2,529
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

Effect of processing on in vitro digestibility (IVPD) of food proteins

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aalaei, K., B. Khakimov, C. De Gobba, and L. Ahrné. 2021a. Digestion patterns of proteins in pasteurized and ultra-high temperature milk using in vitro gastric models of adult and elderly. Journal of Food Engineering 292:110305. doi: 10.1016/j.jfoodeng.2020.110305.
  • Aalaei, K., B. Khakimov, C. De Gobba, and L. Ahrné. 2021b. Gastric digestion of milk proteins in adult and elderly: Effect of high pressure processing. Foods 10 (4):786. doi: 10.3390/foods10040786.
  • Abdel-Aal, E.-S. M. 2008. Effects of baking on protein digestibility of organic spelt products determined by two in vitro digestion methods. LWT - Food Science and Technology 41 (7):1282–8. doi: 10.1016/j.lwt.2007.07.018.
  • Abdul-Hamid, A., J. Bakar, and G. H. Bee. 2002. Nutritional quality of spray dried protein hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chemistry 78 (1):69–74. doi: 10.1016/S0308-8146(01)00380-6.
  • Adler-Nissen, J. 1979. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry 27 (6):1256–62. doi: 10.1021/jf60226a042.
  • Adler-Nissen, J. 2008. Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. Journal of Chemical Technology and Biotechnology. Biotechnology 34 (3):215–22. doi: 10.1002/jctb.280340311.
  • Adler-Nissen, J. 1986. Enzymic hydrolysis of food protein. London: Elsevier Applied Science.
  • Afify, A. E.-M M. R., El-Beltagi, H. S.El-Salam, A. S. M. Omran. and A. A. 2012. Protein solubility, digestibility and fractionation after germination of sorghum varieties. PLoS ONE 7 (2):e31154. doi: 10.1371/journal.pone.0031154.
  • Almaas, H., A.-L. Cases, T. G. Devold, H. Holm, T. Langsrud, L. Aabakken, T. Aadnoey, and G. E. Vegarud. 2006. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. International Dairy Journal 16 (9):961–8. doi: 10.1016/j.idairyj.2005.10.029.
  • Almeida, C. C., M. L. G. Monteiro, B. R. C. Costa-Lima, T. S. Alvares, and C. A. Conte-Junior. 2015. In vitro digestibility of commercial whey protein supplements. LWT - Food Science and Technology 61 (1):7–11. doi: 10.1016/j.lwt.2014.11.038.
  • Alonso, R., A. Aguirre, and F. Marzo. 2000. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chemistry 68 (2):159–65. doi: 10.1016/S0308-8146(99)00169-7.
  • Anyango, J. O., H. L. de Kock, and J. R. N. Taylor. 2011. Impact of cowpea addition on the protein digestibility corrected amino acid score and other protein quality parameters of traditional African foods made. Food Chemistry 124 (3):775–80. doi: 10.1016/j.foodchem.2010.06.094.
  • Aryee, A. N. A., D. Agyei, and C. C. Udenigwe. 2018. Impact of processing on the chemistry and functionality of food proteins. Proteins in Food Processing :27–45.
  • Babji, A. S., G. W. Froning, and L. D. Satterlee. 2018. Protein nutritional quality of mechanically deboned poultry meat as predicted by the C‐Per assay. Journal of Food Science 45 (3):441–3. doi: 10.1111/j.1365-2621.1980.tb04070.x.
  • Bailey, A. J., and N. D. Light. 1989. Connective tissue in meat and meat products. Elsevier Applied Science.
  • Barrón-Hoyos, J. M., A. R. Archuleta, M. d R. Falcón-Villa, R. Canett-Romero, F. J. Cinco-Moroyoqui, A. L. Romero-Barancini, and E. O. Rueda-Puente. 2013. Protein quality evaluation of animal food proteins by in-vitro methodologies. Food and Nutrition Sciences 04 (04):376–84. doi: 10.4236/fns.2013.44048.
  • Bax, M. L., L. Aubry, C. Ferreira, J. D. Daudin, P. Gatellier, D. Rémond, and V. Santé-Lhoutellier. 2012. Cooking temperature is a key determinant of in vitro meat protein digestion rate: Investigation of underlying mechanisms. Journal of Agricultural and Food Chemistry 60 (10):2569–76. doi: 10.1021/jf205280y.
  • Bax, M.-L., T. Sayd, L. Aubry, C. Ferreira, D. Viala, C. Chambon, D. Rémond, and V. Santé-Lhoutellier. 2013. Muscle composition slightly affects in vitro digestion of aged and cooked meat: Identification of associated proteomic markers. Food Chemistry 136 (3-4):1249–62. doi: 10.1016/j.foodchem.2012.09.049.
  • Becker, P. M., and P. Yu. 2013. What makes protein indigestible from tissue-related, cellular, and molecular aspects? Molecular Nutrition & Food Research 57 (10):1695–707. doi: 10.1002/mnfr.201200592.
  • Bellagamba, F., F. Caprino, T. Mentasti, M. Vasconi, and V. M. Moretti. 2015. The impact of processing on amino acid racemization and protein quality in processed animal proteins of poultry origin. Italian Journal of Animal Science 14 (2):3770–245. doi: 10.4081/ijas.2015.3770.
  • Bertsch, A., and N. Coello. 2005. A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresource Technology 96 (15):1703–8. doi: 10.1016/j.biortech.2004.12.026.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, and A. E.-D A. Bekhit. 2019. Pulsed electric field improved protein digestion of beef during in-vitro gastrointestinal simulation. LWT - Food Science and Technology 102:45–51. doi: 10.1016/j.lwt.2018.12.013.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, A. E.-D A. Bekhit, and T. E. Mungure. 2018. Pulsed electric field: Effect on in-vitro simulated gastrointestinal protein digestion of deer Longissimus dorsi. Food Research International 120:793–9. doi: 10.1016/j.foodres.2018.11.040.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, T. E. Mungure, S. R. Jayawardena, and A. E.-D A. Bekhit. 2019. Effect of pulsed electric field on calpain activity and proteolysis of venison. Innovative Food Science & Emerging Technologies 52:131–5. doi: 10.1016/j.ifset.2018.11.006.
  • Bilgiçli, N., Ş. İbanogˇlu, and E. N. Herken. 2007. Effect of dietary fibre addition on the selected nutritional properties of cookies. Journal of Food Engineering 78 (1):86–9. doi: 10.1016/j.jfoodeng.2005.09.009.
  • Blanco, M. R., and C. R. Alonso. 2010. Collagen types I and III in bovine muscles: Influence of age and breed. Journal of Muscle Foods 21 (3):417–23. doi: 10.1111/j.1745-4573.2009.00191.x.
  • Boirie, Y., M. Dangin, P. Gachon, M. P. Vasson, J. L. Maubois, and B. Beaufrere. 1997. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences USA, 94 (26):14930–5. doi: 10.1073/pnas.94.26.14930.
  • Boland, M. 2016. Human digestion-A processing perspective. Journal of the Science of Food and Agriculture 96 (7):2275–83. doi: 10.1002/jsfa.7601.
  • Bonner, P. L. R., and A. J. Hargreaves. 2011. Basic bioscience laboratory techniques: A pocket guide. Sussex: Wiley Blackwell. https://www.wiley.com/en-us/Basic+Bioscience + Laboratory + Techniques%3A + A+Pocket +Guide-p-9780470743096
  • Bornhorst, G. M., S. M. Rutherfurd, M. J. Roman, B. J. Burri, P. J. Moughan, and R. P. Singh. 2014. Gastric pH distribution and mixing of soft and rigid food particles in the stomach using a dual-marker technique. Food Biophysics 9 (3):292–300. doi: 10.1007/s11483-014-9354-3.
  • Bornhorst, G. M., and R. P. Singh. 2014. Gastric digestion in vivo and in vitro: How the structural aspects of food influence the digestion process. Annual Review of Food Science and Technology 5:111–32. doi: 10.1146/annurev-food-030713-092346.
  • Bos, C., G. Airinei, F. Mariotti, R. Benamouzig, S. Bérot, J. Evrard, E. Fénart, D. Tomé, and C. Gaudichon. 2007. The poor digestibility of rapeseed protein is balanced by its very high metabolic utilization in humans. The Journal of Nutrition 137 (3):594–600. doi: 10.1093/jn/137.3.594.
  • Brandelli, A. 2008. Bacterial keratinases: Useful enzymes for bioprocessing agroindustrial wastes and beyond. Food and Bioprocess Technology 1 (2):105–16. doi: 10.1007/s11947-007-0025-y.
  • Brandelli, A., L. Sala, and S. J. Kalil. 2015. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Research International 73:3–12. doi: 10.1016/j.foodres.2015.01.015.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Brulé, D., and L. Savoie. 1988. In vitro digestibility of protein and amino acids in protein mixtures. Journal of the Science of Food and Agriculture 43 (4):361–72. doi: 10.1002/jsfa.2740430409.
  • Böttger, F. H., M. R. Etzel, and J. A. Lucey. 2013. In vitro infant digestion of whey protein–dextran glycates. Food Digestion 4 (2-3):76–84. doi: 10.1007/s13228-013-0032-6.
  • Caire-Juvera, G., F. A. Vázquez-Ortiz, and M. I. Grijalva-Haro. 2013. Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in northwest Mexico. Nutricion Hospitalaria 28 (2):365–71. doi: 10.3305/nh.2013.28.2.6219.
  • Čakarević, J., S. Vidović, J. Vladić, A. Gavarić, S. Jokić, N. Pavlović, M. Blažić, and L. Popović. 2019. Production of bio-functional protein through revalorization of apricot kernel cake. Foods 8 (8):318. doi: 10.3390/foods8080318.
  • Carbonaro, M., M. Cappelloni, S. Nicoli, M. Lucarini, and E. Carnovale. 1997. Solubility-digestibility relationship of legume proteins. Journal of Agricultural and Food Chemistry 45 (9):3387–94. doi: 10.1021/jf970070y.
  • Castillo-Lopez, E., R. E. Espinoza-Villegas, and M. T. Viana. 2016. In vitro digestion comparison from fish and poultry by-product meals from simulated digestive process at different times of the Pacific Bluefin tuna, Thunnus orientalis. Aquaculture 458:187–94. doi: 10.1016/j.aquaculture.2016.03.011.
  • Castrilló, A. M., M. P. Navarro, and M. T. García-Arias. 1996. Tuna protein nutritional quality changes after canning. Journal of Food Science 61 (6):1250–3. doi: 10.1111/j.1365-2621.1996.tb10972.x.
  • Cepero-Betancourt, Y., P. Oliva-Moresco, A. Pasten-Contreras, G. Tabilo-Munizaga, M. Pérez-Won, L. Moreno-Osorio, and R. Lemus-Mondaca. 2017. Effect of drying process assisted by high-pressure impregnation on protein quality and digestibility in red abalone (Haliotis rufescens). Journal of Food Science and Technology 54 (11):3744–51. doi: 10.1007/s13197-017-2837-8.
  • Chan-Higuera, J. E., R. M. Robles-Sánchez, A. Burgos-Hernández, E. Márquez-Ríos, C. A. Velázquez-Contreras, and J. M. Ezquerra-Brauer. 2016. Squid by-product gelatines: Effect on oxidative stress biomarkers in healthy rats. Czech Journal of Food Sciences 34 (No. 2):105–10. doi: 10.17221/320/2015-CJFS.
  • Chang, C. H., and X. H. Zhao. 2012. In Vitro Digestibility and Rheological Properties of Caseinates Treated by an Oxidative System Containing Horseradish Peroxidase, Glucose Oxidase and Glucose. International Dairy Journal. doi: 10.1016/j.idairyj.2012.07.004.
  • Chen, L., C. Li, N. Ullah, Y. Guo, X. Sun, X. Wang, X. Xu, R. M. Hackman, G. Zhou, and X. Feng. 2016. Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation. Meat Science 121:228–37. doi: 10.1016/j.meatsci.2016.06.010.
  • Cieplak, T., M. Wiese, S. Nielsen, T. Van de Wiele, F. van der Berg, and D. S. Nielsen. 2018. The Smallest Intestine (TSI) – A low volume in vitro model of the small intestine with increased throughput. FEMS Microbiol. Letters 365:fny231.
  • Clemente, A., J. Vioque, R., Sánchez-Vioque, J. Pedroche, J. Bautista, and F. Millán. 2000. Factors affecting the in vitro protein digestibility of chickpea albumins. Journal of the Science of Food and Agriculture 80 (1):79–84. doi: 10.1002/(SICI)1097-0010(20000101)80:1<79::AID-JSFA487>3.0.CO;2-4.
  • Cooper, C., N. Packer, and K. Williams. (Eds.). 2000. Methods in molecular biology. In Amino acid analysis protocols. Springer (vol. 159). Totowa, NJ: Humana Press.
  • D’Alessandro, A., and L. Zolla. 2013. Meat science: From proteomics to integrated omics towards system biology. Journal of Proteomics 78 (14):558–77. doi: 10.1016/j.jprot.2012.10.023.
  • Dallas, D. C., M. R. Sanctuary, Y. Qu, S. H. Khajavi, A. E. Van Zandt, M. Dyandra, S. A. Frese, D. Barile, and J. B. German. 2017. Personalizing protein nourishment. Critical Reviews in Food Science and Nutrition 57 (15):3313–31. doi: 10.1080/10408398.2015.1117412.
  • Day, L. 2013. Proteins from land plants: Potential resources for human nutrition and food security. Trends in Food Science & Technology 32 (1):25–42. doi: 10.1016/j.tifs.2013.05.005.
  • de La Pomélie, D., V. Santé-Lhoutellier, T. Sayd, and P. Gatellier. 2018. Oxidation and nitrosation of meat proteins under gastro-intestinal conditions: Consequences in terms of nutritional and health values of meat. Food Chemistry 243(July):295–304. doi: 10.1016/j.foodchem.2017.09.135.
  • de Lamballerie-Anton, M., S. Delépine, and N. Chapleau. 2002. High pressure effect on meat and lupin protein digestibility. High Pressure Research 22 (3-4):649–52. doi: 10.1080/08957950212419.
  • de Oliveira Filho, P. R. C., F. M. Netto, K. K. Ramos, M. A. Trindade, and E. M. M. Viegas. 2010. Elaboration of sausage using minced fish of nile tilapia filleting waste. Brazilian Archives of Biology and Technology 53 (6):1383–91. doi: 10.1590/S1516-89132010000600015.
  • De la Rosa-Millán, J., C. Chuck-Hernandez, and S. O. Serna-Saldívar. 2015. Molecular structure characteristics, functional parameters and in vitro protein digestion of pressure-cooked soya bean flours with different amounts of water. International Journal of Food Science & Technology 50 (11):2490–7. doi: 10.1111/ijfs.12917.
  • Dean, R. T., S. Fu, R. Stocker, and M. J. Davies. 1997. Biochemistry and pathology of radical-mediated protein oxidation. Biochemical Journal 324 (1):1–18. doi: 10.1042/bj3240001.
  • Deng, Y., C. I. Butré, and P. A. Wierenga. 2018. Influence of substrate concentration on the extent of protein enzymatic hydrolysis. International Dairy Journal 86:39–48. doi: 10.1016/j.idairyj.2018.06.018.
  • Deng, Y., Y. Luo, Y. Wang, and Y. Zhao. 2015. Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chemistry 171:168–76. doi: 10.1016/j.foodchem.2014.09.002.
  • Du, X., Y. Sun, D. Pan, Y. Wang, C. Ou, and J. Cao. 2018. Change of the structure and the digestibility of myofibrillar proteins in Nanjing dry-cured duck during processing. Journal of the Science of Food and Agriculture 98 (8):3140–7. doi: 10.1002/jsfa.8815.
  • Dupont, D., M. Alric, S. Blanquet-Diot, G. Bornhorst, C. Cueva, A. Deglaire, S. Denis, M. Ferrua, R. Havenaar, J. Lelieveld, A. R. Mackie, M. Marzorati, O. Menard, M. Minekus, B. Miralles, I. Recio, and P. Van den Abbeele. 2019. Van den Abbeele, P. 2019. Can dynamic in vitro digestion systems mimic the physiological reality? Critical Reviews in Food Science and Nutrition 59 (10):1546–62. doi: 10.1080/10408398.2017.1421900.
  • Dupont, D., G. Mandalari, D. Molle, J. Jardin, J. Leonil, R. M. Faulks, M. S. J. Wickham, E. N. C. Mills, and A. R. Mackie. 2010. Comparative resistance of food proteins to adult and infant in vitro digestion models. Molecular Nutrition & Food Research 54 (6):767–80. doi: 10.1002/mnfr.200900142.
  • Dupont, D., G. Mandalari, D. Mollé, J. Jardin, O. Rolet-Répécaud, G. Duboz, J. Léonil, C. E. N. Mills, and A. R. Mackie. 2010. Food processing increases casein resistance to simulated infant digestion. Molecular Nutrition & Food Research 54 (11):1677–89. doi: 10.1002/mnfr.200900582.
  • Duque-Estrada, P., C. C. Berton-Carabin, M. Nieuwkoop, B. L. Dekkers, A. E. M. Janssen, and A. J. van der Goot. 2019. Protein oxidation and in vitro gastric digestion of processed soy-based matrices. Journal of Agricultural and Food Chemistry 67 (34):9591–600. doi: 10.1021/acs.jafc.9b02423.
  • Eckert, E., Han, J. Swallow, K. Tian, Z. Jarpa, ‐Parra, M. Chen. and L. 2019. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry 96 (4):725–41. doi: 10.1002/cche.10169.
  • Egger, L., O. Ménard, C. Baumann, D. Duerr, P. Schlegel, P. Stoll, G. Vergères, D. Dupont, and R. Portmann. 2019. Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data. Food Research International (Ottawa, Ont.) 118:32–9. doi: 10.1016/j.foodres.2017.12.049.
  • Egger, L., O. Ménard, C. Delgado-Andrade, P. Alvito, R. Assunção, S. Balance, R. Barberá, A. Brodkorb, T. Cattenoz, A. Clemente, et al. 2016. The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International 88:217–25. doi: 10.1016/j.foodres.2015.12.006.
  • Egger, L., P. Schlegel, C. Baumann, H. Stoffers, D. Guggisberg, C. Brügger, D. Dürr, P. Stoll, G. Vergères, and R. Portmann. 2017. Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion. Food Research International (Ottawa, Ont.) 102:567–74. doi: 10.1016/j.foodres.2017.09.047.
  • EI, S. N., and A. Kavas. 1996. Determination of protein quality of rainbow trout (Salmo irideus) by in vitro protein digestibility: Corrected amino acid score (PDCAAS). Food Chemistry 55 (3):221–3.
  • Embaby, H. E. 2010. Effect of soaking, dehulling, and cooking methods on certain antinutrients and in vitro protein digestibility of bitter and sweet lupin seeds. Food Science and Biotechnology 19 (4):1055–62. doi: 10.1007/s10068-010-0148-1.
  • Fakhfakh, N., N. Ktari, A. Haddar, I. H. Mnif, I. Dahmen, and M. Nasri. 2011. Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochemistry 46 (9):1731–7. doi: 10.1016/j.procbio.2011.05.023.
  • Fang, X., L.-E. Rioux, S. Labrie, and S. L. Turgeon. 2016. Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion. International Dairy Journal 56:169–78. doi: 10.1016/j.idairyj.2016.01.023.
  • Faris, R. J., H. Wang, and T. Wang. 2008. Improving digestibility of soy flour by reducing disulfide bonds with thioredoxin. Journal of Agricultural and Food Chemistry 56 (16):7146–50. doi: 10.1021/jf801136n.
  • Farouk, M. M., G. Wu, D. A. Frost, S. Clerens, and S. O. Knowles. 2014. The in vitro digestibility of beef varies with its inherent ultimate pH. Food and Function 5 (11):2759–67. doi: 10.1039/C4FO00502C.
  • Ferreira, V. C. S., D. Morcuende, M. S. Madruga, F. A. P. Silva, and M. Estévez. 2018. Role of protein oxidation in the nutritional loss and texture changes in ready-to-eat chicken patties. International Journal of Food Science & Technology 53 (6):1518–26. doi: 10.1111/ijfs.13733.
  • Friedman, M. 1999. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. Journal of Agricultural and Food Chemistry 47 (4):1295–319. doi: 10.1021/jf981000.
  • Friedman, M. 2004. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. Journal of Agricultural and Food Chemistry 52 (3):385–406. doi: 10.1021/jf030490p.
  • Friedman, M., J. C. Zahnley, and P. M. Masters. 1981. Relationship between in vitro digestibility of casein and its content of lysinoalanine and D-amino acids. Journal of Food Science 46 (1):127–34. doi: 10.1111/j.1365-2621.1981.tb14545.x.
  • Fursik, O., I. Strashynskiy, and V. Pasichnyi. 2018. Quality assessment of proteins in cooked sausages with food compositions. Food Science and Technology 12 (2):80–8.
  • Galibois, I., and L. Savoie. 1987. Relationship between amino acid intestinal effluent in rat and in vitro protein digestion products. Nutrition Research 7 (1):65–79. doi: 10.1016/S0271-5317(87)80192-6.
  • Gang, G., C. Jie, W. Jun-Gao, H. Qiu-Xia, and L. Ke-Chun. 2013. A two-step biotechnological process for improving nutrition value of feather meal by Bacillus licheniformis S6. Journal of Northeast Agricultural University (English Edition) 20 (3):71–7. doi: 10.1016/S1006-8104(14)60011-8.
  • Alvarez-Coque, G., M. C. Medina Hernández, M. J. Villanueva Camañas, R. M. Mongay Fernández. and C. 1989. Formation and instability of o-phthalaldehyde derivatives of amino acids. Analytical Biochemistry 178 (1):1–7. doi: 10.1016/0003-2697(89)90346-1.
  • Gatellier, P., and V. Santé-Lhoutellier. 2009. Digestion study of proteins from cooked meat using an enzymatic microreactor. Meat Science 81 (2):405–9. doi: 10.1016/j.meatsci.2008.09.002.
  • Genovese, M. I., and F. M. Lajolo. 1996. In vitro digestibility of albumin proteins from Phaseolus vulgaris L. effect of chemical modification. Journal of Agricultural and Food Chemistry 44 (10):3022–8. doi: 10.1021/jf9507304.
  • Goetz, H. M., M. Kuschel, T. Wulff, C. Sauber, C. Miller, S. Fisher, and C. Woodward. 2004. Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination. Journal of Biochemical and Biophysical Methods 60 (3):281–93. doi: 10.1016/j.jbbm.2004.01.007.
  • Grazziotin, A., F. A. Pimentel, E. V. De Jong, and A. Brandelli. 2006. Nutritional improvement of feather protein by treatment with microbial keratinase. Animal Feed Science and Technology 126 (1-2):135–44. doi: 10.1016/j.anifeedsci.2005.06.002.
  • Guo, X., H. Yao, and Z. Chen. 2006. In vitro digestibility of chinese tartary buckwheat protein fractions: the microstructure and molecular weight distribution of their hydrolysates. Journal of Food Biochemistry 30 (5):508–20. doi: 10.1111/j.1745-4514.2006.00078.x.
  • Guo, X., H. Yao, and Z. Chen. 2007. Effect of heat, rutin and disulfide bond reduction on in vitro pepsin digestibility of Chinese tartary buckwheat protein fractions. Food Chemistry 102 (1):118–22. doi: 10.1016/j.foodchem.2006.04.039.
  • Guo, Q., A. Ye, M. Lad, D. Dalgleish, and H. Singh. 2014. Effect of gel structure on the gastric digestion of whey protein emulsion gels. Soft Matter 10 (8):1214–23. doi: 10.1039/c3sm52758a.
  • Habiba, R. A. 2002. Changes in anti-nutrients, protein solubility, digestibility, and HCl-extractability of ash and phosphorus in vegetable peas as affected by cooking methods. Food Chemistry 77 (2):187–92. doi: 10.1016/S0308-8146(01)00335-1.
  • Hamaker, B. R., A. W. Kirleis, L. G. Butler, J. D. Axtell, and E. T. Mertz. 1987. Improving the in vitro protein digestibility of sorghum with reducing agents. Proceedings of the National Academy of Sciences 84: 626–8.
  • Han, I. H., B. G. Swanson, and B.-K. Baik. 2007. Protein digestibility of selected legumes treated with ultrasound and high hydrostatic pressure during soaking. Cereal Chemistry Journal 84 (5):518–21. doi: 10.1094/CCHEM-84-5-0518.
  • Han, Z., M. Cai, J.-H. Cheng, and D.-W. Sun. 2018. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science & Technology 75:1–9. doi: 10.1016/j.tifs.2018.02.017.
  • Han, K., Y. Yao, S. Dong, S. Jin, H. Xiao, H. Wu, and M. Zeng. 2017. Chemical characterization of the glycated myofibrillar proteins from grass carp (Ctenopharyngodon idella) and their impacts on the human gut microbiota in vitro fermentation. Food & Function 8 (3):1184–94. doi: 10.1039/C6FO01632D.
  • Hayashi, R., Y. Kawamura, T. Nakasa, and O. Okinaka. 1989. Application of high pressure to food processing: Pressurization of egg white and yolk and properties of gels formed. Agricultural and Biological Chemistry 53:2935–9.
  • He, Z., B. Yuan, M. Zeng, G. Tao, and J. Chen. 2015. Effect of simulated processing on the antioxidant capacity and in vitro protein digestion of fruit juice-milk beverage model systems. Food Chemistry 175:457–64. doi: 10.1016/j.foodchem.2014.12.007.
  • He, J., G. Zhou, Y. Bai, C. Wang, S. Zhu, X. Xu, and C. Li. 2018. The effect of meat processing methods on changes in disulfide bonding and alteration of protein structures: Impact on protein digestion products. RSC Advances 8 (31):17595–605. doi: 10.1039/C8RA02310G.
  • Hei, A., and C. Sarojnalini. 2015. Nutritional assessment of some traditionally processed hill-stream fishes of manipur with special reference to n-3 fatty acids. Journal of Aquatic Food Product Technology 24 (8):832–9. doi: 10.1080/10498850.2013.797535.
  • Herpandi, H., Ahmad, N. R. Abdullah. and W. N. W. 2016. Protein quality of hydrolyzed dark muscle protein of Skipjack Tuna (Katsuwonus pelamis). Turkish Journal of Fisheries and Aquatic Sciences 16 (1):177–86. doi: 10.4194/1303-2712-v16_1_18.
  • Hęś, M., and A. Gramza-Michałowska. 2017a. Effect of plant extracts on lipid oxidation and changes in nutritive value of protein in frozen-stored meat products. Journal of Food Processing and Preservation 41 (3):e12989. doi: 10.1111/jfpp.12989.
  • Hęś, M., and A. Gramza-Michałowska. 2017b. Effect of plant extracts on lipid oxidation and changes in nutritive value of protein in frozen-stored meat products. Journal of Food Processing and Preservation 41 (3):e12989. doi: 10.1111/jfpp.12989.
  • Hodgkinson, A. J., O. A. M. Wallace, I. Boggs, M. Broadhurst, and C. G. Prosser. 2018. Reviews of physiology, biochemistry and pharmacology. In Reviews of physiology, biochemistry and pharmacology, eds. T. Gudermann, R. Jahn, R. Lill, O. Petersen, and P. de Tombe. Cham: Springer. doi: 10.1016/j.foodchem.2017.10.028.
  • Hoppe, A., S. Jung, A. Patnaik, and M. G. Zeece. 2013. Effect of high pressure treatment on egg white protein digestibility and peptide products. Innovative Food Science and Emerging Technologies 245:275–62.
  • Hygreeva, D., and M. C. Pandey. 2016. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology - A review. Trends in Food Science & Technology 54:175–85. doi: 10.1016/j.tifs.2016.06.002.
  • Iametti, S., E. Donnizzelli, P. Pittia, P. P. Rovere, N. Squarcina, and F. Bonomi. 1999. Characterization of high-pressure-treated egg albumen. Journal of Agricultural and Food Chemistry 47 (9):3611–6. doi: 10.1021/jf9808630.
  • Iametti, S., E. Donnizzelli, G. Vecchio, P. P. Rovere, S. Gola, and F. Bonomi. 1998. Macroscopic and structural consequences of high-pressure treatment of ovalbumin solutions. Journal of Agricultural and Food Chemistry 46 (9):3521–7. doi: 10.1021/jf980110d.
  • Inglingstad, R. A., T. G. Devold, E. K. Eriksen, H. Holm, M. Jacobsen, K. H. Liland, E. O. Rukke, and G. E. Vegarud. 2010. Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes. Dairy Science & Technology 90 (5):549–63. doi: 10.1051/dst/2010018.
  • Ivanova, P., V. Chalova, G. Uzunova, L. Koleva, and I. Manolov. 2016. Biochemical characterization of industrially produced rapeseed meal as a protein source in food industry. Agriculture and Agricultural Science Procedia 10:55–62. doi: 10.1016/j.aaspro.2016.09.009.
  • Jalabert-Malbos, M. L., A. Mishellany-Dutour, A. Woda, and M. A. Peyron. 2007. Particle size distribution in the food bolus after mastication of natural foods. Food Quality and Preference 18 (5):803–12. doi: 10.1016/j.foodqual.2007.01.010.
  • Jiménez-Saiz, R., C. Pineda-Vadillo, R. López-Fandiño, and E. Molina. 2012. Human IgE binding and in vitro digestion of S-OVA. Food Chemistry 135 (3):1842–7. doi: 10.1016/j.foodchem.2012.06.044.
  • Joehnke, M. S., R. Lametsch, and J. C. Sørensen. 2019. Improved in vitro digestibility of rapeseed napin proteins in mixtures with bovine beta-lactoglobulin. Food Research International (Ottawa, Ont.) 123:346–54. doi: 10.1016/j.foodres.2019.05.004.
  • Joehnke, M. S., A. Rehder, S. Sørensen, C. Bjergegaard, J. C. Sørensen, and K. E. Markedal. 2018. In vitro digestibility of rapeseed and bovine whey protein mixtures. Journal of Agricultural and Food Chemistry 66 (3):711–9. doi: 10.1021/acs.jafc.7b04681.
  • Joehnke, M. S., S. Sørensen, C. Bjergegaard, J. C. Sørensen, and K. E. Markedal. 2018b. Effect of dietary fibre on in vitro digestibility of rapeseed napin proteins. Manuscript/PhD theis.
  • Jongjareonrak, A., S. Benjakul, W. Visessanguan, T. Prodpran, and M. Tanaka. 2006. Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocolloids 20 (4):492–501. doi: 10.1016/j.foodhyd.2005.04.007.
  • Kadam, S. U., and P. Prabhasankar. 2012. Evaluation of cooking, microstructure, texture and sensory quality characteristics of shrimp meat-based pasta. Journal of Texture Studies 43 (4):268–74. doi: 10.1111/j.1745-4603.2011.00336.x.
  • Kaspchak, E., L. I. Mafra, and M. R. Mafra. 2018. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility. Food Chemistry 252:1–8. doi: 10.1016/j.foodchem.2018.01.089.
  • Kaur, L., T. Astruc, A. Vénien, O. Loison, J. Cui, M. Irastorza, and M. Boland. 2016. High pressure processing of meat: Effects on ultrastructure and protein digestibility. Food & Function 7 (5):2389–97. doi: 10.1039/c5fo01496d.
  • Kaur, L., E. Maudens, D. R. Haisman, M. J. Boland, and H. Singh. 2014. Microstructure and protein digestibility of beef: The effect of cooking conditions as used in stews and curries. LWT - Food Science and Technology 55 (2):612–20. doi: 10.1016/j.lwt.2013.09.023.
  • Kaur, L., S. M. Rutherfurd, P. J. Moughan, L. Drummond, and M. J. Boland. 2010. Actinidin enhances protein digestion in the small intestine as assessed using an in vitro digestion model. Journal of Agricultural and Food Chemistry 58 (8):5074–80. doi: 10.1021/jf903835g.
  • Kehlet, U., B. Mitra, J. Ruiz-Carrascal, A. Raben, and M. D. Aaslyng. 2017. The satiating properties of pork are not affected by cooking methods, sousvide holding time or mincing in healthy men—a randomized cross-over meal test study. Nutrients 9 (9):941. doi: 10.3390/nu9090941.
  • Khatoon, N., and J. Prakash. 2004. Nutritional quality of microwave-cooked and pressure-cooked legumes. International Journal of Food Sciences and Nutrition 55 (6):441–8. doi: 10.1080/09637480400009102.
  • Knorr, D., V. Heinz, and R. Buckow. 2006. High pressure application for food biopolymers. Biochimica et Biophysica Acta 1764 (3):619–31. doi: 10.1016/j.bbapap.2006.01.017.
  • Knudsen, J. C., J. Otte, K. Olsen, and L. H. Skibsted. 2002. Effect of high hydrostatic pressure on the conformation of beta-lactoglobulin A as assessed by proteolytic peptide profiling. International Dairy Journal 12 (10):791–803. doi: 10.1016/S0958-6946(02)00078-X.
  • Komatsu, Y., Y. Wada, H. Izumi, T. Shimizu, Y. Takeda, T. Hira, and H. Hara. 2019. Casein materials show different digestion patterns using an in vitro gastrointestinal model and different release of glucagon-like peptide-1 by enteroendocrine GLUTag cells. Food Chemistry 277:423–31. doi: 10.1016/j.foodchem.2018.10.123.
  • Kondjoyan, A., J. D. Daudin, and V. Santé-Lhoutellier. 2015. Modelling of pepsin digestibility of myofibrillar proteins and of variations due to heating. Food Chemistry 172:265–71. doi: 10.1016/j.foodchem.2014.08.110.
  • Kopf-Bolanz, K. A., F. Schwander, M. Gijs, G. Vergères, R. Portmann, and L. Egger. 2014. Impact of milk processing on the generation of peptides during digestion. International Dairy Journal 35 (2):130–8. doi: 10.1016/j.idairyj.2013.10.012.
  • Korczak, J., M. Hes, A. Gramza-Michałowska, and A. Jedrusek-Golinska. 2004. Influence of fat oxidation on the stability of lysine and protein digestibility in frozen meat products. Electronic Journal of Polish Agricultural Universities 7 (1):2.
  • Korpela, K. 2018. Diet, microbiota, and metabolic health: Trade-off between saccharolytic and proteolytic fermentation. Annual Review of Food Science and Technology 9 (1):65–84. doi: 10.1146/annurev-food-030117-012830.
  • Laser-Reuterswärd, A., N. G. Asp, I. Björck, and H. Ruderus. 2007. Effect of collagen content and heat treatment on protein digestibility and biological value of meat products. International Journal of Food Science & Technology 17 (1):115–23. doi: 10.1111/j.1365-2621.1982.tb00166.x.
  • Lechevalier, V., N. Musikaphun, A. Gillard, M. Pasco, C. Guérin-Dubiard, F. Husson, and F. Nau. 2015. Effects of dry heating on the progression of in vitro digestion of egg white proteins: Contribution of multifactorial data analysis. Food & Function 6 (5):1578–90. doi: 10.1039/c4fo01156b.
  • Linsberger-Martin, G., K. Weiglhofer, T. P. T. Phuong, and E. Berghofer. 2013. High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans. LWT - Food Science and Technology 51 (1):331–6. doi: 10.1016/j.lwt.2012.11.008.
  • Liu, Y.-F., I. Oey, P. Bremer, P. Silcock, and A. Carne. 2018. Proteolytic pattern, protein breakdown and peptide production of ovomucin-depleted egg white processed with heat or pulsed electric fields at different pH. Food Research International (Ottawa, Ont.) 108:465–74. doi: 10.1016/j.foodres.2018.03.075.
  • Lorieau, L.,. A. Halabi, A. Ligneul, E. Hazart, D. Dupont, and J. Floury. 2018. Impact of the dairy product structure and protein nature on the proteolysis and amino acid bioaccessiblity during in vitro digestion. Food Hydrocolloids 82:399–411. doi: 10.1016/j.foodhyd.2018.04.019.
  • Lu, H., L. Zhang, Q. Li, and Y. Luo. 2017. Comparison of gel properties and biochemical characteristics of myofibrillar protein from bighead carp (Aristichthys nobilis) affected by frozen storage and a hydroxyl radical-generation oxidizing system. Food Chemistry 223:96–103. doi: 10.1016/j.foodchem.2016.11.143.
  • Lu, M., Y.-P. Han, and X.-H. Zhao. 2016. Properties of bovine gelatin cross-linked by a mixture of two oxidases (horseradish peroxidase and glucose oxidase) and glucose. CyTA - Journal of Food 14 (3):457–64. doi: 10.1080/19476337.2015.1134671.
  • Luo, Q., R. M. Boom, and A. E. M. Janssen. 2015. Digestion of protein and protein gels in simulated gastric environment. LWT - Food Science and Technology 63 (1):161–8. doi: 10.1016/j.lwt.2015.03.087.
  • Luo, J., C. Taylor, T. Nebl, K. Ng, and L. E. Bennett. 2018. Effects of macro-nutrient, micro-nutrient composition and cooking conditions on in vitro digestibility of meat and aquatic dietary proteins. Food Chemistry 254:292–301. doi: 10.1016/j.foodchem.2018.01.164.
  • Lynch, S. A., A. M. Mullen, E. E. O’Neill, and C. Á. García. 2017. Harnessing the potential of blood proteins as functional ingredients: A review of the state of the art in blood processing. Comprehensive Reviews in Food Science and Food Safety 16 (2):330–44. doi: 10.1111/1541-4337.12254.
  • Maciel, J. L., P. O. Werlang, D. J. Daroit, and A. Brandelli. 2017. Characterization of protein-rich hydrolysates produced through microbial conversion of waste feathers. Waste and Biomass Valorization 8 (4):1177–86. doi: 10.1007/s12649-016-9694-y.
  • Macierzanka, A., F. Böttger, L. Lansonneur, R. Groizard, A.-S. Jean, N. M. Rigby, K. Cross, N. Wellner, and A. R. Mackie. 2012. The effect of gel structure on the kinetics of simulated gastrointestinal digestion of bovine β-lactoglobulin. Food Chemistry 134 (4):2156–21263. doi: 10.1016/j.foodchem.2012.04.018.
  • Macierzanka, A., A. I. Sancho, E. C. Mills, N. M. Rigby, and A. R. Mackie. 2009. Emulsification alters simulated gastrointestinal proteolysis of β-casein and β-lactoglobulin. Soft Matter 5 (3):538–50. doi: 10.1039/B811233A.
  • Magné, C., and F. Larher. 1992. High sugar content of extracts interferes with colorimetric determination of amino acids and free proline. Analytical Biochemistry 200 (1):115–8. doi: 10.1016/0003-2697(92)90285-F.
  • Mahmoud, B. S. M., Y. Kawai, K. Yamazaki, K. Miyashita, and T. Suzuki. 2007. Effect of treatment with electrolyzed NaCl solutions and essential oil compounds on the proximate composition, amino acid and fatty acid composition of carp fillets. Food Chemistry 101 (4):1492–8. doi: 10.1016/j.foodchem.2006.03.057.
  • Mandalari, G., Z. Merali, P. Ryden, S. Chessa, C. Bisignano, D. Barreca, E. Bellocco, G. Laganà, R. M. Faulks, and K. W. Waldron. 2018. Durum wheat particle size affects starch and protein digestion in vitro. European Journal of Nutrition 57 (1):319–25. doi: 10.1007/s00394-016-1321-y.
  • Martín-Cabrejas, M. A., Y. Aguilera, M. M. Pedrosa, C. Cuadrado, T. Hernández, S. Díaz, and R. M. Esteban. 2009. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry 114 (3):1063–8. doi: 10.1016/j.foodchem.2008.10.070.
  • Martos, G., P. Contreras, E. Molina, and R. Lopez-Fandino. 2010. Egg white ovalbumin digestion mimicking physiological conditions. Journal of Agricultural and Food Chemistry 58 (9):5640–8. doi: 10.1021/jf904538w.
  • Meena, C., S. a Mengi, and S. G. Deshpande. 1999. Biomedical and industrial applications of collagen. Proceedings Indian Academy of Sciences 111 (2):319–29. doi: 10.1007/BF02871912.
  • Mennah-Govela, Y. A., G. M. Bornhorst, and R. P. Singh. 2015. Acid diffusion into rice boluses is influenced by rice type, variety, and presence of α-amylase. Journal of Food Science 80 (2):E316–E325. doi: 10.1111/1750-3841.12750.
  • Min, B., and D. U. Ahn. 2005. Mechanism of lipid peroxidation in meat and meat products: A review. Food Science and BiotechnologyBotechnology 14 (1):152–63.
  • Mine, Y., T. Noutomi, and N. Haga. 1990. Thermally-induced changes in egg white proteins. Journal of Agricultural and Food Chemistry 38 (12):2122–5. doi: 10.1021/jf00102a004.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carriere, R. Boutrou, M. Corredig, D. Dupont, et al. 2014. A standardised static in vitro digestion method suitable for food: An international consensus. Food & Function 5 (6):1113–24. doi: 10.1039/c3fo60702j.
  • Minekus, M., P. Marteau, R. Havenaar, and J. H. J H. i Veld. 1995. Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals 23 (2):197–209. doi: 10.1177/026119299502300205.
  • Minekus, M., M. Smeets-Peeters, A. Bernalier, S. Marol-Bonnin, R. Havenaar, P. Marteau, M. Alric, G. Fonty, and J. Veld. 1999. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied Microbiology and Biotechnology 53 (1):108–14. doi: 10.1007/s002530051622.
  • Miguel, M.,. M. J. Alonso, M. Salaices, A. Aleixandre, and R. Lopez-Fandino. 2007. Antihypertensive, ACE-inhibitory and vasodilator properties of an egg white hydrolysate: Effect of a simulated intestinal digestion. Food Chemistry 104 (1):163–8. doi: 10.1016/j.foodchem.2006.11.016.
  • Mitra, B., Å. Rinnan, and J. Ruiz-Carrascal. 2017. Tracking hydrophobicity state, aggregation behaviour and structural modifications of pork proteins under the influence of assorted heat treatments. Food Research International (Ottawa, Ont.) 101:266–73. doi: 10.1016/j.foodres.2017.09.027.
  • Mokrane, H., H. Amoura, N. Belhaneche-Bensemra, C. M. Courtin, J. A. Delcour, and B. Nadjemi. 2010. Assessment of Algerian sorghum protein quality [Sorghum bicolor (L.) Moench] using amino acid analysis and in vitro pepsin digestibility. Food Chemistry 121 (3):719–23. doi: 10.1016/j.foodchem.2010.01.020.
  • Molly, K., M. V. Woestyne, and W. Verstraete. 1993. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology 39 (2):254–8. doi: 10.1007/BF00228615.
  • Morais, H. A., M. P. C. Silvestre, V. D. M. Silva, M. R. Silva, A. C. Simões e Silva, and J. N. Silveira. 2013. Correlation between the degree of hydrolysis and the peptide profile of whey protein concentrate hydrolysates: Effect of the enzyme type and reaction time. American Journal of Food Technology 8 (1):1–16. doi: 10.3923/ajft.2013.1.16.
  • Morais, H. A., M. P. C. Silvestre, J. N. Silveira, A. C. S. Silva, V. D. M. Silva, and M. R. Silva. 2013. Action of a pancreatin and an Aspergillus oryzae protease on whey proteins: Correlation among the methods of analysis of the enzymatic hydrolysates. Brazilian Archives of Biology and Technology 56 (6):985–95. doi: 10.1590/S1516-89132013000600014.
  • Morell, P., S. Fiszman, E. Llorca, and I. Hernando. 2017. Designing added-protein yogurts: Relationship between in vitro digestion behavior and structure. Food Hydrocolloids 72:27–34. doi: 10.1016/j.foodhyd.2017.05.026.
  • Moreno, F. J., A. R. Mackie, and E. N. Mills. 2005. Phospholipid interactions protect the milk allergen alpha-lactalbumin from proteolysis during in vitro digestion. Journal of Agricultural and Food Chemistry 53 (25):9810–6. doi: 10.1021/jf0515227.
  • Morey, K. S., L. D. Satterlee, and W. D. Brown. 1982. Protein quality of fish in modified atmospheres as predicted by the C-PER assay. Journal of Food Science 47 (5):1399–400. doi: 10.1111/j.1365-2621.1982.tb04947.x.
  • Mulet-Cabero, A.-I., A. R. Mackie, P. J. Wilde, M. A. Fenelon, and A. Brodkorb. 2019. Structural mechanism and kinetics of in vitro gastric digestion are affected by process-induced changes in bovine milk. Food Hydrocolloids 86:172–83. doi: 10.1016/j.foodhyd.2018.03.035.
  • Navarrete del Toro, M. A., and F. L. García-Carreño. 2003. Evaluation of the progress of protein hydrolysis. Current Protocols in Food Analytical Chemistry 10 (1):B2.2.1–B2.2.14. doi: 10.1002/0471142913.fab0202s10.
  • Neuman, R. E., and A. A. Tytell. 1950. Action of proteolytic enzymes on collagen. Experimental Biology and Medicine 73 (3):409–12. doi: 10.3181/00379727-73-17698.
  • Nielsen, P. M. 1997. Functionality of protein hydrolysates. In Food proteins and their applications, eds. S. Damodaran and A. Paraf, 1st ed., 443–72. New York: Marcel Dekker, Inc. doi: 10.1201/9780203755617-15.
  • Nielsen, P. M., D. Petersen, and C. Dambmann. 2001. Improved method for determining food protein degree of hydrolysis. Journal of Food Science 66 (5):642–6. doi: 10.1111/j.1365-2621.2001.tb04614.x.
  • Nunes, A., I. Correia, A. Barros, and I. Delgadillo. 2004. Sequential in vitro pepsin digestion of uncooked and cooked sorghum and maize samples. Journal of Agricultural and Food Chemistry 52 (7):2052–8. doi: 10.1021/jf0348830.
  • Nyemb, K., C. Guérin-Dubiard, D. Dupont, J. Jardin, S. M. Rutherfurd, and F. Nau. 2014. The extent of ovalbumin in vitro digestion and the nature of generated peptides are modulated by the morphology of protein aggregates. Food Chemistry 157:429–38. doi: 10.1016/j.foodchem.2014.02.048.
  • Nyemb, K., C. Guérin-Dubiard, S. Pezennec, J. Jardin, V. Briard-Bion, C. Cauty, S. M. Rutherfurd, D. Dupont, and F. Nau. 2016. The structural properties of egg white gels impact the extent of in vitro protein digestion and the nature of peptides generated. Food Hydrocolloids 54:315–27. doi: 10.1016/j.foodhyd.2015.10.011.
  • Nyemb, K., J. Jardin, D. Causeur, C. Guérin-Dubiard, D. Dupont, S. M. Rutherfurd, and F. Nau. 2014. Investigating the impact of ovalbumin aggregate morphology on in vitro ovalbumin digestion using label-free quantitative peptidomics and multivariate data analysis. Food Research International 63:192–202. doi: 10.1016/j.foodres.2014.03.041.
  • O’Dowd, L. P., J. M. Arimi, F. Noci, D. A. Cronin, and J. G. Lyng. 2013. An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle. Meat Science 93 (2):303–9. doi.org/. doi: 10.1016/j.meatsci.2012.09.010.
  • Oliphant, K., and E. Allen-Vercoe. 2019. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 7 (1):91 doi: 10.1186/s40168-019-0704-8.
  • Onwulata, C. I., R. P. Konstance, P. H. Cooke, and H. M. Farrell. Jr. 2003. Functionality of extrusion--texturized whey proteins. Journal of Dairy Science 86 (11):3775–82. doi: 10.3168/jds.S0022-0302(03)73984-8.
  • Opazo-Navarrete, M., M. A. I. Schutyser, R. M. Boom, and A. E. M. Janssen. 2018. Effect of pre-treatment on in vitro gastric digestion of quinoa protein (Chenopodium quinoa Willd.) obtained by wet and dry fractionation. International Journal of Food Science and Nutrition 69 (1):1–11. doi: 10.1080/09637486.2017.1332171.
  • Opazo-Navarrete, M., D. Tagle Freire, R. M. Boom, and A. E. M. Janssen. 2019. The influence of starch and fibre on in vitro protein digestibility of dry fractionated quinoa seed (Riobamba variety). Food Biophysics 14 (1):49–59. doi: 10.1007/s11483-018-9556-1.
  • Opiacha, J. O., M. G. Mast, and J. H. MacNeil. 1991. In‐vitro protein digestibility of dehydrated protein extract from poultry bone residue. Journal of Food Science 56 (6):1751–2. doi: 10.1111/j.1365-2621.1991.tb08687.x.
  • Orlien, V. 2019. Innovative food processing technologies: A comprehensive review: structural changes induced in foods by HPP. Reference Module in Food Science, Elsevier.
  • Oshodi, A. A., R. M. Beames, and S. Nakai. 1997. In vitro protein digestibility, amino acid profile and available iron of infant-weaning food prepared from maize flour and bovine blood. Food Research International 30 (3-4):193–7. doi: 10.1016/S0963-9969(97)00033-1.
  • Osman, M. A. 2007. Effect of different processing methods, on nutrient composition, antinutrional factors, and in vitro protein digestibility of Dolichos Lablab bean [Lablab purpuresus (L) sweet]. Pakistan Journal of Nutrition 6 (4):299–303.
  • Otter, D. E. 2012. Standardised methods for amino acid analysis of food. British Journal of Nutrition 108 (Suppl. 2):S230–S237. doi: 10.1017/S0007114512002486.
  • Pachaiappan, R., E. Tamboli, A. Acharya, C. H. Su, S. C. B. Gopinath, Y. Chen, and P. Velusamy. 2018. Separation and identification of bioactive peptides from stem of tinospora cordifolia (Willd.) miers. PLoS ONE 13 (3):e0193717. doi: 10.1371/journal.pone.0193717.
  • Pal, G. K., and P. V. Suresh. 2016. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innovative Food Science & Emerging Technologies 37 (B):201–15. doi: 10.1016/j.ifset.2016.03.015.
  • Panasiuk, R., R. Amarowicz, H. Kostyra, and L. Sijtsma. 1998. Determination of α-amino nitrogen in pea protein hydrolysates: A comparison of three analytical methods. Food Chemistry 62 (3):363–7. doi: 10.1016/S0308-8146(97)00164-7.
  • Parada, J., and J. M. Aguilera. 2007. Food microstructure affects the bioavailability of several nutrients. Journal of Food Science 72 (2):R21–32. doi: 10.1111/j.1750-3841.2007.00274.x.
  • Pasini, G., B. Simonato, M. Giannattasio, A. D. B. Peruffo, and A. Curioni. 2001. Modifications of wheat flour proteins during in vitro digestion of bread dough, crumb, and crust: An electrophoretic and immunological study. Journal of Agricultural and Food Chemistry 49 (5):2254–61. doi: 10.1021/jf0014260.
  • Pedersen, A. M. L., C. E. Sørensen, G. B. Proctor, and G. H. Carpenter. 2018. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Diseases 24 (8):1399–416. doi: 10.1111/odi.12867.
  • Pelgrom, P. J. M., J. A. M. Berghout, A. J. van der Goot, R. M. Boom, and M. A. I. Schutyser. 2014. Preparation of functional lupine protein fractions by dry separation. Lwt - Food Science and Technology 59 (2):680–8. doi: 10.1016/j.lwt.2014.06.007.
  • Petitot, M., C. Brossard, C. Barron, C. Larré, M.-H. Morel, and V. Micard. 2009. Modification of pasta structure induced by high drying temperatures. Effects on the in vitro digestibility of protein and starch fractions and the potential allergenicity of protein hydrolysates. Food Chemistry 116 (2):401–12. doi: 10.1016/j.foodchem.2009.01.001.
  • Pickles, J., S. Rafiq, S. A. Cochrane, and A. Lalljie. 2014. In vitro pepsin resistance of proteins: Effect of non-reduced SDS-PAGE analysis on fragment observation. Toxicology Reports 1:858–70. doi: 10.1016/j.toxrep.2014.10.008.
  • Picone, G., I. De Noni, P. Ferranti, M. A. Nicolai, C. Alamprese, A. Trimigno, A. Brodkorb, R. Portmann, A. Pihlanto, S. N. El, et al. 2019. Monitoring molecular composition and digestibility of ripened bresaola through a combined foodomics approach. Food Research International (Ottawa, Ont.) 115:360–8. doi: 10.1016/j.foodres.2018.11.021.
  • Promeyrat, A., P. Gatellier, B. Lebret, K. Kajak-Siemaszko, L. Aubry, and V. Santé-Lhoutellier. 2010. Evaluation of protein aggregation in cooked meat. Food Chemistry 121 (2):412–7. doi: 10.1016/j.foodchem.2009.12.057.
  • Purchas, R. W., X. Yan, and D. G. Hartley. 1999. The influence of a period of ageing on the relationship between ultimate pH and shear values of beef m. Longissimus thoracis. Meat Science 61 (2):135–41. doi: 10.1016/S0309-1740(98)00111-9.
  • Qi, J., X. Li, W. Zhang, H. Wang, G. Zhou, and X. Xu. 2018. Influence of stewing time on the texture, ultrastructure and in vitro digestibility of meat from the yellow-feathered chicken breed. Animal Science Journal = Nihon Chikusan Gakkaiho 89 (2):474–82. doi: 10.1111/asj.12929.
  • Qiao, Y., X. Lin, J. Odle, A. Whittaker, and T. A. T. G. van Kempen. 2004. Refining in vitro digestibility assays: Fractionation of digestible and indigestible peptides 1. Journal of Animal Science 82 (6):1669–77. doi: 10.2527/2004.8261669x.
  • Raghunath, M. R., Sankar, T. V. Ammu, and K. Devadasan. 1995. Biochemical and nutritional changes in fish proteins during drying. Journal of the Science of Food and Agriculture 67 (2):197–204. doi: 10.1002/jsfa.2740670209.
  • Rajamohamed, S. H., A. N A. Aryee, P. Hucl, C. A. Patterson, and J. I. Boye. 2013. In vitro gastrointestinal digestion of glabrous canaryseed proteins as affected by variety and thermal treatment. Plant Foods for Human Nutrition 68 (3):306–12. doi: 10.1007/s11130-013-0374-9.
  • Reddy, I. M., N. K. D. Kella, and J. E. Kinsella. 1988. Structural and conformational basis of the resistance of β-lactoglobulin to peptic and chymotryptic digestion. Journal of Agricultural and Food Chemistry 36 (4):737–41. doi: 10.1021/jf00082a015.
  • Rehman, Z., and W. H. Shah. 2005. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry 91 (2):327–31. doi: 10.1016/j.foodchem.2004.06.019.
  • Rinaldi, L., L.-E. Rioux, M. Britten, and S. L. Turgeon. 2015. In vitro bioaccessibility of peptides and amino acids from yogurt made with starch, pectin, or β-glucan. International Dairy Journal 46:39–45. doi: 10.1016/j.idairyj.2014.09.005.
  • Rini, Azima, F., Sayuti, and K. Novelina. 2016. The evaluation of nutritional value of Rendang Minangkabau. Agriculture and Agricultural Science Procedia 9:335–41. doi: 10.1016/j.aaspro.2016.02.146.
  • Rio de Reys, M. T. E., S. M. Constantinides, V. C. Sgarbieri, and A. A. El-Dash. 1980. Chicken blood plasma proteins: Physicochemical, nutritional and functional properties. Journal of Food Science 45 (1):17–20. doi: 10.1111/j.1365-2621.1980.tb03860.x.
  • Rioux, L.-E., and S. L. Turgeon. 2012. The ratio of casein to whey protein impacts yogurt digestion in vitro. Food Digestion 3 (1-3):25–35. doi: 10.1007/s13228-012-0023-z.
  • Rodríguez-Herrera, J. J., L. Pastoriza, and G. Sampedro. 2000. Inhibition of formaldehyde production in frozen-stored minced blue whiting (Micromesistius poutassou) muscle by cryostabilizers: An approach from the glassy state theory. Journal of Agricultural and Food Chemistry 48 (11):5256–62. doi: 10.1021/jf991373q.
  • Rui, X., G. Xing, Q. Zhang, F. Zare, W. Li, and M. Dong. 2016. Protein bioaccessibility of soymilk and soymilk curd prepared with two Lactobacillus plantarum strains as assessed by in vitro gastrointestinal digestion. Innovative Food Science & Emerging Technologies 38:155–9. doi: 10.1016/j.ifset.2016.09.029.
  • Ruiz, G. A., M. Opazo-Navarrete, M. Meurs, M. Minor, G. Sala, M. van Boekel, M. Stieger, and A. E. M. Janssen. 2016. Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH. Food Biophysics 11:184–97. doi: 10.1007/s11483-016-9429-4.
  • Ruiz-Carrascal, J. 2016. Cured foods: Health effects, eds. B. Caballero, P. M. Finglas, & F. B. T.-E. of F. and H. Toldrá, 338–42. Oxford: Academic Press. dpi: 10.1016/B978-0-12-384947-2.00207-5
  • Rutherfurd, S. M. 2010. Methodology for determining degree of hydrolysis of proteins in hydrolysates: A. Journal of AOAC International 93 (5):1515–22.
  • Rysman, T., T. Van Hecke, C. Van Poucke, S. De Smet, and G. Van Royen. 2016. Protein oxidation and proteolysis during storage and in vitro digestion of pork and beef patties. Food Chemistry 20:177–84. doi: 10.1016/j.foodchem.2016.04.027.
  • Ryu, H. S., K. H. Lee, J. Y. Kim, and B. D. Choi. 1986. Predicting the nutritional value of seafood proteins as measured by newer in vitro model. 1. C-PER and DC-PER of of Shellfish Proteins. Korean Society of Food Nutrition 14 (3):265–73.
  • Ryu, H. S., and K. W. Lee. 1986. Predicting the nutritional value of seafood proteins as measured by newer in vitro model. 2. C-PER and DC-PER of marine Crustacea. Bulletin of the Korean Fisheries Society 19 (3):219–26.
  • Saharan, K., N. Khetarpaul, and S. Bishnoi. 2002. Antinutrients and protein digestibility of fababean and ricebean as affected by soaking, dehulling and germination. Journal of Food Science and Technology 39 (4):418–22.
  • Sánchez-Alonso, I., and A. J. Borderías. 2008. Technological effect of red grape antioxidant dietary fibre added to minced fish muscle. International Journal of Food Science & Technology 43 (6):1009–18. doi: 10.1111/j.1365-2621.2007.01554.x.
  • Sánchez-Rivera, L., O. Ménard, I. Recio, and D. Dupont. 2015. Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Research International 77:132–9. doi: 10.1016/j.foodres.2015.08.001.
  • Sangsawad, P., R. Kiatsongchai, B. Chitsomboon, and J. Yongsawatdigul. 2016. Chemical and cellular antioxidant activities of chicken breast muscle subjected to various thermal treatments followed by simulated gastrointestinal digestion. Journal of Food Science 81 (10):C2431–C2438. doi: 10.1111/1750-3841.13418.
  • Sangsawad, P., S. Roytrakul, and J. Yongsawatdigul. 2017. Angiotensin converting enzyme (ACE) inhibitory peptides derived from the simulated in vitro gastrointestinal digestion of cooked chicken breast. Journal of Functional Foods 29:77–83. doi: 10.1016/j.jff.2016.12.005.
  • Santé-Lhoutellier, V., T. Astruc, P. Marinova, E. Greve, P. Gatellier, V. S. Houtellier, and P. G. Atellier. 2008. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. Journal of Agricultural and Food Chemistry 56 (4):1488–94. doi: 10.1021/jf072999g.
  • Sante-Lhoutellier, V., L. Aubry, and P. Gatellier. 2007. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. Journal of Agricultural and Food Chemistry 55 (13):5343–8. doi: 10.1021/jf070252k.
  • Santé-Lhoutellier, V., E. Engel, L. Aubry, and P. Gatellier. 2008. Effect of animal (lamb) diet and meat storage on myofibrillar protein oxidation and in vitro digestibility. Meat Science 79 (4):777–83. doi: 10.1016/j.meatsci.2007.11.011.
  • Sarkar, A., K. K. T. Goh, R. P. Singh, and H. Singh. 2009. Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food Hydrocolloids 23 (6):1563–9. doi: 10.1016/j.foodhyd.2008.10.014.
  • Savoie, L., R. A. Agudelo, S. F. Gauthier, J. Marin, and Y. Pouliot. 2005. In vitro determination of the release kinetics of peptides and free amino acids during the digestion of food proteins. Journal of AOAC International 88 (3):935–48. doi: 10.1093/jaoac/88.3.935.
  • Savoie, L., and R. Charbonneau. 1990. Specific role of endopeptidases in modulating the nature of protein digestion products. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 40 (4):233–42. doi: 10.1007/BF02193846.
  • Savoie, L., I. Galibois, G. Parent, and R. Charbonneau. 1988. Sequential release of amino acids and peptides during in vitro digestion of casein and rapeseed proteins. Nutrition Research 8 (11):1319–26. doi: 10.1016/S0271-5317(05)80094-6.
  • Schmidt, D. G., and J. K. Poll. 1991. Enzymatic hydrolysis of whey proteins. Hydrolysis of α-lactalbumin and β-lactoglobulin in buffer solutions by proteolytic enzymes. Netherlands Milk and Dairy Journal 45:225–40.
  • Seidler, T. 1987. Effects of additives and thermal treatment on the content of nitrogen compounds and the nutritive value of hake meat. Die Nahrung 31 (10):959–70. doi: 10.1002/food.19870311007.
  • Shen, F., F. Niu, J. Li, Y. Su, Y. Liu, and Y. Yang. 2014. Interactions between tea polyphenol and two kinds of typical egg white proteins—ovalbumin and lysozyme: Effect on the gastrointestinal digestion of both proteins in vitro. Food Research International 59:100–7. doi: 10.1016/j.foodres.2014.01.070.
  • Shimelis, E. A., and S. K. Rakshit. 2007. Effect of processing on antinutrients and in vitro protein digestibility of kidney bean (Phaseolus vulgaris L.) varieties grown in East Africa. Food Chemistry 103 (1):161–72. doi: 10.1016/j.foodchem.2006.08.005.
  • Siddhuraju, P., and K. Becker. 2001. Effect of various domestic processing methods on antinutrients and in vitro protein and starch digestibility of two indigenous varieties of indian tribal pulse, Mucuna pruriens Var. utilis. Journal of Agricultural and Food Chemistry 49 (6):3058–67. doi: 10.1021/jf001453q.
  • Silvestre, M. P. C., H. A. Morais, V. D. M. Silva, and M. R. Silva. 2013. Degree of hydrolysis and peptide profile of whey proteins using pancreatin. Nutrire 38 (3):278–90. doi: 10.4322/nutrire.2013.026.
  • Singh, T. K., S. K. Oiseth, L. Lundin, and L. Day. 2014. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins. Food & Function 5 (11):2686–98. doi: 10.1039/c4fo00454j.
  • Sousa, R., R. Portmann, S. Dubois, I. Recio, and L. Egger. 2020. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Research International (Ottawa, Ont.) 130:108996. doi: 10.1016/j.foodres.2020.108996.
  • Spellman, D., E. McEvoy, G. O’Cuinn, and R. J. FitzGerald. 2003. Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal 13 (6):447–53. doi: 10.1016/S0958-6946(03)00053-0.
  • Stojadinovic, M., J. Radosavljevic, J. Ognjenovic, J. Vesic, I. Prodic, D. Stanic-Vucinic, and T. Cirkovic Velickovic. 2013. Binding affinity between dietary polyphenols and beta-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed. Food Chemistry 136 (3-4):1263–71. doi: 10.1016/j.foodchem.2012.09.040.
  • Sun, W., M. Zhao, B. Yang, H. Zhao, and C. Cui. 2011a. Oxidation of sarcoplasmic proteins during processing of Cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Meat Science 88 (3):462–7. doi: 10.1016/j.meatsci.2011.01.027.
  • Sun, W., F. Zhou, M. Zhao, B. Yang, and C. Cui. 2011b. Physicochemical changes of myofibrillar proteins during processing of Cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Food Chemistry 129 (2):472–8. doi: 10.1016/j.foodchem.2011.04.101.
  • Suwandy, V., A. Carne, R. van de Ven, A. E.-D A. Bekhit, and D. L. Hopkins. 2015. Effect of pulsed electric field on the proteolysis of cold boned beef M. longissimus lumborum and M. semimembranosus. Meat Science 100:222–6. doi.org/. doi: 10.1016/j.meatsci.2014.10.011.
  • Takagi, K., R. Teshima, H. Okunuki, and J.-I. Sawada. 2003. Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biological & Pharmaceutical Bulletin 26 (7):969–73. doi: 10.1248/bpb.26.969.
  • Tang, C.-H., L. Chen, and C.-Y. Ma. 2009. Thermal aggregation, amino acid composition and in vitro digestibility of vicilin-rich protein isolates from three Phaseolus legumes: A comparative study. Food Chemistry 113 (4):957–63. doi: 10.1016/j.foodchem.2008.08.038.
  • Taylor, W. H. 1957. Formol titration: An evaluation of its various modifications. The Analyst 82 (976):488–98. doi: 10.1039/an9578200488.
  • Taylor, J., and J. R. N. Taylor. 2002. Alleviation of the adverse effect of cooking on sorghum protein digestibility through fermentation in traditional African porridges. International Journal of Food Science and Technology 37 (2):129–37. doi: 10.1046/j.1365-2621.2002.00549.x.
  • Théron, L., C. Chambon, T. Sayd, D. De La Pomélie, V. Santé-Lhoutellier, and P. Gatellier. 2018. To what extent does the nitrosation of meat proteins influence their digestibility? Food Research International (Ottawa, Ont.) 113:175–82. doi.org/. doi: 10.1016/j.foodres.2018.06.071.
  • Toldrá, F., M. C. Aristoy, L. Mora, and M. Reig. 2012. Innovations in value-addition of edible meat by-products. Meat Science 92 (3):290–6. doi: 10.1016/j.meatsci.2012.04.004.
  • Tran Do, D. H., and F. Kong. 2018. Texture changes and protein hydrolysis in different cheeses under simulated gastric environment. LWT - Food Science and Technology 93:197–203. doi: 10.1016/j.lwt.2018.03.028.
  • Tavares, S. W. P., S. Dong, Y. Yang, M. Zeng, and Y. Zhao. 2018. Influence of cooking methods on protein modification and in vitro digestibility of hairtail (Thichiurus lepturus) fillets. LWT - Food Science and Technology 96:476–81. doi: 10.1016/j.lwt.2018.06.006.
  • Troy, D. J., K. S. Ojha, J. P. Kerry, and B. K. Tiwari. 2016. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview. Meat Science 120:2–9. doi: 10.1016/j.meatsci.2016.04.002.
  • Tunick, M. H., D. X. Ren, D. L. Van Hekken, L. Bonnaillie, M. Paul, R. Kwoczak, and P. M. Tomasula. 2016. Effect of heat and homogenization on in vitro digestion of milk. Journal of Dairy Science 99 (6):4124–39. doi: 10.3168/jds.2015-10474.
  • Ur Rahman, U., A. Sahar, A. Ishaq, R. M. Aadil, T. Zahoor, and M. H. Ahmad. 2018. Advanced meat preservation methods: A mini review. Journal of Food Safety 38 (4):e12467. doi: 10.1111/jfs.12467.
  • Usydus, Z., J. Szlinder-Richert, and M. Adamczyk. 2009. Protein quality and amino acid profiles of fish products available in Poland. Food Chemistry 112 (1):139–45. doi: 10.1016/j.foodchem.2008.05.050.
  • Van der Plancken, I., M. Delattre, I. Indrawati, A. Van Loey, and M. E. G. Hendrickx. 2004. Kinetic study on the changes in the susceptibility of egg white proteins to enzymatic hydrolysis induced by heat and high hydrostatic pressure pretreatment. Journal of Agricultural and Food Chemistry 52 (18):5621–6. doi: 10.1021/jf049716u.
  • Van der Plancken, I., M. Van Remoortere, I. Indrawati, A. Van Loey, and M. E. Hendrickx. 2003. Heat-induced changes in the susceptibility of egg white proteins to enzymatic hydrolysis: A kinetic study. Journal of Agricultural and Food Chemistry 51 (13):3819–23. doi: 10.1021/jf026019y.
  • van der Wielen, N., P. J. Moughan, and M. Mensink. 2017. Amino acid absorption in the large intestine of humans and porcine models. The Journal of Nutrition 147 (8):1493–8. doi: 10.3945/jn.117.248187.
  • Van Hekken, D. L., M. H. Tunick, D. X. Ren, and P. M. Tomasula. 2017. Comparing the effect of homogenization and heat processing on the properties and in vitro digestion of milk from organic and conventional dairy herds. Journal of Dairy Science 100 (8):6042–52. doi: 10.3168/jds.2016-12089.
  • Vega-Mercado, H., Martín-Belloso, O. Qin, B.-L. Chang, F. J. Góngora-Nieto, M. M. Barbosa-Cánovas, G. V. Swanson. and B. G. 1997. Non-thermal food preservation: Pulsed electric fields. Trends in Food Science & Technology 8 (5):151–7. doi: 10.1016/S0924-2244(97)01016-9.
  • Vijayakumari, K., M. Pugalenthi, and V. Vadivel. 2007. Effect of soaking and hydrothermal processing methods on the levels of antinutrients and in vitro protein digestibility of Bauhinia purpurea L. seeds. Food Chemistry 103 (3):968–75. doi: 10.1016/j.foodchem.2006.07.071.
  • Velickovic, T. D., and D. J. Stanic-Vucinic. 2018. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Comprehensive Reviews in Food Science and Food Safety 17 (1):82–103. doi: 10.1111/1541-4337.12320.
  • Villemejane, C., S. Denis, A. Marsset-Baglieri, M. Alric, P. Aymard, and C. Michon. 2016. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres using a multi-compartmental and dynamic system (2): Protein and starch hydrolyses. Food Chemistry 190:164–72. doi: 10.1016/j.foodchem.2015.05.050.
  • Vorob’ev, M. M., G. Parent, and L. Savoie. 1996. Quantitative comparison of casein and rapeseed proteolysis by pancreatin. Die Nahrung 40 (5):248–55. doi: 10.1002/food.19960400504.
  • Wada, Y., and B. Lonnerdal. 2014. Effects of different industrial heating processes of milk on site-specific protein modifications and their relationship to in vitro and in vivo digestibility. Journal of Agricultural and Food Chemistry 62 (18):4175–85. doi: 10.1021/jf501617s.
  • Wen, S., G. Zhou, L. Li, X. Xu, X. Yu, Y. Bai, and C. Li. 2015. Effect of cooking on in vitro digestion of pork proteins: A peptidomic perspective. Journal of Agricultural and Food Chemistry 63 (1):250–61. doi: 10.1021/jf505323g.
  • Wen, S., G. Zhou, S. Song, X. Xu, J. Voglmeir, L. Liu, F. Zhao, M. Li, L. Li, X. Yu, et al. 2015. Discrimination of in vitro and in vivo digestion products of meat proteins from pork, beef, chicken, and fish. Proteomics 15 (21):3688–98. doi: 10.1002/pmic.201500179.
  • Wickham, M. J. S., R. M. Faulks, J. Mann, and G. Mandalari. 2012. The Design, Operation, and Application of a Dynamic Gastric Model. Dissolution Technologies 19 (3):15–22. doi: 10.14227/DT190312P15.
  • Wiese, M., B. Khakimov, S. Nielsen, H. Sørensen, F. van den Berg, and D. S. Nielsen. 2018. CoMiniGut-A small volume in vitro colon model for the screening of gut microbial fermentation processes. Peer J. 6:e4268. doi: 10.7717/peerj.4268.
  • Wilhelm, A. E., M. B. Maganhini, F. J. Hernández-Blazquez, E. I. Ida, and M. Shimokomaki. 2010. Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chemistry 119 (3):1201–4. doi: 10.1016/j.foodchem.2009.08.034.
  • Wong, T. M., and C. O. L. Boyce. 1988. Monioring proteolysis by osmometry: A rapid method. In Methods for protein analysis, eds. J. P. Cherry and R. A. Barford, 42–51. Illinois: American Oil Chemists’ Society.
  • Yagoub, AE-G A., and A. A. Abdalla. 2007. Effect of domestic processing methods on chemical composition, in vitro digestibility of protein and starch and functional properties of bambara groundnut (Voandzeia subterranea) seed. Research Journal of Agriculture and Biological Sciences 3 (1):24–34.
  • Ye, A., J. Cui, D. Dalgleish, and H. Singh. 2017. Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. Journal of Dairy Science 100 (1):36–47. doi: 10.3168/jds.2016-11764.
  • Yin, S.-W., C.-H. Tang, Q.-B. Wen, X.-Q. Yang, and L. Li. 2008. Functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate: Effect of high-pressure treatment. Food Chemistry 110 (4):938–45. doi: 10.1016/j.foodchem.2008.02.090.
  • Yoshino, K., K. Sakai, Y. Mizuha, A. Shimizuike, and S. Yamamoto. 2004. Peptic digestibility of raw and heat-coagulated hen’s egg white proteins at acidic pH range. International Journal of Food Sciences and Nutrition 55 (8):635–40. doi: 10.1080/09637480412331350173.
  • Zarkadas, C. G., Z. Yu, G. C. Zarkadas, and A. Minero-Amador. 1995. Assessment of the protein quality of beefstock bone isolates for use as an ingredient in meat and poultry products. Journal of Agricultural and Food Chemistry 43 (1):77–83. doi: 10.1021/jf00049a015.
  • Zeece, M., T. Huppertz, and A. Kelly. 2008. Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin. Innovative Food Science & Emerging Technologies 9 (1):62–9. doi: 10.1016/j.ifset.2007.05.004.
  • Zhang, R., M. J. Yoo, J. Gathercole, M. G. Reis, and M. M. Farouk. 2018. Effect of animal age on the nutritional and physicochemical qualities of Ovine bresaola. Food Chemistry 254:317–25. doi: 10.1016/j.foodchem.2018.02.031.
  • Zhang, W., S. Xiao, and D. U. Ahn. 2013. Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition 53 (11):1191–201. doi: 10.1080/10408398.2011.577540.
  • Zhang, Y., B. Dai, Y. Deng, and Y. Zhao. 2016. In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus). Food Chemistry 203:258–66. doi: 10.1016/j.foodchem.2016.02.072.
  • Zhang, S., and B. Vardhanabhuti. 2014a. Intragastric gelation of whey protein-pectin alters the digestibility of whey protein during in vitro pepsin digestion. Food & Function 5 (1):102–10. doi: 10.1039/c3fo60331h.
  • Zhang, S., and B. Vardhanabhuti. 2014b. Effect of initial protein concentration and pH on in vitro gastric digestion of heated whey proteins. Food Chemistry 145:473–80. doi: 10.1016/j.foodchem.2013.08.076.
  • Zhao, R., S. R. Bean, B. P. Ioerger, D. Wang, and D. L. Boyle. 2008. Impact of mashing on sorghum proteins and its relationship to ethanol fermentation. Journal of Agricultural and Food Chemistry 56 (3):946–53. doi: 10.1021/jf072590r.
  • Zhou, C. Y., D. D. Pan, Y. Y. Sun, C. B. Li, X. L. Xu, J. X. Cao, and G. H. Zhou. 2018. The effect of cooking temperature on the aggregation and digestion rate of myofibrillar proteins in Jinhua ham. Journal of the Science of Food and Agriculture 98 (9):3563–70. doi: 10.1002/jsfa.8872.
  • Zhou, Y., W. Yang, G. Zhou, X. Xu, Z. Zhang, M. I. Ahmad, and C. Li. 2017. Changes in in vitro protein digestion of retort-pouched pork belly during 120-day storage. International Journal of Food Science & Technology 52 (12):2684–94. doi: 10.1111/ijfs.13560.
  • Zou, Y., H. Bian, P. Li, Z. Sun, C. Sun, M. Zhang, Z. Geng, W. Xu, and D. Wang. 2018. Optimization and physicochemical properties of nutritional protein isolate from pork liver with ultrasound-assisted alkaline extraction. Animal Science Journal = Nihon Chikusan Gakkaiho 89 (2):456–66. doi: 10.1111/asj.12930.
  • Xing, G., X. Rui, M. Jiang, Y. Xiao, Y. Guan, D. Wang, and M. Dong. 2016. In vitro gastrointestinal digestion study of a novel bio-tofu with special emphasis on the impact of microbial transglutaminase. Peerj. 2016 (12):1–18. doi: 10.7717/peerj.2754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.