., A. Parihar, M. Fujita, M. Hashimoto, and P. Ghafourifar. 2008. Mitochondrial association of alpha-synuclein causes oxidative stress. Cellular and Molecular Life Sciences 65 (7–8):1272–84. doi: 10.1007/s00018-008-7589-1.
  • Park, H. J., and M. M. Kim. 2019. Amentoflavone induces Autophagy and modulates p53. Cell Journal 21 (1):27–34. doi: 10.22074/cellj.2019.5717.
  • Patel, S., and U. Shah. 2017. Synthesis of flavones from 2-hydorxy acetophenone and aromatic aldehyde derivatives by conventional methods and green chemistry approach. Asian Journal of Pharmaceutical and Clinical Research 10 (2):403–6. doi: 10.22159/ajpcr.2017.v10i2.15928.
  • Paul, A. T., V. M. Gohil, and K. K. Bhutani. 2006. Modulating TNF-alpha signaling with natural products . Drug Discovery Today 11 (15–16):725–32. doi: 10.1016/j.drudis.2006.06.002.
  • Peng, S., Y. Zhang, J. Zhang, H. Wang, and B. Ren. 2010. ERK in learning and memory: A review of recent research. International Journal of Molecular Sciences 11 (1):222–32. doi: 10.3390/ijms11010222.
  • Peng, Y., R. Gan, H. Li, M. Yang, D. J. McClements, R. Gao, and Q. Sun. 2021. Absorption, metabolism, and bioactivity of vitexin: Recent advances in understanding the efficacy of an important nutraceutical. Critical Reviews in Food Science and Nutrition 61 (6):1049–64. doi: 10.1080/10408398.2020.1753165.
  • Pereira, D. A., J. B. Dalmarco, A. Wisniewski, E. L. Simionatto, M. G. Pizzolatti, and T. S. Fröde. 2011. Lotus corniculatus regulates the inflammation induced by bradykinin in a murine model of pleurisy. Journal of Agricultural and Food Chemistry 59 (6):2291–8. doi: 10.1021/jf103997s.
  • Pérez-Ortega, G., G. E. Angeles-López, A. Argueta-Villamar, and M. E. González-Trujano. 2017. Preclinical evidence of the anxiolytic and sedative-like activities of Tagetes erecta L. reinforces its ethnobotanical approach. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 93:383–90. doi: 10.1016/j.biopha.2017.06.064.
  • Piao, H. Z., S. A. Jin, H. S. Chun, J. Lee, and W. Kim. 2004. Neuroprotective effect of wogonin: Potential roles of inflammatory cytokines. Archives of Pharmacal Research 27 (9):930–6. doi: 10.1007/BF02975846.
  • Prabhakar, M. C., H. Bano, I. Kumar, M. A. Shamsi, and M. S. Khan. 1981. Pharmacological investigations on vitexin. Planta Medica 43 (4):396–403. doi: 10.1055/s-2007-971532.
  • Prakash, A., G. K. Dhaliwal, P. Kumar, and A. B. A. Majeed. 2017. Brain bimetals and Alzheimer’s disease – boon or bane? International Journal of Neuroscience 127 (2):99–108. doi: 10.3109/00207454.2016.1174118.
  • Praveena, R., K. Sadasivam, R. Kumaresan, V. Deepha, and R. Sivakumar. 2013. Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 103:442–52. doi: 10.1016/j.saa.2012.11.001.
  • Przedborski, S., M. Vila, and V. Jackson-Lewis. 2003. Neurodegeneration: What is it and where are we? The Journal of Clinical Investigation 111 (1):3–10. doi: 10.1172/JCI17522.
  • Qi, Y., L. Chen, S. Shan, Y. Nie, and Y. Wang. 2020. Vitexin improves neuron apoptosis and memory impairment induced by isoflurane via regulation ofmiR-409 expression. Advances in Clinical and Experimental Medicine 29 (1):135–45. doi: 10.17219/acem/104556.
  • Qiu, T., Wu, S. L. Yang, H. Ye, Q. Wang, Z. Cao, K. Tang. and K. 2018. Exploring the mechanism of flavonoids through systematic bioinformatics analysis. Frontiers in Pharmacology 9 (918):1–12. doi: 10.3389/fphar.2018.00918.
  • Ramos-Hernández, R. R., A. Sánchez-Medina, I. Bravo-Espinoza, F. R. Ramos-Morales, M. A. Domínguez-Ortíz, C. Fernández-Pomares, G. E. Aranda-Abreu, and M. E. Hernández-Aguilar. 2017. Biological activities of Kaempferitrin- A short review. Pharmacologyonline 3:79–90.
  • Rebas, E., J. Rzajew, T. Radzik, and L. Zylinska. 2020. Neuroprotective polyphenols: A modulatory action on neurotransmitter pathways. Current Neuropharmacology 18 (5):431–45. doi: 10.2174/1570159X18666200106155127.
  • Ren, X., Q. Zhang, S. Rong, D. Zuo, F. Wang, and K. Liu. 2020. Amentoflavone inhibits inflammation of mouse BV-2 microglia cells induced by lipopolysaccharide. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi J36 (1):14–9.
  • Rho, H. S., A. K. Ghimeray, D. S. Yoo, S. M. Ahn, S. S. Kwon, K. H. Lee, D. H. Cho, and J. Y. Cho. 2011. Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules (Basel, Switzerland) 16 (4):3338–44. doi: 10.3390/molecules16043338.
  • Rice-Evans, C. A., Miller, N. J. G. Paganga. and G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine 20 (7):933–56. doi: 10.1016/0891-5849(95)02227-9.
  • Romano, B., E. Pagano, V. Montanaro, A. L. Fortunato, N. Milic, and F. Borrelli. 2013. Novel insights into the pharmacology of flavonoids. Phytotherapy Research : PTR 27 (11):1588–96. doi: 10.1002/ptr.5023.
  • Rong, S., D. Wan, Y. Fan, S. Liu, K. Sun, J. Huo, P. Zhang, X. Li, X. Xie, F. Wang, et al. 2019. Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Frontiers in Pharmacology 10:856 doi:10.3389/fphar.2019.00856.
  • Rosa, S. I. G., F. Rios-Santos, S. O. Balogun, and M. D. T. de-Oliveira. 2016. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 23 (1):9–17. doi: 10.1016/j.phymed.2015.11.003.
  • Sangeetha, K. S. S., S. Umamaheswari, C. U. M. Reddy, and S. N. Kalkura. 2016. Flavonoids: Therapeutic potential of natural pharmacological agents. International Journal of Pharmaceutical Sciences and Research 7 (10):3924–30. doi: 10.13040/IJPSR.0975-8232.7(10).3924-30.
  • Sangkaew, A., S. Nawara, S. Kamonpan, R. Thanyada, C. Warinthorn, and Y. Chulee. 2020. Two flavonoid-based compounds from Murraya paniculata as novel human carbonic anhydrase isozyme II inhibitors detected by a resazurin yeast-based assay. Journal of Microbiolog and Biotechnology 30 (4):552–60. doi: 10.4014/jmb.1910.10037.
  • Saponara, R., and E. Bosisio. 1998. Inhibition of cAMP-phosphodiesterase by biflavones of Ginkgo biloba in rat adipose tissue. Journal of Natural Products 61 (11):1386–7. doi: 10.1021/np970569m.
  • Sasaki, H., Kitoh, Y. M. Tsukada, K. Miki, K. Koyama, L. D. Juliawaty, E. H. Hakim, K. Takahashi, K. Kinoshita. and K. 2015. Inhibitory activities of biflavonoids against amyloid-β peptide 42 cytotoxicity in PC-12 cells. Bioorganic & Medicinal Chemistry Letters 25 (14):2831–3. doi: 10.1016/j.bmcl.2015.04.106.
  • Sawamoto, A., M. Nakanishi, S. Okuyama, Y. Furukawa, and M. Nakajima. 2019. Heptamethoxyflavone inhibits adipogenesis via enhancing PKA signaling. European Journal of Pharmacology 865 (172758):172758. doi: 10.1016/j.ejphar.2019.172758.
  • Sawamoto, A., S. Okuyama, K. Yamamoto, Y. Amakura, M. Yoshimura, M. Nakajima, and Y. Furukawa. 2016. 3,5,6,7,8,3’,4’-Heptamethoxyflavone, a citrus flavonoid, ameliorates corticosterone-induced depression-like behavior and restores brain-derived neurotrophic factor expression, neurogenesis, and neuroplasticity in the hippocampus. Molecules (Basel, Switzerland) 21 (4):541 doi: 10.3390/molecules21040541.
  • Sawamoto, A., S. Okuyama, M. Nakajima, and Y. Furukawa. 2019. Citrus flavonoid 3,5,6,7,8,3’,4’-heptamethoxyflavone induces BDNF via cAMP/ERK/CREB signaling and reduces phosphodiesterase activity in C6 cells. Pharmacological Reports 71 (4):653–8. doi: 10.1016/j.pharep.2019.03.006.
  • Sawamoto, A., S. Okuyama, Y. Amakura, M. Yoshimura, T. Yamada, H. Yokogoshi, M. Nakajima, and Y. Furukawa. 2017. 3,5,6,7,8,3’,4’-Heptamethoxyflavone ameliorates depressive-like behavior and hippocampal neurochemical changes in chronic unpredictable mild stressed mice by regulating the brain-derived neurotrophic factor: Requirement for ERK activation. International Journal of Molecular Sciences 18 (10):2133. doi: 10.3390/ijms18102133.
  • Saxena, U. 2011. Bioenergetics breakdown in Alzheimer’s disease: Targets for new therapies. International Journal of Physiology, Pathophysiology and Pharmacology 3 (2):133–9.
  • Saxena, U. 2012. Bioenergetics failure in neurodegenerative diseases: Back to the future. Expert Opin Ther Targets 16 (4):351–4. doi: 10.1517/14728222.2012.664135.
  • Seaver, B., and J. R. Smith. 2004. Inhibition of COX isoforms by nutraceuticals. Journal of Herbal Pharmacotherapy 4 (2):11–8.
  • Semwal, R. B., D. K. Semwal, S. Combrinck, J. Trill, S. Gibbons, and A. Viljoen. 2019. Acacetin-A simple flavone exhibiting diverse pharmacological activities. Phytochemistry Letters 32:56–65. doi: 10.1016/j.phytol.2019.04.021.
  • Shin, D. H., Y. C. Bae, J. S. Kim-Han, J. H. Lee, I. Y. Choi, K. H. Son, S. S. Kang, W. Kim, and B. H. Han. 2006. Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic-ischemic brain damage via multiple mechanisms. Journal of Neurochemistry 96 (2):561–72. doi: 10.1111/j.1471-4159.2005.03582.x.
  • Silva, V., and J. Segura-Aguilar. 2021. State and perspectives on flavonoid neuroprotection against aminochrome-induced neurotoxicity. Neural Regeneration Research 16 (9):1797–8. doi: 10.4103/1673-5374.306082.
  • Sirimangkalakitti, N., L. W. Juliawaty, E. H. Hakim, I. Waliana, N. Saito, K. Koyama, and K. Kinoshita. 2019. Naturally occurring biflavonoids with amyloid β aggregation inhibitory activity for development of anti-Alzheimer agents. Bioorganic & Medicinal Chemistry Letters 29 (15):1994–7. doi: 10.1016/j.bmcl.2019.05.020.
  • Solanki, I., P. Parihar, M. L. Mansuri, and M. S. Parihar. 2015. Flavonoid-based therapies in the early management of neurodegenerative diseases. Advances in Nutrition (Bethesda, Md.) 6 (1):64–72. doi: 10.3945/an.114.007500.
  • Sousa, E., L. Zanatta, I. Seifriz, T. B. Creczynski-Pasa, M. G. Pizzolatti, B. Szpoganicz, and F. R. M. B. Silva. 2004. Hypoglycemic effect and antioxidant potential of kaempferol-3,7-O-(alpha)-dirhamnoside from Bauhinia forficata leaves. Journal of Natural Products 67 (5):829–32. doi: 10.1021/np030513u.
  • Sun, L., A. K. Sharma, B. Han, and L. M. Mirica. 2020. Amentoflavone: A bifunctional metal chelator that controls the formation of neurotoxic soluble Aβ 42 oligomers. ACS Chemical Neuroscience 11 (17):2741–52. doi: 10.1021/acschemneuro.0c00376.
  • Sureda, A., X. Capó, and S. Tejada. 2019. Neuroprotective effects of flavonoid compounds on neuronal death associated to Alzheimer’s disease. Current Medicinal Chemistry 26 (27):5124–36. doi: 10.2174/0929867325666171226103237.
  • Tai, M. C., S. Y. Tsang, L. Y. F. Chang, and H. Xue. 2005. Therapeutic potential of wogonin: A naturally occurring flavonoid. CNS Drug Reviews 11 (2):141–50. doi: 10.1111/j.1527-3458.2005.tb00266.x.
  • Tatsimo, S. J. N., J. D. Tamokou, L. Havyarimana, D. Csupor, P. Forgo, J. Hohmann, J. Kuiate, and P. Tane. 2012. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Research Notes 5 (1):1–6. doi: 10.1186/1756-0500-5-158.
  • Teixeira, M. I., C. M. Lopes, M. H. Amaral, and P. C. Costa. 2020. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 149:192–217. doi: 10.1016/j.ejpb.2020.01.005.
  • Thakur, A. K. 2018. Pathophysiology and management of Alzheimer disease: An overview. Journal of Analytical & Pharmaceutical Research 9 (2):226–35. doi: 10.15406/japlr.2018.07.00230.
  • Theoharides, T. C., M. Alexandrakis, D. Kempuraj, and M. Lytinas. 2001. Anti-inflammatory actions of flavonoids and structural requirements for new design. International Journal of Immunopathology and Pharmacology 14 (3):119–27.
  • Tzeng, Y. M., K. Chen, Y. K. Rao, and M. J. Lee. 2009. Kaempferitrin activates the insulin signaling pathway and stimulates secretion of adiponectin in 3T3-L1 adipocytes. European Journal of Pharmacology 607 (1-3):27–34. doi: 10.1016/j.ejphar.2009.01.023.
  • Valeo, T. 2011. New data on risk gene for Alzheimer disease suggests different therapeutic targets. Neurology Today 11 (15):24–7. doi: 10.1097/01.NT.0000403763.91117.f3.
  • Vauzour, D., K. Vafeiadou, A. Rodriguez-Mateos, C. Rendeiro, and J. P. E. Spencer. 2008. The neuroprotective potential of flavonoids: A multiplicity of effects. Genes & Nutrition 3 (3–4):115–26. doi: 10.1007/s12263-008-0091-4.
  • Vellosa, J. C., L. O. Regasini, C. Belló, J. A. Schemberger, N. M. Khalil, A. de Araújo Morandim-Giannetti, V. da Silva Bolzani, I. L. Brunetti, and O. M. de Faria Oliveira. 2015. Preliminary in vitro and ex vivo evaluation of afzelin, kaempferitrin and pterogynoside action over free radicals and reactive oxygen species. Archives of Pharmacal Research 38 (6):1168–77. doi: 10.1007/s12272-014-0487-1.
  • Vijayan, S., N. J. Merlin, and S. S. Dharan. 2021. Pharmacological evaluation of polyphenols for multiple sclerosis by in silico and in vivo. Methods. Journal of Pharmaceutical Sciences and Research 13 (1):79–91.
  • Wahyudi, L. D., J. Jeong, H. Yang, and J. Kim. 2018. Amentoflavone-induced oxidative stress activates NF-E2-related factor 2 via the p38 MAP kinase-AKT pathway in human keratinocytes. The International Journal of Biochemistry & Cell Biology 99:100–8. doi: 10.1016/j.biocel.2018.04.006.
  • Walia, V., S. K. Chaudhary, and N. K. Sethiya. 2021. Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochemistry International 143:104939 doi: 10.1016/j.neuint.2020.104939.
  • Wang, H., Y. Zhu, Y. Liu, R. Wang, and S. Wang. 2019. Rapid discovery and identification of the anti-inflammatory constituents in Zhi-Shi-Zhi-Zi-Chi-Tang. Chinese Journal of Natural Medicines 17 (4):308–20. doi: 10.1016/S1875-5364(19)30035-4.
  • Wang, J., and Q. Zhao. 2019. Kaempferitrin inhibits proliferation, induces apoptosis, and ameliorates inflammation in human rheumatoid arthritis fibroblast-like synoviocytes. Phytotherapy Research : PTR 33 (6):1726–35. doi: 10.1002/ptr.6364.
  • Wang, X., X. Hu, G. Chen, X. Yuan, R. Yang, S. Liang, J. Ren, J. Sun, G. Kong, S. Gao, et al. 2015. Effects of vitexin on the pharmacokinetics and mRNA expression of CYP isozymes in rats. Phytotherapy Research : PTR 29 (3):366–72. doi: 10.1002/ptr.5260.
  • Wang, X., X. Zhao, L. Gu, C. Lv, B. He, Z. Liu, P. Hou, K. Bi, and X. Chen. 2014. Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC-MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats . Journal of Chromatography B 953-954:1–10. doi: 10.1016/j.jchromb.2014.01.042.
  • Wang, Y., P. Lee, Y. Chen, C. Ho, and M. Pan. 2016. Suppression of adipogenesis by 5-hydroxy-3,6,7,8,3’,4’-hexamethoxyflavone from orange peel in 3T3-L1 cells. Journal of Medicinal Food 19 (9):830–5. doi: 10.1089/jmf.2016.0060.
  • Wang, Y., Y. Zhen, X. Wu, Q. Jiang, X. Li, Z. Chen, G. Zhang, and L. Dong. 2015b. Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 22 (3):379–84. doi: 10.1016/j.phymed.2015.01.009.
  • Wei, W., X. Ying, W. Zhang, Y. Chen, A. Leng, C. Jiang, and J. Liu. 2014. Effects of vitexin-2"-O-rhamnoside and vitexin-4"-O-glucoside on growth and oxidative stress-induced cell apoptosis of human adipose-derived stem cells. The Journal of Pharmacy and Pharmacology 66 (7):988–97. doi: 10.1111/jphp.12225.
  • WHO. 2006. Global burden of neurological disorders estimates and projections, Chapter 2, In Neurological disorders: Public health challenges. WHO Press, World Health Organization, Geneva Switzerland.
  • Windsor, P. K., S. P. Plassmeyer, D. S. Mattock, J. C. Bradfield, E. Y. Choi, B. R. Miller, and B. H. Han. 2021. Biflavonoid-induced disruption of hydrogen bonds leads to amyloid-β disaggregation. International Journal of Molecular Sciences 22 (6):2888. doi: 10.3390/ijms22062888.
  • Woo, E. R., J. Y. Lee, I. J. Cho, S. J. Kim, and K. W. Kang. 2005. Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages. Pharmacological Research 51 (6):539–46. doi: 10.1016/j.phrs.2005.02.002.
  • Yahaya, M. A. F., S. Z. I. Zolkiffly, M. A. M. Moklas, H. A. Hamid, J. Stanslas, M. Zainol, and M. Z. Mehat. 2020. Possible epigenetic role of vitexin in regulating neuroinflammation in Alzheimer’s disease. Journal of Immunology Research 2020:9469210 doi: 10.1155/2020/9469210.
  • Yang, L., Z. Yang, N. Zhang, Z. Tian, S. Liu, and M. Zhao. 2014. Neuroprotective effects of vitexin by inhibition of NMDA receptors in primary cultures of mouse cerebral cortical neurons. Molecular and Cellular Biochemistry 386 (1–2):251–8. doi: 10.1007/s11010-013-1862-9.
  • Yang, X. W., J. Y. Zhang, W. Xu, J. Li, and W. Q. Zhang. 2005. The biotransformation of kaempferitrin by human intestinal flora. Yao Xue Xue Bao = Acta Pharmaceutica Sinica 40 (8):717–21.
  • Yen, T., C. Hsieh, T. Liu, C. Huang, Y. Chen, Y. Chuang, S. Lin, and F. Hsu. 2018. Amentoflavone induces apoptosis and inhibits NF-ĸB-modulated anti-apoptotic signaling in glioblastoma cells. In Vivo (Athens, Greece) 32 (2):279–85. doi: 10.21873/invivo.11235.
  • Yoshizaki, N., R. Hashizume, and H. Masaki. 2017. A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3,3’,4’,5,6,7,8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes. Journal of Dermatological Science 88 (1):78–84. doi: 10.1016/j.jdermsci.2017
  • Yu, S., H. Yan, L. Zhang, M. Shan, P. Chen, A. Ding, and S. F. Y. Li. 2017. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules 22 (2):299. doi: 10.3390/molecules22020299.
  • Zapata-Morales, J. R., A. J. Alonso-Castro, F. Domínguez, C. Carranza-Álvarez, L. M. O. Castellanos, R. M. Martínez-Medina, and J. Pérez-Urizar. 2016. Antinociceptive activity of an ethanol extract of Justicia spicigera. Drug Development Research 77 (4):180–6. doi: 10.1002/ddr.21307.
  • Zhang, Q., Fan, Z. W. Xue, F. Sun, H. Zhu, D. Huang, Z. Wang, and L. Y. Dong. 2021. Vitexin regulates EPAC and NLRP3 and ameliorates chronic cerebral hypoperfusion injury. Canadian Journal of Physiology and Pharmacology :1–9. doi: 10.1139/cjpp-2021-0034.
  • Zhang, Z., T. Sun, J. Niu, Z. He, Y. Liu, and F. Wang. 2015. Amentoflavone protects hippocampal neurons: Anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regeneration Research 10 (7):1125–33. doi: 10.4103/1673-5374.160109.
  • Zhao, N., C. Sun, M. Zheng, S. Liu, and R. Shi. 2019. Amentoflavone suppresses amyloid β1-42 neurotoxicity in Alzheimer’s disease through the inhibition of pyroptosis. Life Sciences 239:117043 doi: 10.1016/j.lfs.2019.117043.
  • Zhaohui, W., N. Yingli, L. Hongli, W. Haijing, Z. Xiaohua, F. Chao, W. Liugeng, Z. Hui, T. Feng, Y. Linfeng, et al. 2018. Amentoflavone induces apoptosis and suppresses glycolysis in glioma cells by targeting miR-124-3p. Neurosci Lett 686:1–9. doi: 10.1016/j.neulet.2018.08.032.
  • Zhu, Q., L. N. Mao, C. P. Liu, Y. Sun, B. Jiang, W. Zhang, and J. Li. 2016. Antinociceptive effects of vitexin in a mouse model of postoperative pain. Scientific Reports 6 (1):19266. doi: 10.1038/srep19266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.