2,356
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review

ORCID Icon, ORCID Icon, , , , & ORCID Icon show all

References

  • Aditya, N. P., Y. G. Espinosa, and I. T. Norton. 2017. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnology Advances 35 (4):450–7. doi: 10.1016/j.biotechadv.2017.03.012.
  • Akgün, D., M. Gültekin-Özgüven, A. Yücetepe, G. Altin, M. Gibis, J. Weiss, and B. Özçelik. 2020. Stirred-type yoghurt incorporated with sour cherry extract in chitosan-coated liposomes. Food Hydrocolloids 101:105532. doi: 10.1016/j.foodhyd.2019.105532.
  • Alvarez-Suarez, J. M., C. Cuadrado, I. B. Redondo, F. Giampieri, A. M. González-Paramás, and C. Santos-Buelga. 2021. Novel approaches in anthocyanin research: Plant fortification and bioavailability issues. Trends in Food Science & Technology. doi: 10.1016/j.tifs.2021.01.049.
  • Anand, A., and B. Sarkar. 2017. Phytochemical screening and antioxidant property of anthocyanins extracts from Hibiscus rosa-sinensis. In Applications of biotechnology for sustainable development, 139–47. Singapore: Springer. doi: 10.1007/978-981-10-5538-6_17.
  • Aroonsri, P., L. Sucharat, and T. Suttasinee. 2015. Anti-inflammatory activity of topical anthocyanins by complexation and niosomal encapsulation. International Journal of Chemical and Molecular Engineering 9 (2):142–6. doi: 10.5281/zenodo.1099066.
  • Arroyo-Maya, I. J., and D. J. McClements. 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food rResearch International 69:1–8. doi: 10.1016/j.foodres.2014.12.005.
  • Awika, J. M., L. W. Rooney, and R. D. Waniska. 2005. Anthocyanins from black sorghum and their antioxidant properties. Food Chemistry 90 (1-2):293–301. doi: 10.1016/j.foodchem.2004.03.058.
  • Barry, A. M. 2013. Encapsulation, color stability, and distribution of anthocyanins from Purple Corn (Zea mays L.), Blueberry (Vaccinium sp.), and Red Radish (Raphanus sativus) in a Cold-Setting Pectin-Alginate Gel. (Electronic thesis, or doctorial dissertation). The Ohio State University (osu1366273463). http://hdl.handle.net/1811/54808.
  • Bastos, L. P. H., C. W. P. de Carvalho, and E. E. Garcia-Rojas. 2018. Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International Journal of Biological Macromolecules 120 (Pt A):332–8. doi: 10.1016/j.ijbiomac.2018.08.050.
  • Baum, M., M. Schantz, S. Leick, S. Berg, M. Betz, K. Frank, H. Rehage, K. Schwarz, U. Kulozik, H. Schuchmann, et al. 2014. Is the antioxidative effectiveness of a bilberry extract influenced by encapsulation? Journal of the Science of Food and Agriculture 94 (11):2301–7. doi: 10.1002/jsfa.6558.
  • Bayat, M., and S. Nasri. 2019. Chapter 12 – Injectable microgel–hydrogel composites “plum pudding gels”: New system for prolonged drug delivery. In Nanomaterials for drug delivery and therapy, ed. Alexandru Mihai Grumezescu, 343–72. Romania: William Andrew Publishing. doi: 10.1016/B978-0-12-816505-8.00001-1.
  • Belwal, T., G. Singh, P. Jeandet, A. Pandey, L. Giri, S. Ramola, I. D. Bhatt, P. R. Venskutonis, M. I. Georgiev, C. Clément, et al. 2020. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnology Advances 43:107600. doi: 10.1016/j.biotechadv.2020.107600.
  • Berké, B., and V. A. P. de Freitas. 2005. Influence of procyanidin structures on their ability to complex with oenin. Food Chemistry 90 (3):453–60. doi: 10.1016/j.foodchem.2004.05.009.
  • Betz, M., and U. Kulozik. 2011. Whey protein gels for the entrapment of bioactive anthocyanins from bilberry extract. International Dairy Journal 21 (9):703–10. doi: 10.1016/j.idairyj.2011.04.003.
  • Bilek, S. E., F. M. Yılmaz, and G. Özkan. 2017. The effects of industrial production on black carrot concentrate quality and encapsulation of anthocyanins in whey protein hydrogels. Food and Bioproducts Processing 102:72–80. doi: 10.1016/j.fbp.2016.12.001.
  • Bitsch, R., M. Netzel, T. Frank, G. Strass, and I. Bitsch. 2004. Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. Journal of Biomedicine & Biotechnology 2004 (5):293–8. doi: 10.1155/S1110724304403106.
  • Bouayed, J., L. Hoffmann, and T. Bohn. 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128 (1):14–21. doi: 10.1016/j.foodchem.2011.02.052.
  • Brooks, M. S.-L., and G. B. Celli. 2019. Anthocyanins from natural sources: Exploiting targeted delivery for improved health. Royal Society of Chemistry 12: pp 3–24. doi: 10.1039/9781788012614.
  • Burin, V. M., Rossa, P. N.N. E. Ferreira‐Lima, M. C. Hillmann, and M. T. Boirdignon-Luiz. 2011. Anthocyanins: Optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. International Journal of Food Science & Technology 46 (1):186–93. doi: 10.1111/j.1365-2621.2010.02486.x.
  • Cai, X., C. Yang, L. Shao, HMin Zhu, YXia Wang, X. Huang, S. Wang, and L. Hong. 2020. Targeting NOX 4 by petunidin improves anoxia/reoxygenation-induced myocardium injury. European Journal of Pharmacology 888:173414. doi: 10.1016/j.ejphar.2020.173414.
  • Carbonneau, M.-A., M. Cisse, N. Mora-Soumille, S. Dairi, M. Rosa, F. Michel, C. Lauret, J.-P. Cristol, and O. Dangles. 2014. Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Côte d’Ivoire’s red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests. Food Chemistry 145:701–9. doi: 10.1016/j.foodchem.2013.07.025.
  • Carelli, J. D., S. G. Sethofer, G. A. Smith, H. R. Miller, J. L. Simard, W. C. Merrick, R. K. Jain, N. T. Ross, and J. Taunton. 2015. Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex. eLife 4, e10222. doi: 10.7554/eLife.10222.
  • Chi, J., J. Ge, X. Yue, J. Liang, Y. Sun, X. Gao, and P. Yue. 2019. Preparation of nanoliposomal carriers to improve the stability of anthocyanins. LWT-Food Science and Technology 109:101–7. doi: 10.1016/j.lwt.2019.03.070.
  • Danaei, M., M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, and M. R. Mozafari. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10 (2):57. doi: 10.3390/pharmaceutics10020057.
  • Daveri, E., E. Cremonini, A. Mastaloudis, S. N. Hester, S. M. Wood, A. L. Waterhouse, M. Anderson, C. G. Fraga, and P. I. Oteiza. 2018. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biology 18:16–24. doi: 10.1016/j.redox.2018.05.012.
  • de Almeida Paula, D., A. Mota Ramos, E. Basílio de Oliveira, E. Maurício Furtado Martins, F. Augusto Ribeiro de Barros, M. Cristina Teixeira Ribeiro Vidigal, N. de Almeida Costa, and C. Tatagiba da Rocha. 2018. Increased thermal stability of anthocyanins at pH 4.0 by guar gum in aqueous dispersions and in double emulsions W/O/W . International Journal of Biological Macromolecules 117:665–72. doi: 10.1016/j.ijbiomac.2018.05.219.
  • Eker, M. E., K. Aaby, I. Budic-Leto, S. Rimac Brnčić, S. N. El, S. Karakaya, S. Simsek, C. Manach, W. Wiczkowski, and S. de Pascual-Teresa. 2020. A review of factors affecting anthocyanin bioavailability: possible implications for the inter-individual variability. Foods 9 (1):2. doi: 10.3390/foods9010002.
  • Fallico, B., G. Ballistreri, E. Arena, S. Brighina, and P. Rapisarda. 2017. Bioactive compounds in blood oranges (Citrus sinensis (L.) Osbeck): Level and intake. Food Chemistry 215:67–75. doi: 10.1016/j.foodchem.2016.07.142.
  • Fernandes, I., C. Marques, A. Évora, A. Faria, C. Calhau, N. Mateus, and V. d Freitas. 2018. Anthocyanins: Nutrition and Health. In Bioactive molecules in food, eds. Jean-Michel Mérillon and K. G. Ramawat, 1–37. Cham: Springer International Publishing. doi: 10.1007/978-3-319-54528-8_79-1.
  • Fidan-Yardimci, M., S. Akay, F. Sharifi, C. Sevimli-Gur, G. Ongen, and O. Yesil-Celiktas. 2019. A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chemistry 293:57–65. doi: 10.1016/j.foodchem.2019.04.086.
  • Fu, K., H. Wu, and Z. Su. 2021. Self-assembling peptide-based hydrogels: Fabrication, properties, and applications. Biotechnology Advances 49:107752. doi: 10.1016/j.biotechadv.2021.107752.
  • Frank, T., M. Netzel, G. Strass, R. Bitsch, and I. Bitsch. 2003. Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Canadian Journal of Physiology and Pharmacology 81 (5):423–35. doi: 10.1139/y03-038.
  • Garcia-Alonso, M., A.-M. Minihane, G. Rimbach, J. C. Rivas-Gonzalo, and S. de Pascual-Teresa. 2009. Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. The Journal of Nutritional Biochemistry 20 (7):521–9. doi: 10.1016/j.jnutbio.2008.05.011.
  • Ge, J., X. Yue, S. Wang, J. Chi, J. Liang, Y. Sun, X. Gao, and P. Yue. 2019. Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro. Food Research International (Ottawa, Ont.) 116:336–45. doi: 10.1016/j.foodres.2018.08.045.
  • Ge, Q., and X. Ma. 2013. Composition and antioxidant activity of anthocyanins isolated from Yunnan edible rose (An ning). Food Science and Human Wellness 2 (2):68–74. doi: 10.1016/j.fshw.2013.04.001.
  • Ge, X., M. Wei, S. He, and W.-E. Yuan. 2019. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 11 (2):55. doi: 10.3390/pharmaceutics11020055.
  • Gowd, V., N. Karim, L. Xie, M. R. I. Shishir, Y. Xu, and W. Chen. 2020. In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin. International Journal of Biological Macromolecules 154:380–9. doi: 10.1016/j.ijbiomac.2020.03.126.
  • Guldiken, B., M. Gibis, D. Boyacioglu, E. Capanoglu, and J. Weiss. 2017. Impact of liposomal encapsulation on degradation of anthocyanins of black carrot extract by adding ascorbic acid. Food & Function 8 (3):1085–93. doi: 10.1039/c6fo01385f.
  • Guo, J., M. M. Giusti, and G. Kaletunç. 2018. Encapsulation of purple corn and blueberry extracts in alginate-pectin hydrogel particles: Impact of processing and storage parameters on encapsulation efficiency. Food Research International (Ottawa, Ont.) 107:414–22. doi: 10.1016/j.foodres.2018.02.035.
  • Hamidi, M., A. Azadi, and P. Rafiei. 2008. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews 60 (15):1638–49. doi: 10.1016/j.foodres.2018.02.035.
  • He, Y.-K., Y.-Y. Yao, and Y.-N. Chang. 2015. Characterization of anthocyanins in Perilla frutescens var. acuta extract by advanced UPLC-ESI-IT-TOF-MSn method and their anticancer bioactivity. Molecules (Basel, Switzerland) 20 (5):9155–69. doi: 10.3390/molecules20059155.
  • Hidalgo, M., M. J. Oruna-Concha, S. Kolida, G. E. Walton, S. Kallithraka, J. P. E. Spencer, G. R. Gibson, and S. de Pascual-Teresa. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry 60 (15):3882–90. doi: 10.1021/jf3002153.
  • HMDB. 2021. The Human Metabolome Database. Accessed April. 9, 2021. https://hmdb.ca/metabolites/.
  • Huang, W., Y. Zhu, C. Li, Z. Sui, and W. Min. 2016. Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxidative Medicine and Cellular Longevity 2016:1591803. doi: 10.1155/2016/1591803.
  • Huth, U. S., R. Schubert, and R. Peschka-Süss. 2006. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. Journal of Controlled Release 110 (3):490–504. doi: 10.1016/j.jconrel.2005.10.018.
  • Ichiyanagi, T., Y. Shida, M. Mamunur Rahman, Y. Hatano, and T. Konishi. 2006. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. Journal of Agricultural and Food Chemistry 54 (18):6578–87. doi: 10.1021/jf0602370.
  • Jafari, S. 2019. Biopolymer nanostructures for food encapsulation purposes: Volume 1 in the nanoencapsulation in the food industry series, Vol. 1. Iran: Academic Press. doi: 10.1016/C2017-0-03166-X.
  • Jaster, H., G. D. Arend, K. Rezzadori, V. C. Chaves, F. H. Reginatto, and J. C. C. Petrus. 2018. Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration. Food Research International (Ottawa, Ont.) 104:119–25. doi: 10.1016/j.foodres.2017.10.006.
  • Jing, P. U., V. Noriega, S. J. Schwartz, and M. M. Giusti. 2007. Effects of growing conditions on purple corncob (Zea mays L.) anthocyanins. Journal of Agricultural and Food Chemistry 55 (21):8625–9. doi: 10.1021/jf070755q.
  • Kaack, K., and T. Austed. 1998. Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 52 (3):187–98. doi: 10.1023/A:1008069422202.
  • Kahraman, E., S. Güngör, and Y. Özsoy. 2017. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Therapeutic Delivery 8 (11):967–85. doi: 10.4155/tde-2017-0075.
  • Kalisz, S., J. Oszmiański, J. Kolniak-Ostek, A. Grobelna, M. Kieliszek, and A. Cendrowski. 2020. Effect of a variety of polyphenols compounds and antioxidant properties of rhubarb (Rheum rhabarbarum). LWT-Food Science and Technology 118:108775. doi: 10.1016/j.lwt.2019.108775.
  • Kanha, N., S. Surawang, P. Pitchakarn, and T. Laokuldilok. 2020. Microencapsulation of copigmented anthocyanins using double emulsion followed by complex coacervation: Preparation, characterization and stability. LWT-Food Science and Technology 133:110154. doi: 10.1016/j.lwt.2020.110154.
  • Karim, N., M. R. I. Shishir, and W. Chen. 2020. Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release. International Journal of Biological Macromolecules 164:2903–14. doi: 10.1016/j.ijbiomac.2020.08.174.
  • Kaur, D., and S. Kumar. 2018. Niosomes: Present scenario and future aspects. Journal of Drug Delivery and Therapeutics 8 (5):35–43. doi: 10.22270/jddt.v8i5.1886.
  • Kazuma, K.,. K. Kogawa, N. Noda, N. Kato, and M. Suzuki. 2004. Identification of delphinidin 3-O-(6’’-O-malonyl)-beta-glucoside-3’-O-beta-glucoside, a postulated intermediate in the biosynthesis of ternatin C5 in the blue petals of Clitoria ternatea (butterfly pea) . Chemistry & Biodiversity 1 (11):1762–70. doi: 10.1002/cbdv.200490132.
  • Khoo, H. E., A. Azlan, S. T. Tang, and S. M. Lim. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61 (1):1361779. doi: 10.1080/16546628.2017.1361779.
  • Khorasani, S., A. P. Ghandehari Yazdi, E. Taghavi, M. Alipoor Amro Abadi, H. Ghobadi, B. Zihayat, B. Rasti, and M. R. Mozafari. 2021. 3.32 – Recent trends in the nanoencapsulation processes for food and nutraceutical applications. In Innovative food processing technologies, eds. Kai Knoerzer and Kasiviswanathan Muthukumarappan, 532–45. Oxford: Elsevier. doi: 10.1016/B978-0-08-100596-5.22940-5.
  • Kim, M., and E. Choe. 2013. Stability of anthocyanins and sugars during heating for low sugar meoru (Vitis coignetiea) jam-making under singlet oxygen. Food Science and Biotechnology 22 (3):645–50. doi: 10.1007/s10068-013-0126-5.
  • Kumari, P. K., A. V. Umakanth, T. B. Narsaiah, and A. Uma. 2021. Exploring anthocyanins, antioxidant capacity and α-glucosidase inhibition in bran and flour extracts of selected sorghum genotypes. Food Bioscience 41:100979. doi: 10.1016/j.fbio.2021.100979.
  • Lamy, S., M. Blanchette, J. Michaud-Levesque, R. Lafleur, Y. Durocher, A. Moghrabi, S. Barrette, D. Gingras, and R. Béliveau. 2005. Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis 27 (5):989–96. doi: 10.1093/carcin/bgi279.
  • Lang, Y., H. Gao, J. Tian, C. Shu, R. Sun, B. Li, and X. Meng. 2019. Protective effects of α-casein or β-casein on the stability and antioxidant capacity of blueberry anthocyanins and their interaction mechanism. LWT-Food Science and Technology 115:108434. doi: 10.1016/j.lwt.2019.108434.
  • Lang, Y., B. Li, E. Gong, C. Shu, X. Si, N. Gao, W. Zhang, H. Cui, and X. Meng. 2021. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chemistry 334:127526. doi: 10.1016/j.foodchem.2020.127526.
  • Lee, C., and K. Na. 2019. Anthocyanin-loaded liposomes prepared by the pH-gradient loading method to enhance the anthocyanin stability, antioxidation effect and skin permeability. Macromolecular Research 28 (3):289. doi: 10.1007/s13233-020-8039-7.
  • Li, H., Z. Deng, H. Zhu, C. Hu, R. Liu, J. C. Young, and R. Tsao. 2012. Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International 46 (1):250–259. doi: 10.1016/j.foodres.2011.12.014.
  • Liu, J., Y. Tan, H. Zhou, J. L. Muriel Mundo, and D. J. McClements. 2019. Protection of anthocyanin-rich extract from pH-induced color changes using water-in-oil-in-water emulsions. Journal of Food Engineering 254:1–9. doi: 10.1016/j.jfoodeng.2019.02.021.
  • Liu, Y., Y. Liu, C. Tao, M. Liu, Y. Pan, and Z. Lv. 2018. Effect of temperature and pH on stability of anthocyanin obtained from blueberry. Journal of Food Measurement and Characterization 12 (3):1744–1753. doi: 10.1007/s11694-018-9789-1.
  • Liu, Y., D. Zhang, Y. Wu, D. Wang, Y. Wei, J. Wu, and B. Ji. 2014. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. International Journal of Food Sciences and Nutrition 65 (4):440–448. doi: 10.3109/09637486.2013.869798.
  • Ludwig, I. A., P. Mena, L. Calani, G. Borges, G. Pereira-Caro, L. Bresciani, D. Del Rio, M. E. J. Lean, and A. Crozier. 2015. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radical Biology & Medicine 89:758–769. doi: 10.1016/j.freeradbiomed.2015.10.400.
  • Maciel, L. G., M. A. V. do Carmo, L. Azevedo, H. Daguer, L. Molognoni, M. M. de Almeida, D. Granato, and N. D. Rosso. 2018. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 113:187–197. doi: 10.1016/j.fct.2018.01.053.
  • Mahdavi, S. A., S. M. Jafari, M. Ghorbani, and E. Assadpoor. 2014. Spray-drying microencapsulation of anthocyanins by natural biopolymers: A review. Drying Technology 32 (5):509–518. doi: 10.1080/07373937.2013.839562.
  • Manosroi, J., C. Chankhampan, W. Kitdamrongtham, J. Zhang, M. Abe, T. Akihisa, W. Manosroi, and A. Manosroi. 2020. In vivo anti-ageing activity of cream containing niosomes loaded with purple glutinous rice (Oryza sativa Linn.) extract. International Journal of Cosmetic Science 42 (6):622–631. doi: 10.1111/ics.12658.
  • Marpaung, A. M., and S. Chiang. 2018. The appropriate way to serve butterfly pea flower drink at home. ICONIET Proceeding 2 (2):134–137. doi: 10.33555/iconiet.v2i2.24.
  • Matsumoto, H., H. Inaba, M. Kishi, S. Tominaga, M. Hirayama, and T. Tsuda. 2001. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. Journal of Agricultural and Food Chemistry 49 (3):1546–1551. doi: 10.1021/jf001246q.
  • McClements, D. J. 2014. Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds: Boca Raton: CRC Press. doi: 10.1201/b17280.
  • McClements, D. J. 2015. Food emulsions: principles, practices, and techniques. Boca Raton: CRC Press. doi: 10.1201/b18868.
  • McGhie, T. K., and M. C. Walton. 2007. The bioavailability and absorption of anthocyanins: Towards a better understanding. Molecular Nutrition & Food Research 51 (6):702–713. doi: 10.1002/mnfr.200700092.
  • MohdMaidin, N., M. J. Oruna-Concha, and P. Jauregi. 2019. Surfactant TWEEN20 provides stabilisation effect on anthocyanins extracted from red grape pomace. Food Chemistry 271:224–231. doi: 10.1016/j.foodchem.2018.07.083.
  • Mozafari, M. R. 2005. Liposomes: An overview of manufacturing techniques. Cellular & Molecular Biology Letters 10 (4):711–719. https://research.monash.edu/en/publications/liposomes-an-overview-of-manufacturing-techniques.
  • Mozafari, M. R., R. Javanmard, and M. Raji. 2017. Tocosome: Novel drug delivery system containing phospholipids and tocopheryl phosphates. International Journal of Pharmaceutics 528 (1-2):381–382. doi: 10.1016/j.ijpharm.2017.06.037.
  • Mueller, D., K. Jung, M. Winter, D. Rogoll, R. Melcher, U. Kulozik, K. Schwarz, and E. Richling. 2018. Encapsulation of anthocyanins from bilberries – Effects on bioavailability and intestinal accessibility in humans. Food Chemistry 248:217–224. doi: 10.1016/j.foodchem.2017.12.058.
  • Mullen, W., C. A. Edwards, M. Serafini, and A. Crozier. 2008. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. Journal of Agricultural and Food Chemistry 56 (3):713–719. doi: 10.1021/jf072000p.
  • Munoz-Espada, A. C., K. V. Wood, B. Bordelon, and B. A. Watkins. 2004. Anthocyanin quantification and radical scavenging capacity of Concord, Norton, and Marechal Foch grapes and wines. Journal of Agricultural and Food Chemistry 52 (22):6779–6786. doi: 10.1021/jf040087y.
  • Narayanaswamy, R., and V. P. Torchilin. 2019. Hydrogels and their applications in targeted drug delivery. Molecules 24 (3):603. doi: 10.3390/molecules24030603.
  • Neamtu, I., A. G. Rusu, A. Diaconu, L. E. Nita, and A. P. Chiriac. 2017. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Delivery 24 (1):539–557. doi: 10.1080/10717544.2016.1276232.
  • Nielsen, I. L. F., L. O. Dragsted, G. Ravn-Haren, R. Freese, and S. E. Rasmussen. 2003. Absorption and excretion of black currant anthocyanins in humans and watanabe heritable hyperlipidemic rabbits. Journal of Agricultural and Food Chemistry 51 (9):2813–2820. doi: 10.1021/jf025947u.
  • Ning, M., Y. Guo, H. Pan, S. Zong, and Z. Gu. 2006. Preparation and characterization of EP-liposomes and Span 40-niosomes. Die Pharmazie-An International Journal of Pharmaceutical Sciences 61 (3):208–212. https://europepmc.org/article/med/16599261.
  • Niki, E., Y. Yamamoto, M. Takahashi, E. Komuro, and Y. Miyama. 1989. Inhibition of oxidation of biomembranes by tocopherol. Annals of the New York Academy of Sciences 570 (1):23–31. doi: 10.1111/j.1749-6632.1989.tb14905.x.
  • Nørbaek, R., K. Nielsen, and T. Kondo. 2002. Anthocyanins from flowers of Cichorium intybus. Phytochemistry 60 (4):357–359. doi: 10.1016/S0031-9422(02)00055-9.
  • Oguis, G. K., E. K. Gilding, M. A. Jackson, and D. J. Craik. 2019. Butterfly Pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Frontiers in Plant Science 10:645–645. doi: 10.3389/fpls.2019.00645.
  • Ozkan, G., T. Kostka, T. Esatbeyoglu, and E. Capanoglu. 2020. Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds. Molecules 25 (23):5545. doi: 10.3390/molecules25235545.
  • Özkan, M. 2002. Degradation of anthocyanins in sour cherry and pomegranate juices by hydrogen peroxide in the presence of added ascorbic acid. Food Chemistry 78 (4):499–504. doi: 10.1016/S0308-8146(02)00165-6.
  • Paini, M., S. R. Daly, B. Aliakbarian, A. Fathi, E. A. Tehrany, P. Perego, F. Dehghani, and P. Valtchev. 2015. An efficient liposome based method for antioxidants encapsulation. Colloids and Surfaces. B, Biointerfaces 136:1067–1072. doi: 10.1016/j.colsurfb.2015.10.038.
  • Park, S.-B., E. Lih, K.-S. Park, Y. K. Joung, and D. K. Han. 2017. Biopolymer-based functional composites for medical applications. Progress in Polymer Science 68:77–105. doi: 10.1016/j.progpolymsci.2016.12.003.
  • Pasqui, D., M. De Cagna, and R. Barbucci. 2012. Polysaccharide-based hydrogels: The key role of water in affecting mechanical properties. Polymers 4 (3):1517–1534. doi: 10.3390/polym4031517.
  • Patras, A., N. P. Brunton, C. O’Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 21 (1):3–11. doi: 10.1016/j.tifs.2009.07.004.
  • Pereira Souza, A. C., P. Deyse Gurak, and L. Damasceno Ferreira Marczak. 2017. Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food and Bioproducts Processing 102:186–194. doi: 10.1016/j.fbp.2016.12.012.
  • Pubchem. 2021. Compound summary. Accessed Feb. 9, 2021. https://pubchem.ncbi.nlm.nih.gov/.
  • Rabelo, C. A. S., N. Taarji, N. Khalid, I. Kobayashi, M. Nakajima, and M. A. Neves. 2018. Formulation and characterization of water-in-oil nanoemulsions loaded with açaí berry anthocyanins: Insights of degradation kinetics and stability evaluation of anthocyanins and nanoemulsions. Food Research International (Ottawa, Ont.) 106:542–548. doi: 10.1016/j.foodres.2018.01.017.
  • Rajan, V. K., C. K. Hasna, and K. Muraleedharan. 2018. The natural food colorant Peonidin from cranberries as a potential radical scavenger – A DFT based mechanistic analysis. Food Chemistry 262:184–190. doi: 10.1016/j.foodchem.2018.04.074.
  • Rao, V. S. N., L. A. F. Paiva, M. F. Souza, A. R. Campos, R. A. Ribeiro, G. A. C. Brito, M. J. Teixeira, and E. R. Silveira. 2003. Ternatin, an anti-inflammatory flavonoid, inhibits thioglycolate-elicited rat peritoneal neutrophil accumulation and LPS-activated nitric oxide production in murine macrophages. Planta Medica 69 (9):851–853. doi: 10.1055/s-2003-43213.
  • Rashwan, A. K., H. A. Yones, N. Karim, E. M. Taha, and W. Chen. 2021. Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends in Food Science & Technology 110:168–182. doi: 10.1016/j.tifs.2021.01.087.
  • Rimpapa, Z., J. Toromanovic, I. Tahirovic, A. Šapčanin, and E. Sofic. 2007. Ismet Tahirovic, Aida Šapčanin, and Emin Sofic. 2007. "Total content of phenols and anthocyanins in edible fruits from Bosnia. Bosnian Journal of Basic Medical Sciences 7 (2):117–120. doi: 10.17305/bjbms.2007.3064.
  • Rizvi, S. A. A., and A. M. Saleh. 2018. Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society 26 (1):64–70. doi: 10.1016/j.jsps.2017.10.012.
  • Robert, P., T. Gorena, N. Romero, E. Sepulveda, J. Chavez, and C. Saenz. 2010. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science & Technology 45 (7):1386–1394. doi: 10.1111/j.1365-2621.2010.02270.x.
  • Salah, M., M. Mansour, D. Zogona, and X. Xu. 2020. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro. Food Research International (Ottawa, Ont.) 137:109635. doi: 10.1016/j.foodres.2020.109635.
  • Sengul, H., E. Surek, and D. Nilufer-Erdil. 2014. Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Research International 62:1069–1079. doi: 10.1016/j.foodres.2014.05.055.
  • Shaddel, R., J. Hesari, S. Azadmard-Damirchi, H. Hamishehkar, B. Fathi-Achachlouei, and Q. Huang. 2018a. Double emulsion followed by complex coacervation as a promising method for protection of black raspberry anthocyanins. Food Hydrocolloids 77:803–816. doi: 10.1016/j.foodhyd.2017.11.024.
  • Shaddel, R., J. Hesari, S. Azadmard-Damirchi, H. Hamishehkar, B. Fathi-Achachlouei, and Q. Huang. 2018b. Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules 107 (Pt B):1800–1810. doi: 10.1016/j.ijbiomac.2017.10.044.
  • Shi, M., M. L. Mathai, G. Xu, A. J. McAinch, and X. Q. Su. 2019. The effects of supplementation with blueberry, cyanidin-3-O-β-glucoside, yoghurt and its peptides on obesity and related comorbidities in a diet-induced obese mouse model. Journal of Functional Foods 56:92–101. doi: 10.1016/j.jff.2019.03.002.
  • Shishir, M. R. I., N. Karim, J. Xie, A. K. Rashwan, and W. Chen. 2020. Colonic delivery of pelargonidin-3-O-glucoside using pectin-chitosan-nanoliposome: Transport mechanism and bioactivity retention. International Journal of Biological Macromolecules 159:341–355. doi: 10.1016/j.ijbiomac.2020.05.076.
  • Shishir, M. R. I., N. Karim, Y. Xu, J. Xie, and W. Chen. 2021. Improving the physicochemical stability and functionality of nanoliposome using green polymer for the delivery of pelargonidin-3-O-glucoside. Food Chemistry 337:127654. doi: 10.1016/j.foodchem.2020.127654.
  • Sorour, M. A., A. E. Mehanni, E. M. Taha, and A. K. Rashwan. 2017. Changes of total phenolics, tannins, phytate and antioxidant activity of two sorghum cultivars as affected by processing. Journal of Food and Dairy Sciences 8 (7):267–274. doi: 10.21608/jfds.2017.38699.
  • Sosnik, A., and M. Menaker Raskin. 2015. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnology Advances 33 (6 Pt 3):1380–1392. doi: 10.1016/j.biotechadv.2015.01.003.
  • Sreerekha, P. R., P. K. Dara, D. K. Vijayan, N. S. Chatterjee, M. Raghavankutty, S. Mathew, C. N. Ravishankar, and R. Anandan. 2021. Dietary supplementation of encapsulated anthocyanin loaded-chitosan nanoparticles attenuates hyperlipidemic aberrations in male Wistar rats. Carbohydrate Polymer Technologies and Applications 2:100051. doi: 10.1016/j.carpta.2021.100051.
  • Sun, Y., J. Chi, X. Ye, S. Wang, J. Liang, P. Yue, H. Xiao, and X. Gao. 2021. Nanoliposomes as delivery system for anthocyanins: Physicochemical characterization, cellular uptake, and antioxidant properties. LWT-Food Science and Technology 139:110554. doi: 10.1016/j.lwt.2020.110554.
  • Sundar, S., J. Kundu, and S. C. Kundu. 2010. Biopolymeric nanoparticles. Science and Technology of Advanced Materials 11 (1):014104–014104. doi: 10.1088/1468-6996/11/1/014104.
  • Tan, C., D. Li, H. Wang, Y. Tong, Y. Zhao, H. Deng, Y. Kong, C. Shu, T. Yan, and X. Meng. 2021. Effects of high hydrostatic pressure on the binding capacity, interaction, and antioxidant activity of the binding products of cyanidin-3-glucoside and blueberry pectin. Food Chemistry 344:128731. doi: 10.1016/j.foodchem.2020.128731.
  • Tan, C., J. Wang, and B. Sun. 2021. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnology Advances 48:107727. doi: 10.1016/j.biotechadv.2021.107727.
  • Tena, N., J. Martín, and A. G. Asuero. 2020. State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9 (5):451. doi: 10.3390/antiox9050451.
  • Terahara, N., K. Toki, N. Saito, T. Honda, T. Matsui, and Y. Osajima. 1998. Eight new anthocyanins, ternatins C1-C5 and D3 and preternatins A3 and C4 from young Clitoria ternatea flowers . Journal of Natural Products 61 (11):1361–1367. doi: 10.1021/np980160c.
  • Thakur, S., V. K. Thakur, and O. A. Arotiba. 2018. History, classification, properties and application of hydrogels: An overview. In Hydrogels, 29–50. Singapore: Springer. doi: 10.1007/978-981-10-6077-9_2.
  • Tie, S., X. Zhang, H. Wang, Y. Song, and M. Tan. 2020. Procyanidins-loaded complex coacervates for improved stability by self-crosslinking and calcium ions chelation. Journal of Agricultural and Food Chemistry 68 (10):3163–3170. doi: 10.1021/acs.jafc.0c00242.
  • Timilsena, Y. P., T. O. Akanbi, N. Khalid, B. Adhikari, and C. J. Barrow. 2019. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules 121:1276–1286. doi: 10.1016/j.ijbiomac.2018.10.144.
  • Tokuşoğlu, Ö., and C. A. Hall. III. 2011. Fruit and cereal bioactives: Sources, chemistry, and applications. Boca Raton: CRC Press. doi: 10.1201/b10786.
  • van der Graaf, S., C. G. P. H. Schroën, and R. M. Boom. 2005. Preparation of double emulsions by membrane emulsification—A review. Journal of Membrane Science 251 (1-2):7–15. doi: 10.1016/j.memsci.2004.12.013.
  • Vauthier, C., and K. Bouchemal. 2009. Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research 26 (5):1025–1058. doi: 10.1007/s11095-008-9800-3.
  • Vijayaraj, P., H. Nakagawa, and K. Yamaki. 2019. Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase. Journal of Food Biochemistry 43 (3):e12774. doi: 10.1111/jfbc.12774.
  • Wei, Y., C. Li, L. Zhang, L. Dai, S. Yang, J. Liu, L. Mao, F. Yuan, and Y. Gao. 2020. Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocolloids 106:105886. doi: 10.1016/j.foodhyd.2020.105886.
  • Wei, Y., C. Sun, L. Dai, X. Zhan, and Y. Gao. 2018. Structure, physicochemical stability and in vitro simulated gastrointestinal digestion properties of β-carotene loaded zein-propylene glycol alginate composite nanoparticles fabricated by emulsification-evaporation method. Food Hydrocolloids 81:149–158. doi: 10.1016/j.foodhyd.2018.02.042.
  • Wei, Y., Z. Yu, K. Lin, C. Sun, L. Dai, S. Yang, L. Mao, F. Yuan, and Y. Gao. 2019. Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion. Food Hydrocolloids 95:336–348. doi: 10.1016/j.foodhyd.2019.04.048.
  • Wrolstad, R. E., R. W. Durst, and J. Lee. 2005. Tracking color and pigment changes in anthocyanin products. Trends in Food Science & Technology 16 (9):423–428. doi: 10.1016/j.tifs.2005.03.019.
  • Wu, X., G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, and R. L. Prior. 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry 54 (11):4069–4075. doi: 10.1021/jf060300l.
  • Xu, Y., Y. Li, J. Xie, L. Xie, J. Mo, and W. Chen. 2021. Bioavailability, absorption, and metabolism of pelargonidin-based anthocyanins using sprague-dawley rats and Caco-2 cell monolayers. Journal of Agricultural and Food Chemistry 69 (28):7841–7850. doi: 10.1021/acs.jafc.1c00257.
  • Xu, Y., L. Xie, J. Xie, Y. Liu, and W. Chen. 2019. Pelargonidin-3-O-rutinoside as a novel α-glucosidase inhibitor for improving postprandial hyperglycemia. Chemical Communications (Cambridge, England) 55 (1):39–42. doi: 10.1039/c8cc07985d.
  • Yan, M., B.-H. Wang, X. Fu, M. Gui, G. Wang, L. Zhao, R. Li, C. You, and Z. Liu. 2020. Petunidin-based anthocyanin relieves oxygen stress in Lactobacillus plantarum ST-III. Frontiers in Microbiology 11 (1211):1211. doi: 10.3389/fmicb.2020.01211.
  • Yang, M., S. I. Koo, W. O. Song, and O. K. Chun. 2011. Food matrix affecting anthocyanin bioavailability: Review. Current Medicinal Chemistry 18 (2):291–300. doi: 10.2174/092986711794088380.
  • Zarrabi, A., M. Alipoor Amro Abadi, S. Khorasani, M.-R. Mohammadabadi, A. Jamshidi, S. Torkaman, E. Taghavi, M. R. Mozafari, and B. Rasti. 2020. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules 25 (3):638. doi: 10.3390/molecules25030638.
  • Zhao, C.-L., Y.-Q. Yu, Z.-J. Chen, G.-S. Wen, F.-G. Wei, Q. Zheng, C.-D. Wang, and X.-L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–128. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhao, X., X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, and M. Tan. 2020. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study. Food Hydrocolloids 109:106114. doi: 10.1016/j.foodhyd.2020.106114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.