961
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Osmotic dehydration: More than water loss and solid gain

ORCID Icon & ORCID Icon

References

  • Afjeh, F. A., A. Bassiri, and A. M. Nafchi. 2014. Optimization of vacuum frying parameters in combination with osmotic dehydration of kiwi slices to produce healthy product. Journal of Chemical Health Risks 4 (1):13–22.
  • Agudelo, C., M. Igual, G. Moraga, and N. Martínez-Navarrete. 2016. Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips. Food and Bioprocess Technology 9 (1):161–71. doi: 10.1007/s11947-015-1611-z.
  • Aguirre-García, M., P. Hernández-Carranza, O. Cortés-Zavaleta, H. Ruiz-Espinosa, C. E. Ochoa-Velasco, and I. I. Ruiz-López. 2020. Mass transfer analysis of bioactive compounds in apple wedges impregnated with beetroot juice: A 3D modelling approach. Journal of Food Engineering 282:110003. doi: 10.1016/j.jfoodeng.2020.110003.
  • Ahmed, I., I. M. Qazi, and S. Jamal. 2016. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies 34:29–43. doi: 10.1016/j.ifset.2016.01.003.
  • Akharume, F., K. Singh, J. Jaczynski, and L. Sivanandan. 2018. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT 90:61–9. doi: 10.1016/j.lwt.2017.12.012.
  • Alam, M. S., and A. Singh. 2010. Optimization of osmotic dehydration process of aonla fruit in salt solution. International Journal of Food Engineering 6 (1):1–22. doi: 10.2202/1556-3758.1476.
  • Almeida, J. A. R., L. P. Mussi, D. B. Oliveira, and N. R. Pereira. 2015. Effect of temperature and sucrose concentration on the retention of polyphenol compounds and antioxidant activity of osmotically dehydrated bananas. Journal of Food Processing and Preservation 39 (6):1061–9. doi: 10.1111/jfpp.12321.
  • Amami, E., L. Khezami, A. B. Jemai, and E. Vorobiev. 2014. Osmotic dehydration of some agro-food tissue pre-treated by pulsed electric field: Impact of impeller’s Reynolds number on mass transfer and color. Journal of King Saud University - Engineering Sciences 26 (1):93–102. doi: 10.1016/j.jksues.2012.10.002.
  • Amami, E., W. Khezami, S. Mezrigui, L. S. Badwaik, A. K. Bejar, C. T. Perez, and N. Kechaou. 2017. Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry 36:286–300. doi: 10.1016/j.ultsonch.2016.12.007.
  • An, K., H. Li, D. Zhao, S. Ding, H. Tao, and Z. Wang. 2013. Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Drying Technology 31 (6):698–706. doi: 10.1080/07373937.2012.755192.
  • Atares, L., M. J. S. Gallagher, and F. A. R. Oliveira. 2011. Process conditions effect on the quality of banana osmotically dehydrated. Journal of Food Engineering 103 (4):401–8. doi: 10.1016/j.jfoodeng.2010.11.010.
  • Azoubel, P. M., M. da Rocha Amorim, S. S. B. Oliveira, M. I. S. Maciel, and J. D. Rodrigues. 2015. Improvement of water transport and carotenoid retention during drying of papaya by applying ultrasonic osmotic pretreatment. Food Engineering Reviews 7 (2):185–92. doi: 10.1007/s12393-015-9120-4.
  • Badwaik, L. S., S. Choudhury, P. K. Borah, N. Sit, and S. C. Deka. 2014. Comparison of kinetics and other related properties of bamboo shoot drying pretreated with osmotic dehydration. Journal of Food Processing and Preservation 38 (3):1171–80. doi: 10.1111/jfpp.12077.
  • Bai, X., M. Campagnoli, S. Butot, T. Putallaz, L. Michot, and S. Zuber. 2020. Inactivation by osmotic dehydration and air drying of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, hepatitis a virus and selected surrogates on blueberries. International Journal of Food Microbiology 320:108522.
  • Bialik, M., A. Wiktor, D. Witrowa-Rajchert, and E. Gondek. 2020. The influence of osmotic dehydration conditions on drying kinetics and total carotenoid content of kiwiberry (Actinidia arguta). International Journal of Food Engineering 16 (1–2):1–8. doi: 10.1515/ijfe-2018-0328.
  • Blanda, G., L. Cerretani, A. Cardinali, S. Barbieri, A. Bendini, and G. Lercker. 2009. Osmotic dehydrofreezing of strawberries: Polyphenolic content, volatile profile and consumer acceptance. LWT - Food Science and Technology 42 (1):30–6. doi: 10.1016/j.lwt.2008.07.002.
  • Bórquez, R. M., E. R. Canales, and J. P. Redon. 2010. Osmotic dehydration of raspberries with vacuum pretreatment followed by microwave-vacuum drying. Journal of Food Engineering 99 (2):121–7. doi: 10.1016/j.jfoodeng.2010.02.006.
  • Bourdoux, S., D. Li, A. Rajkovic, F. Devlieghere, and M. Uyttendaele. 2016. Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety 15 (6):1056–66. doi: 10.1111/1541-4337.12224.
  • Bozkir, H., and A. R. Ergün. 2020. Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. LWT 131:109704. doi: 10.1016/j.lwt.2020.109704.
  • Bozkir, H., A. Rayman Ergün, E. Serdar, G. Metin, and T. Baysal. 2019. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry 54 (December 2018):135–41. doi: 10.1016/j.ultsonch.2019.02.006.
  • Brooks, M. S., A. E. Ghaly, and N. H. A. El-Hana. 2008. Effect of osmotic pre-treatment on the air-drying behavior and quality of plum tomato pieces. International Journal of Food Engineering 4 (5):1–21.
  • Çağlayan, D., and I. Barutçu Mazı. 2018. Effects of ultrasound-assisted osmotic dehydration as a pretreatment and finish drying methods on the quality of pumpkin slices. Journal of Food Processing and Preservation 42 (9):e13679. doi: 10.1111/jfpp.13679.
  • Campos, C. D. M., A. C. K. Sato, R. V. Tonon, M. D. Hubinger, and R. L. Cunha. 2012. Effect of process variables on the osmotic dehydration of star-fruit slices. Food Science and Technology 32 (2):357–65. doi: 10.1590/S0101-20612012005000034.
  • Cano-Lamadrid, M., K. Lech, A. Michalska, M. Wasilewska, A. Figiel, A. Wojdyło, and Á. A. Carbonell-Barrachina. 2017. Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chemistry 232:306–15. doi: 10.1016/j.foodchem.2017.04.033.
  • Castelló, M. L., M. Igual, P. J. Fito, and A. Chiralt. 2009. Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (Var. Granny Smith). Journal of Food Engineering 91 (1):1–9. doi: 10.1016/j.jfoodeng.2008.07.025.
  • Chaguri, L., M. S. Sanchez, V. P. Flammia, and C. C. Tadini. 2017. Green banana (Musa cavendishii) osmotic dehydration by non-caloric solutions: Modeling, physical-chemical properties, color, and texture. Food and Bioprocess Technology 10 (4):615–29. doi: 10.1007/s11947-016-1839-2.
  • Chakraborty, R., and R. Samanta. 2017. Concurrent osmotic dehydration and vacuum drying of kiwi fruit (Actinidia deliciosa cv. Hayward) under far infrared radiation: Process optimization, kinetics and quality assessment. Journal of Food Process Engineering 40 (2):e12391–9. doi: 10.1111/jfpe.12391.
  • Chiralt, A., and P. Fito. 2003. Transport mechanisms in osmotic dehydration: The role of the structure. Food Science and Technology International 9 (3):179–86. doi: 10.1177/1082013203034757.
  • Çinkir, N. I., and Ö. Süfer. 2020. Microwave drying of Turkish red meat (watermelon) radish (Raphanus sativus L.): Effect of osmotic dehydration, pre-treatment and slice thickness. Heat and Mass Transfer 56 (12):3303–13. doi: 10.1007/s00231-020-02930-w.
  • Ciurzyńska, A., H. Kowalska, K. Czajkowska, and A. Lenart. 2016. Osmotic dehydration in production of sustainable and healthy food. Trends in Food Science & Technology 50:186–92. doi: 10.1016/j.tifs.2016.01.017.
  • Corrêa, J. L. G., S. R. S. Dev, Y. Gariepy, and G. S. V. Raghavan. 2011. Drying of pineapple by microwave-vacuum with osmotic pretreatment. Drying Technology 29 (13):1556–61. doi: 10.1080/07373937.2011.582558.
  • Corrêa, J. L. G., D. B. Ernesto, and K. S. de Mendonça. 2016. Pulsed vacuum osmotic dehydration of tomatoes: Sodium incorporation reduction and kinetics modeling. LWT - Food Science and Technology 71:17–24. doi: 10.1016/j.lwt.2016.01.046.
  • Corrêa, J. L. G., L. M. Pereira, G. S. Vieira, and M. D. Hubinger. 2010. Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. Journal of Food Engineering 96 (4):498–504. doi: 10.1016/j.jfoodeng.2009.08.032.
  • Corrêa, J. L. G., M. C. Rasia, A. Mulet, and J. A. Cárcel. 2017. Influence of ultrasound application on both the osmotic pretreatment and subsequent convective drying of pineapple (Ananas comosus). Innovative Food Science & Emerging Technologies 41 (November 2016):284–91. doi: 10.1016/j.ifset.2017.04.002.
  • da Silva, G. D., Z. M. P. Barros, R. A. B. de Medeiros, C. B. O. de Carvalho, S. C. Rupert Brandão, and P. M. Azoubel. 2016. Pretreatments for melon drying implementing ultrasound and vacuum. LWT 74:114–9. doi: 10.1016/j.lwt.2016.07.039.
  • Dash, K. K., V. M. Balasubramaniam, and S. Kamat. 2019. High pressure assisted osmotic dehydrated ginger slices. Journal of Food Engineering 247:19–29. doi: 10.1016/j.jfoodeng.2018.11.024.
  • de MelloJr., R. E., J. L. G. Corrêa, F. J. Lopes, A. U. de Souza, and K. C. R. da Silva. 2019. Kinetics of the pulsed vacuum osmotic dehydration of green fig (Ficus carica L.). Heat and Mass Transfer 55 (6):1685–91. doi: 10.1007/s00231-018-02559-w.
  • de Mendonça, K. S., J. L. G. Corrêa, J. R. de, J. Junqueira, M. A. Cirilo, F. V. Figueira, and E. E. N. Carvalho. 2017. Influences of convective and vacuum drying on the quality attributes of osmo-dried pequi (Caryocar brasiliense Camb.) slices. Food Chemistry 224:212–8. doi: 10.1016/j.foodchem.2016.12.051.
  • de Mendonça, K. S., J. L. G. Corrêa, J. R. J. Junqueira, M. C d A. Pereira, and M. B. Vilela. 2016. Optimization of osmotic dehydration of yacon slices. Drying Technology 34 (4):386–94. doi: 10.1080/07373937.2015.1054511.
  • de Oliveira, L. F., J. L. G. Corrêa, D. A. Botrel, M. B. Vilela, L. R. Batista, and L. Freire. 2017. Reuse of sorbitol solution in pulsed vacuum osmotic dehydration of yacon (Smallanthus sonchifolius). Journal of Food Processing and Preservation 41 (6):e13306-6. doi: 10.1111/jfpp.13306.
  • Deepika, S., and P. P. Sutar. 2017. Osmotic dehydration of lemon (Citrus limon L.) slices: Modeling mass transfer kinetics correlated with dry matter holding capacity and juice sac losses. Drying Technology 35 (7):877–92. doi: 10.1080/07373937.2016.1229675.
  • Dehghannya, J., R. Gorbani, and B. Ghanbarzadeh. 2015. Effect of ultrasound-assisted osmotic dehydration pretreatment on drying kinetics and effective moisture diffusivity of Mirabelle plum. Journal of Food Processing and Preservation 39 (6):2710–7. doi: 10.1111/jfpp.12521.
  • Dehghannya, J., R. Gorbani, and B. Ghanbarzadeh. 2016. Shrinkage of Mirabelle plum during hot air drying as influenced by ultrasound-assisted osmotic dehydration. International Journal of Food Properties 19 (5):1093–103. doi: 10.1080/10942912.2015.1055362.
  • Delgado, T., J. A. Pereira, E. Ramalhosa, and S. Casal. 2017. Osmotic dehydration effects on major and minor components of chestnut (Castanea sativa Mill.) slices. Journal of Food Science and Technology 54 (9):2694–703.
  • Dermesonlouoglou, E., A. Chalkia, G. Dimopoulos, and P. Taoukis. 2018. Combined effect of pulsed electric field and osmotic dehydration pre-treatments on mass transfer and quality of air dried goji berry. Innovative Food Science & Emerging Technologies 49:106–15. doi: 10.1016/j.ifset.2018.08.003.
  • Dermesonlouoglou, E., I. Zachariou, V. Andreou, and P. S. Taoukis. 2016. Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food and Bioproducts Processing 100:535–44. doi: 10.1016/j.fbp.2016.08.009.
  • Escher, G. B., S. R. M. Coelho, and D. Christ. 2017. Optimization of osmo-convective dehydration process for dry tomato production. Journal of Food Processing and Preservation 41 (3):e12932–10. doi: 10.1111/jfpp.12932.
  • Falade, K. O., and J. C. Igbeka. 2007. Osmotic dehydration of tropical fruits. Food Reviews International 23 (4):373–405. doi: 10.1080/87559120701593814.
  • Falade, K. O., J. C. Igbeka, and F. A. Ayanwuyi. 2007. Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering 80 (3):979–85. doi: 10.1016/j.jfoodeng.2006.06.033.
  • Fan, K., M. Zhang, W. Wang, and B. Bhandari. 2020. A novel method of osmotic-dehydrofreezing with ultrasound enhancement to improve water status and physicochemical properties of kiwifruit. International Journal of Refrigeration 113:49–57. doi: 10.1016/j.ijrefrig.2020.02.013.
  • Farhaninejad, Z., M. Fathi, M. Shahedi, and M. Sadeghi. 2017. Osmotic dehydration of banana slices using direct and indirect sonication: Optimization and microstructure analysis. Journal of Food Process Engineering 40 (1):e12336. doi: 10.1111/jfpe.12336.
  • Fei, P., C. Lifu, Y. Wenjian, Z. Liyan, F. Yong, M. Ning, and H. Qiuhui. 2018. Comparison of osmotic dehydration and ultrasound-assisted osmotic dehydration on the state of water, texture, and nutrition of Agaricus bisporus. CYTA - Journal of Food 16 (1):181–9. doi: 10.1080/19476337.2017.1365774.
  • Fernandes, F. A. N., M. I. Gallão, and S. Rodrigues. 2008. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology 41 (4):604–10. doi: 10.1016/j.lwt.2007.05.007.
  • Garcı́a-Martı́nez, E., J. Martı́nez-Monzó, M. M. Camacho, and N. Martı́nez-Navarrete. 2002. Characterisation of reused osmotic solution as ingredient in new product formulation. Food Research International 35 (2–3):307–13. doi: 10.1016/S0963-9969(01)00201-0.
  • George, J. M., T. S. Selvan, and N. K. Rastogi. 2016. High-pressure-assisted infusion of bioactive compounds in apple slices. Innovative Food Science & Emerging Technologies 33:100–7. doi: 10.1016/j.ifset.2015.11.010.
  • Germer, S. P. M., M. R. de Queiroz, J. M. Aguirre, S. A. Berbari, and N. F. de Arruda Silveira. 2012. Reuse of sucrose syrup in the osmotic dehydration of peaches. Drying Technology 30 (14):1532–40. doi: 10.1080/07373937.2012.694945.
  • Germer, S. P. M., C. C. Ferrari, J. P. Lancha, S. A. G. Berbari, S. M. Carmello-Guerreiro, and C. R. G. Ruffi. 2014. Influence of processing additives on the quality and stability of dried papaya obtained by osmotic dehydration and conventional air drying. Drying Technology 32 (16):1956–69. doi: 10.1080/07373937.2014.924963.
  • Germer, S. P. M., G. M. Luz, L. B. da Silva, M. G. da Silva, M. A. Morgano, N. F. de, and A. Silveira. 2017. Fruit dragée formulated with reused solution from pineapple osmotic dehydration. Pesquisa Agropecuária Brasileira 52 (9):806–13. doi: 10.1590/s0100-204x2017000900013.
  • Germer, S. P. M., M. A. Morgano, M. G. da Silva, N. F. de, A. Silveira, E. de, and C. G. Souza. 2016. Effect of reconditioning and reuse of sucrose syrup in quality properties and retention of nutrients in osmotic dehydration of guava. Drying Technology 34 (8):997–1008. doi: 10.1080/07373937.2015.1090446.
  • Germer, S. P. M., M. R. Queiroz, J. M. Aguirre, S. A. G. Berbari, and V. D. Anjos. 2010. Process variables in the osmotic dehydration of sliced peaches. Ciência e Tecnologia de Alimentos 30 (4):4: 940–948. no. doi: 10.1590/S0101-20612010000400016.
  • Gianotti, A., G. Sacchetti, M. E. Guerzoni, and M. D. Rosa. 2001. Microbial aspects on short-time osmotic treatment of kiwifruit. Journal of Food Engineering 49 (2–3):265–70. doi: 10.1016/S0260-8774(00)00213-2.
  • Guiamba, I., L. Ahrné, M. A. M. Khan, and U. Svanberg. 2016. Retention of β-carotene and vitamin c in dried mango osmotically pretreated with osmotic solutions containing calcium or ascorbic acid. Food and Bioproducts Processing 98:320–6. doi: 10.1016/j.fbp.2016.02.010.
  • Heredia, A., I. Peinado, C. Barrera, and A. A. Grau. 2009. Influence of process variables on colour changes, carotenoids retention and cellular tissue alteration of cherry tomato during osmotic dehydration. Journal of Food Composition and Analysis 22 (4):285–94. doi: 10.1016/j.jfca.2008.11.018.
  • Heredia, A., I. Peinado, E. Rosa, A. Andrés, and I. Escriche. 2012. Volatile profile of dehydrated cherry tomato: Influences of osmotic pre-treatment and microwave power. Food Chemistry 130 (4):889–95. doi: 10.1016/j.foodchem.2011.08.003.
  • Jiménez-Hernández, J., E. B. Estrada-Bahena, Y. I. Maldonado-Astudillo, Ó. Talavera-Mendoza, G. Arámbula-Villa, E. Azuara, P. Álvarez-Fitz, M. Ramírez, and R. Salazar. 2017. Osmotic dehydration of mango with impregnation of inulin and piquin-pepper oleoresin. LWT - Food Science and Technology 79:609–15. doi: 10.1016/j.lwt.2016.11.016.
  • Junqueira, J. R. J., J. L. G. Corrêa, and D. B. Ernesto. 2017. Microwave, convective, and intermittent microwave–convective drying of pulsed vacuum osmodehydrated pumpkin slices. Journal of Food Processing and Preservation 41 (6):e13250-8. doi: 10.1111/jfpp.13250.
  • Junqueira, J. R. J., J. L. Corrêa, and K. S. Mendonça. 2017. Evaluation of the shrinkage effect on the modeling kinetics of osmotic dehydration of sweet potato (Ipomoea batatas (L.). Journal of Food Processing and Preservation 41 (3):e12881-10. doi: 10.1111/jfpp.12881.
  • Junqueira, J. R., J. de, J. L. G. Corrêa, K. S. Mendonça, R. E. M. Júnior, and A. U. Souza. 2018. Pulsed vacuum osmotic dehydration of beetroot, carrot and eggplant slices: Effect of vacuum pressure on the quality parameters. Food and Bioprocess Technology 11 (10):1863–75. doi: 10.1007/s11947-018-2147-9.
  • Junqueira, J. R., J. de, J. L. G. Corrêa, K. S. Mendonça, N. S. Resende, E. V. de, and B. Villas Boas. 2017. Influence of sodium replacement and vacuum pulse on the osmotic dehydration of eggplant slices. Innovative Food Science & Emerging Technologies 41:10–8. doi: 10.1016/j.ifset.2017.01.006.
  • Kaur, K., S. Kumar, and M. S. Alam. 2014. Air drying kinetics and quality characteristics of oyster mushroom (Pleurotus ostreatus) influenced by osmotic dehydration. Agricultural Engineering International: CIGR Journal 16 (3):214–22.
  • Kaur, A., and D. S. Sogi. 2017. Effect of osmotic dehydration on physico-chemical properties and pigment content of carrot (Daucus carota L) during preserve manufacture. Journal of Food Processing and Preservation 41 (5):e13153-6. doi: 10.1111/jfpp.13153.
  • Kek, S. P., N. L. Chin, and Y. A. Yusof. 2013. Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing 91 (4):495–506. doi: 10.1016/j.fbp.2013.05.003.
  • Khubber, S., K. Chaturvedi, S. M. Taghi Gharibzahedi, R. M. S. Cruz, J. M. Lorenzo, R. Gehlot, and F. J. Barba. 2020. Non-conventional osmotic solutes (honey and glycerol) improve mass transfer and extend shelf life of hot-air dried red carrots: Kinetics, quality, bioactivity, microstructure, and storage stability. LWT 131:109764. doi: 10.1016/j.lwt.2020.109764.
  • Kim, M.-S., J.-H. Kang, K.-S. Chung, M. Won, and K. Bin Song. 2013. Effects of dehydrating agents on the physicochemical properties of dried plum (Prunus salicina L.) slices. Journal of Applied Biological Chemistry. 56:20–3.
  • Kowalski, S. J., and D. Mierzwa. 2011. Influence of preliminary osmotic dehydration on drying kinetics and final quality of carrot (Daucus Carota L.). Chemical and Process Engineering 32 (3):185–94. doi: 10.2478/v10176-011-0014-6.
  • Kowalski, S. J., and J. Szadzińska. 2014. Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing: Process Intensification 82:65–70. doi: 10.1016/j.cep.2014.05.006.
  • Krokida, M. K., V. Oreopoulou, Z. B. Maroulis, and D. Marinos-Kouris. 2001. Effect of osmotic dedydration pretreatment on quality of French fries. Journal of Food Engineering 49 (4):339–45. doi: 10.1016/S0260-8774(00)00232-6.
  • Kucner, A., A. Papiewska, M. Sõjka, and R. Klewicki. 2013. Chemical and microbiological changes in blueberries and in hypertonic solution during osmotic dehydration employing reused concentrate. Journal of Food Process Engineering 36 (5):608–18. doi: 10.1111/jfpe.12024.
  • Lech, K., A. Michalska, A. Wojdyło, P. Nowicka, and A. Figiel. 2018. The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT 91 (October 2017):588–94. doi: 10.1016/j.lwt.2018.02.012.
  • Liu, Z., I. Staniszewska, D. Zielinska, Y. Zhou, K. W. Nowak, H. Xiao, Z. Pan, and M. Zielinska. 2020. Combined hot air and microwave-vacuum drying of cranberries: Effects of pretreatments and pulsed vacuum osmotic dehydration on drying kinetics and physicochemical properties. Food and Bioprocess Technology 13 (10):1848–56. doi: 10.1007/s11947-020-02507-9.
  • Luchese, C. L., P. D. Gurak, and L. D. F. Marczak. 2015. Osmotic dehydration of physalis (Physalis peruviana L.): Evaluation of water loss and sucrose incorporation and the quantification of carotenoids. LWT - Food Science and Technology 63 (2):1128–36. doi: 10.1016/j.lwt.2015.04.060.
  • Maldonado, R. R., A. J. R. M. Pedreira, L. B. Cristianini, M. F. Guidi, M. O. Capato, P. F. Ávila, R. Goldbeck, and E. S. Kamimura. 2020. Application of soluble fibres in the osmotic dehydration of pineapples and reuse of effluent in a beverage fermented by water kefir. LWT 132:109819. doi: 10.1016/j.lwt.2020.109819.
  • Mauro, M. A., N. Dellarosa, U. Tylewicz, S. Tappi, L. Laghi, P. Rocculi, and M. D. Rosa. 2016. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions. Food Chemistry 195:19–28. doi: 10.1016/j.foodchem.2015.04.096.
  • Medeiros, R. A. B., Z. M. P. Barros, C. B. O. Carvalho, E. G. F. Neta, M. I. S. Maciel, and P. M. Azoubel. 2016. Influence of dual-stage sugar substitution pretreatment on drying kinetics and quality parameters of mango. LWT - Food Science and Technology 67:167–73. doi: 10.1016/j.lwt.2015.11.049.
  • Mercali, G. D., L. D. Ferreira Marczak, I. C. Tessaro, and C. P. Zapata Noreña. 2011. Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT - Food Science and Technology 44 (1):82–91. doi: 10.1016/j.lwt.2010.06.011.
  • Mierzwa, D., S. J. Kowalski, and J. Kroehnke. 2017. Hybrid drying of carrot preliminary processed with ultrasonically assisted osmotic dehydration. Food Technology and Biotechnology 55 (2):197–205.
  • Mitrakas, G. E., K. P. Koutsoumanis, and H. N. Lazarides. 2008. Impact of edible coating with or without anti-microbial agent on microbial growth during osmotic dehydration and refrigerated storage of a model plant material. Innovative Food Science & Emerging Technologies 9 (4):550–5. doi: 10.1016/j.ifset.2008.06.001.
  • Moraga, M. J., G. Moraga, and N. Martínez-Navarrete. 2011. Effect of the re-use of the osmotic solution on the stability of osmodehydro-refrigerated grapefruit. LWT - Food Science and Technology 44 (1):35–41. doi: 10.1016/j.lwt.2010.05.018.
  • Moreno, J., M. Gonzales, P. Zúñiga, G. Petzold, K. Mella, and O. Muñoz. 2016. Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innovative Food Science & Emerging Technologies 36:112–9. doi: 10.1016/j.ifset.2016.06.005.
  • Moreno, J., R. Simpson, N. Pizarro, K. Parada, N. Pinilla, J. E. Reyes, and S. Almonacid. 2012. Effect of ohmic heating and vacuum impregnation on the quality and microbial stability of osmotically dehydrated strawberries (Cv. Camarosa). Journal of Food Engineering 110 (2):310–6. doi: 10.1016/j.jfoodeng.2011.03.005.
  • Moreno, J., R. Simpson, N. Pizarro, C. Pavez, F. Dorvil, G. Petzold, and G. Bugueño. 2013. Influence of ohmic heating/osmotic dehydration treatments on polyphenoloxidase inactivation, physical properties and microbial stability of apples (Cv. Granny Smith). Innovative Food Science & Emerging Technologies 20:198–207. doi: 10.1016/j.ifset.2013.06.006.
  • Nieto, A. B., D. M. Salvatori, M. A. Castro, and S. M. Alzamora. 2004. Structural changes in apple tissue during glucose and sucrose osmotic dehydration: Shrinkage, porosity, density and microscopic features. Journal of Food Engineering 61 (2):269–78. doi: 10.1016/S0260-8774(03)00108-0.
  • Nowacka, M., A. Fijalkowska, M. Dadan, K. Rybak, A. Wiktor, and D. Witrowa-Rajchert. 2018. Effect of ultrasound treatment during osmotic dehydration on bioactive compounds of cranberries. Ultrasonics 83:18–25. doi: 10.1016/j.ultras.2017.06.022.
  • Nowacka, M., U. Tylewicz, S. Romani, M. Dalla Rosa, and D. Witrowa-Rajchert. 2017. Influence of ultrasound-assisted osmotic dehydration on the main quality parameters of kiwifruit. Innovative Food Science & Emerging Technologies 41:71–8. doi: 10.1016/j.ifset.2017.02.002.
  • Nowacka, M., U. Tylewicz, S. Tappi, L. Siroli, R. Lanciotti, S. Romani, and D. Witrowa-Rajchert. 2018. Ultrasound assisted osmotic dehydration of organic cranberries (Vaccinium oxycoccus): Study on quality parameters evolution during storage. Food Control. 93:40–7. doi: 10.1016/j.foodcont.2018.05.005.
  • Nowicka, P., A. Wojdy, K. Lech, and A. Figiel. 2015. Influence of osmodehydration pretreatment and combined drying method on the bioactive potential of sour cherry fruits. Food and Bioprocess Technology 8 (4):824–36. doi: 10.1007/s11947-014-1447-y.
  • Nuñez-Mancilla, Y., M. Pérez-Won, E. Uribe, A. Vega-Gálvez, and K. Di Scala. 2013a. Osmotic dehydration under high hydrostatic pressure: Effects on antioxidant activity, total phenolics compounds, vitamin c and colour of strawberry (Fragaria vesca). LWT - Food Science and Technology 52 (2):151–6. doi: 10.1016/j.lwt.2012.02.027.
  • Núñez-Mancilla, Y., A. Vega-Gálvez, M. Pérez-Won, L. Zura, P. García-Segovia, and K. D. Scala. 2013b. Effect of osmotic dehydration under high hydrostatic pressure on microstructure, functional properties and bioactive compounds of strawberry (Fragaria Vesca). Food and Bioprocess Technology 7(2): 516–24.
  • Odewole, M. M., and A. M. Olaniyan. 2016. Effect of osmotic dehydration pretreatments on drying rate and post-drying quality attributes of red bell pepper (capsicum annuum). AgricEngInt 18 (1):226–36.
  • Oliveira, S. M., T. R. S. Brandão, and C. L. M. Silva. 2016. Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: A review. Food Engineering Reviews 8 (2):134–63. doi: 10.1007/s12393-015-9124-0.
  • Oliveira, R. F., L. M. M. dos Santos, and E. Clemente. 2014. Caracteristicas Fisico-Quimicas de Goiaba “Paluma” Submetida á Desidratação Osmótica. Acta Scientiarum Technology 36 (4):733–7. doi: 10.4025/actascitechnol.v36i4.19798.
  • Osae, R., C. Zhou, B. Xu, W. Tchabo, H. E. Tahir, A. T. Mustapha, and H. Ma. 2019. Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. Journal of Food Biochemistry 43:1–14.
  • Osorio, C., M. S. Franco, M. P. Castaño, M. L. González-Miret, F. J. Heredia, and A. L. Morales. 2007. Colour and flavour changes during osmotic dehydration of fruits. Innovative Food Science & Emerging Technologies 8 (3):353–9. doi: 10.1016/j.ifset.2007.03.009.
  • Peiró, R., V. M. C. Dias, M. M. Camacho, and N. Martínez-Navarrete. 2006. Micronutrient flow to the osmotic solution during grapefruit osmotic dehydration. Journal of Food Engineering 74 (3):299–307. doi: 10.1016/j.jfoodeng.2005.03.022.
  • Pereira, L. M., C. C. Ferrari, S. D. S. Mastrantonio, A. C. C. Rodrigues, and M. D. Hubinger. 2006. Kinetic aspects, texture, and color evaluation of some tropical fruits during osmotic dehydration. Drying Technology 24 (4):475–84. doi: 10.1080/07373930600611968.
  • Pirce, F., T. M. F. S. Vieira, T. R. Augusto-Obara, S. M. Alencar, F. Romero, and E. Scheuermann. 2020. Effects of convective drying assisted by ultrasound and osmotic solution on polyphenol, antioxidant and microstructure of murtilla (Ugni molinae Turcz) fruit. Journal of Food Science and Technology. doi: 10.1007/s13197-020-04523-1.
  • Prosapio, V., and I. Norton. 2017. Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT 80:401–8. doi: 10.1016/j.lwt.2017.03.012.
  • Prosapio, V., and I. Norton. 2018. Simultaneous application of ultrasounds and firming agents to improve the quality properties of osmotic + freeze-dried foods. LWT 96:402–10. doi: 10.1016/j.lwt.2018.05.068.
  • Rahaman, A., X. A. Zeng, A. Kumari, M. Rafiq, A. Siddeeg, M. F. Manzoor, Z. Baloch, and Z. Ahmed. 2019. Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrasonics Sonochemistry 58:104643.
  • Ramya, V., and N. K. Jain. 2017. A review on osmotic dehydration of fruits and vegetables: An integrated approach. Journal of Food Process Engineering 40 (3):e12440–22. doi: 10.1111/jfpe.12440.
  • Rizzolo, A., F. Gerli, C. Prinzivalli, S. Buratti, and D. Torreggiani. 2007. Headspace volatile compounds during osmotic dehydration of strawberries (Cv Camarosa): Influence of osmotic solution composition and processing time. LWT - Food Science and Technology 40 (3):529–35. doi: 10.1016/j.lwt.2006.02.002.
  • Romdhane, N. G., N. Djendoubi, C. Bonazzi, N. Kechaou, and N. B. Mihoubi. 2016. Effect of combined air-drying-osmotic dehydration on kinetics of techno-functional properties, color and total phenol contents of lemon (Citrus Limon. v. Lunari) peels. International Journal of Food Engineering 12 (6):515–25.
  • Rózek, A., J. V. García-Pérez, F. López, C. Güell, and M. Ferrando. 2010. Infusion of grape phenolics into fruits and vegetables by osmotic treatment: Phenolic stability during air drying. Journal of Food Engineering 99 (2):142–50. doi: 10.1016/j.jfoodeng.2010.02.011.
  • Şahin, U., and H. K. Öztürk. 2016. Effects of pulsed vacuum osmotic dehydration (PVOD) on drying kinetics of figs (Ficus carica L). Innovative Food Science & Emerging Technologies 36:104–11. doi: 10.1016/j.ifset.2016.06.003.
  • Sakooei-Vayghan, R., S. H. Peighambardoust, J. Hesari, and D. Peressini. 2020. Effects of osmotic dehydration (with and without sonication) and pectin-based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chemistry 311:125978–9. doi: 10.1016/j.foodchem.2019.125978.
  • Santos, P. H. S., and M. A. Silva. 2008. Retention of vitamin c in drying processes of fruits and vegetables - a review. Drying Technology 26 (12):1421–37. doi: 10.1080/07373930802458911.
  • Šarić, L. Ć., B. V. Filipčev, O. D. Šimurina, D. V. Plavšić, B. M. Šarić, J. M. Lazarević, and I. L. Milovanović. 2016. Sugar beet molasses: Properties and applications. In. Food and Feed Research 43 (2):135–44.
  • Seguí, L., P. J. Fito, and P. Fito. 2012. Understanding osmotic dehydration of tissue structured foods by means of a cellular approach. Journal of Food Engineering 110 (2):240–7. doi: 10.1016/j.jfoodeng.2011.05.012.
  • Sette, P. A., L. E. Franceschinis, C. Schebor, and D. Salvatori. 2015. Osmotic dehydrated raspberries: Changes in physical aspects and bioactive compounds. Drying Technology 33 (6):659–70. doi: 10.1080/07373937.2014.971123.
  • Sharif, I., P. Adewale, S. S. Dalli, and S. Rakshit. 2018. Microwave pretreatment and optimization of osmotic dehydration of wild blueberries using response surface methodology. Food Chemistry 269:300–10. doi: 10.1016/j.foodchem.2018.06.087.
  • Silva, K., S. de, L. C. Caetano, C. C. Garcia, J. T. Romero, A. B. Santos, and M. A. Mauro. 2011. Osmotic dehydration process for low temperature blanched pumpkin. Journal of Food Engineering 105 (1):56–64. doi: 10.1016/j.jfoodeng.2011.01.025.
  • Silva, K. S., M. A. Fernandes, and M. A. Mauro. 2014. Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering 134:37–44. doi: 10.1016/j.jfoodeng.2014.02.020.
  • Stojanovic, J., and J. L. Silva. 2007. Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chemistry 101 (3):898–906. doi: 10.1016/j.foodchem.2006.02.044.
  • Tabtiang, S., S. Prachayawarakon, and S. Soponronnarit. 2012. Effects of osmotic treatment and superheated steam puffing temperature on drying characteristics and texture properties of banana slices. Drying Technology 30 (1):20–8. doi: 10.1080/07373937.2011.613554.
  • Talens, P., I. Escriche, N. Martı́nez-Navarrete, and A. Chiralt. 2003. Influence of osmotic dehydration and freezing on the volatile profile of kiwi fruit. Food Research International 36 (6):635–42. doi: 10.1016/S0963-9969(03)00016-4.
  • Talens, P., N. Martı́nez-Navarrete, P. Fito, and A. Chiralt. 2002. Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science & Emerging Technologies 3 (2):191–9. doi: 10.1016/S1466-8564(02)00027-9.
  • Tappi, S., M. A. Mauro, U. Tylewicz, N. Dellarosa, M. Dalla Rosa, and P. Rocculi. 2017. Effects of calcium lactate and ascorbic acid on osmotic dehydration kinetics and metabolic profile of apples. Food and Bioproducts Processing 103:1–9. doi: 10.1016/j.fbp.2017.01.010.
  • Torreggiani, D., and G. Bertolo. 2001. Osmotic pre-treatments in fruit processing: Chemical, physical and structural effects. Journal of Food Engineering 49 (2–3):247–53. doi: 10.1016/S0260-8774(00)00210-7.
  • Torres, J. D., A. Chiralt, and I. Escriche. 2012. Development of volatile fraction of fresh cut osmotically treated mango during cold storage. Food Chemistry 130 (4):921–7. doi: 10.1016/j.foodchem.2011.08.012.
  • Torres, J. D., P. Talens, J. M. Carot, A. Chiralt, and I. Escriche. 2007. Volatile profile of mango (Mangifera indica L.), as affected by osmotic dehydration. Food Chemistry 101 (1):219–28. doi: 10.1016/j.foodchem.2006.01.020.
  • Traffano-Schiffo, M. V., L. Laghi, M. Castro-Giraldez, U. Tylewicz, P. Rocculi, L. Ragni, M. Dalla, and P. J. Fito. 2017. Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields and monitored by NMR. Food Chemistry 236:87–93. doi: 10.1016/j.foodchem.2017.02.046.
  • Tylewicz, U., S. Tappi, J. Genovese, M. Mozzon, and P. Rocculi. 2019. Metabolic response of organic strawberries and kiwifruit subjected to PEF assisted-osmotic dehydration. Innovative Food Science and Emerging Technologies 56:1–8.
  • Tylewicz, U., S. Tappi, C. Mannozzi, S. Romani, N. Dellarosa, L. Laghi, L. Ragni, P. Rocculi, and M. D. Rosa. 2017. Effect of pulsed electric field (PEF) pre-treatment coupled with osmotic dehydration on physico-chemical characteristics of organic strawberries. Journal of Food Engineering 213:2–9. doi: 10.1016/j.jfoodeng.2017.04.028.
  • Udomkun, P., M. Nagle, B. Mahayothee, D. Nohr, A. Koza, and J. Müller. 2015. Influence of air drying properties on non-enzymatic browning, major bio-active compounds and antioxidant capacity of osmotically pretreated papaya. LWT - Food Science and Technology 60 (2):914–22. doi: 10.1016/j.lwt.2014.10.036.
  • Valdez-Fragoso, A., H. Mujica-Paz, F. Giroux, and J. Welti-Chanes. 2002. Reuse of sucrose syrup in pilot-scale osmotic dehydration of apple cubes. Journal of Food Process Engineering 25 (2):125–39. doi: 10.1111/j.1745-4530.2002.tb00559.x.
  • Vatankhah, H., and H. S. Ramaswamy. 2019. High pressure impregnation (HPI) of apple cubes: Effect of pressure variables and carrier medium. Food Research International (Ottawa, Ont.) 116:320–8. doi: 10.1016/j.foodres.2018.08.042.
  • Verma, D., N. Kaushik, and P. S. Rao. 2014. Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food and Bioprocess Technology 7 (5):1281–97. doi: 10.1007/s11947-013-1124-6.
  • Waliszewski, K. N., V. T. Pardio, and M. Ramirez. 2002. Technical note effect of EDTA on color during osmotic dehydration. Drying Technology 20 (6):1291–8. doi: 10.1081/DRT-120004052.
  • Wang, S.-M., D.-J. Yu, and K. B. Song. 2011. Physicochemical property of pumpkin slices dehydrated with red algae extract. Journal of the Korean Society for Applied Biological Chemistry 54 (6):921–5. doi: 10.1007/BF03253181.
  • Wang, R., M. Zhang, and A. S. Mujumdar. 2010. Effect of osmotic dehydration on microwave freeze-drying characteristics and quality of potato chips. Drying Technology 28 (6):798–806. doi: 10.1080/07373937.2010.482700.
  • Wray, D., and H. S. Ramaswamy. 2016. Recycling of osmotic solutions in microwave-osmotic dehydration: Product quality and potential for creation of a novel product. Journal of the Science of Food and Agriculture 96 (10):3515–23. doi: 10.1002/jsfa.7536.
  • Xin, Y., M. Zhang, and B. Adhikari. 2013. Effect of trehalose and ultrasound-assisted osmotic dehydration on the state of water and glass transition temperature of broccoli (Brassica oleracea L. var. botrytis L.). Journal of Food Engineering 119 (3):640–7. doi: 10.1016/j.jfoodeng.2013.06.035.
  • Xin, Y., M. Zhang, and B. Adhikari. 2014. Freezing characteristics and storage stability of broccoli (Brassica oleracea L. var. botrytis L.) under osmodehydrofreezing and ultrasound-assisted osmodehydrofreezing treatments. Food and Bioprocess Technology 7 (6):1736–44. doi: 10.1007/s11947-013-1231-4.
  • Yu, Y., T. Z. Jin, X. Fan, and J. Wu. 2018. Biochemical degradation and physical migration of polyphenolic compounds in osmotic dehydrated blueberries with pulsed electric field and thermal pretreatments. Food Chemistry 239:1219–25. doi: 10.1016/j.foodchem.2017.07.071.
  • Zielinska, M., D. Zielinska, and M. Markowski. 2018. The effect of microwave-vacuum pretreatment on the drying kinetics, color and the content of bioactive compounds in osmo-microwave-vacuum dried cranberries (Vaccinium macrocarpon). Food and Bioprocess Technology 11 (3):585–602. doi: 10.1007/s11947-017-2034-9.
  • Zou, K., J. Teng, L. Huang, X. Dai, and B. Wei. 2013. Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT - Food Science and Technology 51 (1):253–9. doi: 10.1016/j.lwt.2012.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.