803
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive review on the production, pharmacokinetics and health benefits of mulberry leaf iminosugars: Main focus on 1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ

, &

References

  • Agus, A., J. Planchais, and H. Sokol. 2018. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe 23 (6):716–24. doi: 10.1016/j.chom.2018.05.003.
  • Amézqueta, S., E. Galán, E. Fuguet, M. Carrascal, J. Abián, and J. L. Torres. 2012. Determination of D-fagomine in buckwheat and mulberry by cation exchange HPLC/ESI-Q-MS. Analytical and Bioanalytical Chemistry 402 (5):1953–60. doi: 10.1007/s00216-011-5639-2.
  • Amézqueta, S., E. Galán, I. Vila-Fernández, S. Pumarola, M. Carrascal, J. Abian, L. Ribas-Barba, L. Serra-Majem, and J. L. Torres. 2013. The presence of D-fagomine in the human diet from buckwheat-based foodstuffs. Food Chemistry 136 (3–4):1316–21. doi: 10.1016/j.foodchem.2012.09.038.
  • Amézqueta, S., S. Ramos-Romero, C. Martínez-Guimet, A. Moreno, M. Hereu, and J. L. Torres. 2017. Fate of D-fagomine after oral administration to rats. Journal of Agricultural and Food Chemistry 65 (22):4414–20. doi: 10.1021/acs.jafc.7b01026.
  • Ann, J. Y., H. Eo, and Y. Lim. 2015. Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes and Nutrition 10 (6):46.
  • Asai, A., K. Nakagawa, O. Higuchi, T. Kimura, Y. Kojima, J. Kariya, T. Miyazawa, and S. Oikawa. 2011. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. Journal of Diabetes Investigation 2 (4):318–23. doi: 10.1111/j.2040-1124.2011.00101.x.
  • Asano, N., A. Kato, M. Miyauchi, H. Kizu, Y. Kameda, A. A. Watson, R. J. Nash, and G. W. J. Fleet. 1998. Nitrogen-containing furanose and pyranose analogues from Hyacinthus orientalis. Journal of Natural Products 61 (5):625–8. doi: 10.1021/np9705726.
  • Asano, N., E. Tomioka, H. Kizu, and K. Matsui. 1994. Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydrate Research 253:235–45. doi: 10.1016/0008-6215(94)80068-5.
  • Asano, N., M. Nishida, M. Miyauchi, K. Ikeda, M. Yamamoto, H. Kizu, Y. Kameda, A. A. Watson, R. J. Nash, and G. W. Fleet. 2000. Polyhydroxylated pyrrolidine and piperidine alkaloids from Adenophora triphylla var. japonica (Campanulaceae). Phytochemistry 53 (3):379–82. doi: 10.1016/S0031-9422(99)00555-5.
  • Asano, N., T. Yamashita, K. Yasuda, K. Ikeda, H. Kizu, Y. Kameda, A. Kato, R. J. Nash, H. S. Lee, and K. S. Ryu. 2001. Polyhydroxylated alkaloids isolated from mulberry trees (Morusalba L.) and silkworms (Bombyx mori L.). Journal of Agricultural and Food Chemistry 49 (9):4208–13. doi: 10.1021/jf010567e.
  • Bock, G., C. D. Man, M. Campioni, E. Chittilapilly, R. Basu, G. Toffolo, C. Cobelli, and R. Rizza. 2006. Pathogenesis of pre-diabetes: Mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 55 (12):3536–49. doi: 10.2337/db06-0319.
  • Bollen, M., A. Vandebroeck, and W. Stalmans. 1988. 1-Deoxynojirimycin and related compounds inhibit glycogenolysis in the liver without affecting the concentration of phosphorylase α. Biochemical Pharmacology 37 (5):905–9. doi: 10.1016/0006-2952(88)90179-7.
  • Bollen, M., and W. Stalmans. 1989. The antiglycogenolytic action of 1‐deoxynojirimycin results from a specific inhibition of the α‐1,6‐glucosidase activity of the debranching enzyme. European Journal of Biochemistry 181 (3):775–80.
  • Bunsupa, S., K. Hanada, A. Maruyama, K. Aoyagi, K. Komatsu, H. Ueno, M. Yamashita, R. Sasaki, A. Oikawa, K. Saito, et al. 2016. Molecular evolution and functional characterization of a bifunctional decarboxylase involved in lycopodium alkaloid biosynthesis. Plant Physiology 171 (4):2432–44. doi: 10.1104/pp.16.00639.
  • Bunsupa, S., K. Katayama, E. Ikeura, A. Oikawa, K. Toyooka, K. Saito, and M. Yamazaki. 2012. Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. The Plant Cell 24 (3):1202–16. doi: 10.1105/tpc.112.095885.
  • Bunsupa, S., K. Komastsu, R. Nakabayashi, K. Saito, and M. Yamazaki. 2014. Revisiting anabasine biosynthesis in tobacco hairy roots expressing plant lysine decarboxylase gene by using 15N-labeled lysine. Plant Biotechnology 31 (5):511–8. doi: 10.5511/plantbiotechnology.14.1008a.
  • Castillo, J. A., J. Calveras, J. Casas, M. Mitjans, M. P. Vinardell, T. Parella, T. Inoue, G. A. Sprenger, J. Joglar, and P. Clapés. 2006. Fructose-6-phosphate aldolase in organic synthesis: Preparation of D-fagomine, N-alkylated derivatives, and preliminary biological assays. Organic Letters 8 (26):6067–70. doi: 10.1021/ol0625482.
  • Chen, F., N. Nakashima, I. Kimura, M. Kimura, N. Asano, and S. Koya. 1995. Potentiating effects on pilocarpine-induced saliva secretion, by extracts and N-containing sugars derived from mulberry leaves, in streptozocin-diabetic mice. Biological & Pharmaceutical Bulletin 18 (12):1676–80. doi: 10.1248/bpb.18.1676.
  • Chen, G. H., J. J. Tong, F. Wang, X. Q. Hu, X. W. Li, F. Tao, and Z. J. Wei. 2015. Chronic adjunction of 1-deoxynojirimycin protects from age-related behavioral and biochemical changes in the SAMP8 mice. Age (Dordrecht, Netherlands) 37 (5):102. doi: 10.1007/s11357-015-9839-0.
  • Chen, W., T. Liang, W. Zuo, X. Wu, Z. Shen, F. Wang, C. Li, Y. Zheng, and G. Peng. 2018. Neuroprotective effect of 1-deoxynojirimycin on cognitive impairment, β-amyloid deposition, and neuroinflammation in the SAMP8 mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 106:92–7.
  • Chen, Y., X. Jiang, Y. Sun, S. Zhang, K. Li, W. Chen, and Y. Liu. 2021. Development and evaluation of 1-deoxynojirimycin sustained-release delivery system: In vitro and in vivo characterization studies. Journal of Biomedical Materials Research. Part A 109 (11):2294. doi: 10.1002/jbm.a.37213.
  • Chung, H. I., J. Kim, J. Y. Kim, and O. Kwon. 2013. Acute intake of mulberry leaf aqueous extract affects postprandial glucose response after maltose loading: Randomized double-blind placebo-controlled pilot study. Journal of Functional Foods 5 (3):1502–6. doi: 10.1016/j.jff.2013.04.015.
  • Cona, A., G. Rea, R. Angelini, R. Federico, and P. Tavladoraki. 2006. Functions of amine oxidases in plant development and defence. Trends in Plant Science 11 (2):80–8. doi: 10.1016/j.tplants.2005.12.009.
  • Consumer Affairs Agency. 2015. The system of “Foods with Function Claims” has been launched!. Accessed September 28, 2021. https://www.caa.go.jp/policies/policy/food_labeling/information/pamphlets/pdf/151224_2.pdf
  • Costa, T., E. Fernandez-Villalba, V. Izura, A. M. Lucas-Ochoa, N. J. Menezes-Filho, R. C. Santana, M. D. de Oliveira, F. M. Araújo, C. Estrada, V. Silva, et al. 2021. Combined 1-deoxynojirimycin and ibuprofen treatment decreases microglial activation, phagocytosis and dopaminergic degeneration in MPTP-treated mice. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology 16 (2):390–402.
  • Daniele, S., C. Giacomelli, and C. Martini. 2018. Brain ageing and neurodegenerative disease: The role of cellular waste management. Biochemical Pharmacology 158:207–16. doi: 10.1016/j.bcp.2018.10.030.
  • Das, T., R. Jayasudha, S. K. Chakravarthy, G. S. Prashanthi, A. Bhargava, M. Tyagi, P. K. Rani, R. R. Pappuru, S. Sharma, and S. Shivaji. 2021. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Scientific Reports 11 (1):2738. doi: 10.1038/s41598-021-82538-0.
  • Delzenne, N. M., P. D. Cani, A. Everard, A. M. Neyrinck, and L. B. Bindels. 2015. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 58 (10):2206–17. doi: 10.1007/s00125-015-3712-7.
  • Firon, N., I. Ofek, and N. Sharon. 1984. Carbohydrate-binding sites of the mannose-specific fimbrial lectins of Enterobacteria. Infection and Immunity 43 (3):1088–90. doi: 10.1128/iai.43.3.1088-1090.1984.
  • Gao, K., C. Zheng, T. Wang, H. Zhao, J. Wang, Z. Wang, X. Zhai, Z. Jia, J. Chen, Y. Zhou, et al. 2016. 1-Deoxynojirimycin: Occurrence, extraction, chemistry, oral pharmacokinetics, biological activities and in silico target fishing. Molecules 21 (11):1600. doi: 10.3390/molecules21111600.
  • Gavin, J. R. 2001. Pathophysiologic mechanisms of postprandial hyperglycemia. The American Journal of Cardiology 88 (6A):4H–8H. doi: 10.1016/S0002-9149(01)01830-6.
  • Gómez, L., E. Molinar-Toribio, M. Á. Calvo-Torras, C. Adelantado, M. E. Juan, J. M. Planas, X. Cañas, C. Lozano, S. Pumarola, P. Clapés, et al. 2012. D-Fagomine lowers postprandial blood glucose and modulates bacterial adhesion. British Journal of Nutrition 107 (12):1739–46. doi: 10.1017/S0007114511005009.
  • Guo, N., Y. W. Jiang, P. Kou, Z. M. Liu, T. Efferth, Y. Y. Li, and Y. J. Fu. 2019. Application of integrative cloud point extraction and concentration for the analysis of polyphenols and alkaloids in mulberry leaves. Journal of Pharmaceutical and Biomedical Analysis 167:132–9. doi: 10.1016/j.jpba.2019.02.002.
  • Halliwell, B., and J. M. C. Gutteridge. 2015. Free radicals in biology and medicine. 5th ed. Oxford: Oxford University Press.
  • Han, W., X. Chen, H. Yu, L. Chen, and M. Shen. 2018. Seasonal variations of iminosugars in mulberry leaves detected by hydrophilic interaction chromatography coupled with tandem mass spectrometry. Food Chemistry 251:110–4. doi: 10.1016/j.foodchem.2018.01.058.
  • Hanozet, G., H. P. Pircher, P. Vanni, B. Oesch, and G. Semenza. 1981. An example of enzyme hysteresis: The slow and tight interaction of some fully competitive inhibitors with small intestinal sucrase. The Journal of Biological Chemistry 256 (8):3703–11. doi: 10.1016/S0021-9258(19)69512-8.
  • Hansawasdi, C., and J. Kawabata. 2006. Alpha-glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia 77 (7–8):568–73. doi: 10.1016/j.fitote.2006.09.003.
  • Hao, J. Y., Y. Wan, X. H. Yao, W. G. Zhao, R. Z. Hu, C. Chen, L. Li, D. Y. Zhang, and G. H. Wu. 2018. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS One 13 (6):e0198072. doi: 10.1371/journal.pone.0198072.
  • He, H., and Y. H. Lu. 2013. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase. Journal of Agricultural and Food Chemistry 61 (34):8110–9. doi: 10.1021/jf4019323.
  • He, X., J. Fang, Y. Ruan, X. Wang, Y. Sun, N. Wu, Z. Zhao, Y. Chang, N. Ning, H. Guo, et al. 2018. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chemistry 245:899–910.
  • Hereu, M., S. Ramos-Romero, C. Busquets, L. Atienza, S. Amézqueta, B. Miralles-Pérez, M. R. Nogués, L. Méndez, I. Medina, and J. L. Torres. 2019. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports 9 (1):16628. doi: 10.1038/s41598-019-52678-5.
  • Hereu, M., S. Ramos-Romero, N. García-González, S. Amézqueta, and J. L. Torres. 2018. Eubiotic effect of buckwheat D-fagomine in healthy rats. Journal of Functional Foods 50:120–6. doi: 10.1016/j.jff.2018.09.018.
  • Hereu, M., S. Ramos-Romero, R. Marín-Valls, S. Amézqueta, B. Miralles-Pérez, M. Romeu, L. Méndez, I. Medina, and J. L. Torres. 2019. Combined buckwheat D-fagomine and fish omega-3 PUFAs stabilize the populations of gut Prevotella and Bacteroides while reducing weight gain in rats. Nutrients 11 (11):2606. doi: 10.3390/nu11112606.
  • Hirayama, C., K. Konno, N. Wasano, and M. Nakamura. 2007. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: Enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochemistry and Molecular Biology 37 (12):1348–58. doi: 10.1016/j.ibmb.2007.09.001.
  • Hou, Y., X. Dan, M. Babbar, Y. Wei, S. G. Hasselbalch, D. L. Croteau, and V. A. Bohr. 2019. Ageing as a risk factor for neurodegenerative disease. Nature Reviews. Neurology 15 (10):565–81. doi: 10.1038/s41582-019-0244-7.
  • Hu, T. G., P. Wen, W. Z. Shen, F. Liu, Q. Li, E. N. Li, S. T. Liao, H. Wu, and Y. X. Zou. 2019. Effect of 1-deoxynojirimycin isolated from mulberry leaves on glucose metabolism and gut microbiota in a treptozotocin-induced diabetic mouse model. Journal of Natural Products 82 (8):2189–200. doi: 10.1021/acs.jnatprod.9b00205.
  • Hu, X. Q., K. Thakur, G. H. Chen, F. Hu, J. G. Zhang, H. B. Zhang, and Z. J. Wei. 2017. Metabolic effect of 1-deoxynojirimycin from mulberry leaves on db/db diabetic mice using liquid chromatography-mass spectrometry based metabolomics. Journal of Agricultural and Food Chemistry 65 (23):4658–67. doi: 10.1021/acs.jafc.7b01766.
  • Hu, X. Q., L. Jiang, J. G. Zhang, W. Deng, H. L. Wang, and Z. J. Wei. 2013. Quantitative determination of 1-deoxynojirimycin in mulberry leaves from 132 varieties. Industrial Crops and Products 49:782–4. doi: 10.1016/j.indcrop.2013.06.030.
  • Ikeda, K., P. Maretich, and S. Kajimura. 2018. The common and distinct features of brown and beige adipocytes. Trends in Endocrinology and Metabolism: TEM 29 (3):191–200. doi: 10.1016/j.tem.2018.01.001.
  • Jeong, J. H., N. K. Lee, S. H. Cho, D. Y. Jeong, and Y. S. Jeong. 2014. Enhancement of 1-deoxynojirimycin content and α-glucosidase inhibitory activity in mulberry leaf using various fermenting microorganisms isolated from Korean traditional fermented food. Biotechnology and Bioprocess Engineering 19 (6):1114–8. doi: 10.1007/s12257-014-0277-0.
  • Ji, T., J. Li, S. L. Su, Z. H. Zhu, S. Guo, D. W. Qian, and J. A. Duan. 2016. Identification and determination of the polyhydroxylated alkaloids compounds with α-glucosidase inhibitor activity in mulberry leaves of different origins. Molecules 21 (2):206. doi: 10.3390/molecules21020206.
  • Khurana, P., and V. G. Checker. 2011. The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Reports 30 (5):825–38. doi: 10.1007/s00299-011-1059-1.
  • Kim, J. W., S. U. Kim, H. S. Lee, I. Kim, M. Y. Ahn, and K. S. Ryu. 2003. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. Journal of Chromatography A 1002 (1–2):93–9. doi: 10.1016/S0021-9673(03)00728-3.
  • Kim, J. Y., H. J. Kwon, J. Y. Jung, H. Y. Kwon, J. G. Baek, Y. S. Kim, and O. Kwon. 2010. Comparison of absorption of 1-deoxynojirimycin from mulberry water extract in rats. Journal of Agricultural and Food Chemistry 58 (11):6666–71. doi: 10.1021/jf100322y.
  • Kim, J. Y., H. M. Ok, J. Kim, S. W. Park, S. W. Kwon, and O. Kwon. 2015. Mulberry leaf extract improves postprandial glucose response in prediabetic subjects: A randomized, double-blind placebo-controlled trial. Journal of Medicinal Food 18 (3):306–13. doi: 10.1089/jmf.2014.3160.
  • Kimura, M., F. J. Chen, N. Nakashima, I. Kimura, N. Asano, and S. Koya. 1995. Antihyperglycemic effects of N-containing sugars derived from Mulberry leaves in streptozocin-induced diabetic mice. Journal of Traditional Medicines 12:214–9.
  • Kimura, T., K. Nakagawa, H. Kubota, Y. Kojima, Y. Goto, K. Yamagishi, S. Oita, S. Oikawa, and T. Miyazawa. 2007. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. Journal of Agricultural and Food Chemistry 55 (14):5869–74. doi: 10.1021/jf062680g.
  • Kimura, T., K. Nakagawa, Y. Saito, K. Yamagishi, M. Suzuki, K. Yamaki, H. Shinmoto, and T. Miyazawa. 2004. Determination of 1-deoxynojirimycin in mulberry leaves using hydrophilic interaction chromatography with evaporative light scattering detection. Journal of Agricultural and Food Chemistry 52 (6):1415–8. doi: 10.1021/jf0306901.
  • Kishnani, P., M. Tarnopolsky, M. Roberts, K. Sivakumar, M. Dasouki, M. M. Dimachkie, E. Finanger, O. Goker-Alpan, K. A. Guter, T. Mozaffar, et al. 2017. Duvoglustat HCl increases systemic and tissue exposure of active acid α-glucosidase in Pompe patients co-administered with alglucosidase α. Molecular Therapy: The Journal of the American Society of Gene Therapy 25 (5):1199–208. doi: 10.1016/j.ymthe.2017.02.017.
  • Kojima, Y., T. Kimura, K. Nakagawa, A. Asai, K. Hasumi, S. Oikawa, and T. Miyazawa. 2010. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. Journal of Clinical Biochemistry and Nutrition 47 (2):155–61. doi: 10.3164/jcbn.10-53.
  • Kong, W. H., S. H. Oh, Y. R. Ahn, K. W. Kim, J. H. Kim, and S. W. Seo. 2008. Antiobesity effects and improvement of insulin sensitivity by 1-deoxynojirimycin in animal models. Journal of Agricultural and Food Chemistry 56 (8):2613–9. doi: 10.1021/jf073223i.
  • Konno, K., H. Ono, M. Nakamura, K. Tateishi, C. Hirayama, Y. Tamura, M. Hattori, A. Koyama, and K. Kohno. 2006. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proceedings of the National Academy of Sciences of the United States of America 103 (5):1337–41. doi: 10.1073/pnas.0506944103.
  • Korecka, A., A. Dona, S. Lahiri, A. J. Tett, M. Al-Asmakh, V. Braniste, R. D’Arienzo, A. Abbaspour, N. Reichardt, Y. Fujii-Kuriyama, et al. 2016. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms and Microbiomes 2:16014. doi: 10.1038/npjbiofilms.2016.14.
  • Koyama, M., and S. Sakamura. 1974. The structure of a new piperidine derivative from buckwheat seeds (Fagopyrum esculentum Moench). Agricultural and Biological Chemistry 38 (5):1111–2. doi: 10.1080/00021369.1974.10861295.
  • Kuriyama, C., O. Kamiyama, K. Ikeda, F. Sanae, A. Kato, I. Adachi, T. Imahori, H. Takahata, T. Okamoto, and N. Asano. 2008. In vitro inhibition of glycogen-degrading enzymes and glycosidases by six-membered sugar mimics and their evaluation in cell cultures. Bioorganic & Medicinal Chemistry 16 (15):7330–6. doi: 10.1016/j.bmc.2008.06.026.
  • Kwon, H. J., J. Y. Chung, J. Y. Kim, and O. Kwon. 2011. Comparison of 1-deoxynojirimycin and aqueous mulberry leaf extract with emphasis on postprandial hypoglycemic effects: In vivo and in vitro studies. Journal of Agricultural and Food Chemistry 59 (7):3014–9. doi: 10.1021/jf103463f.
  • Lee, S.-I., Y.-K. Lee, J.-K. Choi, S.-H. Yang, I.-A. Lee, J.-W. Suh, and S.-D. Kim. 2012. Quality characteristics and antioxidant activity of mulberry leaf tea fermented by Monascus pilosus. Journal of the Korean Society of Food Science and Nutrition 41 (5):706–13. doi: 10.3746/jkfn.2012.41.5.706.
  • Li, A. N., J. J. Chen, Q. Q. Li, G. Y. Zeng, Q. Y. Chen, J. L. Chen, Z. M. Liao, P. Jin, K. S. Wang, and Z. C. Yang. 2019. Alpha-glucosidase inhibitor 1-deoxynojirimycin promotes beige remodeling of 3T3-L1 preadipocytes via activating AMPK. Biochemical and Biophysical Research Communications 509 (4):1001–7. doi: 10.1016/j.bbrc.2019.01.023.
  • Li, Q., Y. Wang, Y. Dai, W. Shen, S. Liao, and Y. Zou. 2019. 1-Deoxynojirimycin modulates glucose homeostasis by regulating the combination of IR-GlUT4 and ADIPO-GLUT4 pathways in 3T3-L1 adipocytes. Molecular Biology Reports 46 (6):6277–85. doi: 10.1007/s11033-019-05069-y.
  • Li, Y. G., D. F. Ji, S. Zhong, T. B. Lin, and Z. Q. Lv. 2015. Hypoglycemic effect of deoxynojirimycin-polysaccharide on high fat diet and streptozotocin-induced diabetic mice via regulation of hepatic glucose metabolism. Chemico-Biological Interactions 225:70–9. doi: 10.1016/j.cbi.2014.11.003.
  • Li, Y. G., D. F. Ji, S. Zhong, T. B. Lin, Z. Q. Lv, G. Y. Hu, and X. Wang. 2013. 1-Deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Scientific Reports 3:1377. doi: 10.1038/srep01377.
  • Li, Y. G., D. F. Ji, S. Zhong, Z. Q. Lv, and T. B. Lin. 2013. Cooperative anti-diabetic effects of deoxynojirimycin-polysaccharide by ­inhibiting glucose absorption and modulating glucose metabolism in streptozotocin-induced diabetic mice. PLoS ONE 8 (6):e65892. doi: 10.1371/journal.pone.0065892.
  • Li, Y. G., D. F. Ji, S. Zhong, Z. Q. Lv, T. B. Lin, S. Chen, and G. Y. Hu. 2011. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. Journal of Ethnopharmacology 134 (3):961–70.
  • Li, Y., S. Zhong, J. Yu, Y. Sun, J. Zhu, D. Ji, and C. Wu. 2019. The mulberry-derived 1-deoxynojirimycin (DNJ) inhibits high-fat diet (HFD)-induced hypercholesteremia and modulates the gut microbiota in a gender-specific manner. Journal of Functional Foods 52:63–72. doi: 10.1016/j.jff.2018.10.034.
  • Li, Y., W. Xu, F. Zhang, S. Zhong, Y. Sun, J. Huo, J. Zhu, and C. Wu. 2020. The gut microbiota-produced indole-3-propionic acid confers the antihyperlipidemic effect of mulberry-derived 1-deoxynojirimycin. MSystems 5 (5):e00313–20. doi: 10.1128/mSystems.00313-20.
  • Liang, T., S. Liu, F. Wang, J. Gu, Y. Lu, W. Chen, C. Li, Y. Zheng, and G. Peng. 2018. A UPLC-MS/MS method for simultaneous determination of 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin in rat plasma and its application in pharmacokinetic and absolute bioavailability studies. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1072:205–10. doi: 10.1016/j.jchromb.2017.10.055.
  • Liu, C., C. H. Wang, J. Liu, L. Xu, W. Xiang, and Y. C. Wang. 2014. Optimization of microwave-assisted technology for extracting 1-deoxynojirimycin from mulberry tea by response surface methodology. Food Science and Technology Research 20 (3):599–605. doi: 10.3136/fstr.20.599.
  • Liu, C., W. Xiang, Y. Yu, Z. Q. Shi, X. Z. Huang, and L. Xu. 2015. Comparative analysis of 1-deoxynojirimycin contribution degree to α-glucosidase inhibitory activity and physiological distribution in Morus alba L. Industrial Crops and Products 70:309–15. doi: 10.1016/j.indcrop.2015.02.046.
  • Liu, H. Y., J. Wang, J. Ma, and Y. Q. Zhang. 2016. Interference effect of oral administration of mulberry branch bark powder on the incidence of type II diabetes in mice induced by streptozotocin. Food & Nutrition Research 60:31606. doi: 10.3402/fnr.v60.31606.
  • Liu, J., J. Wan, D. Wang, C. Wen, Y. Wei, and Z. Ouyang. 2020. Comparative transcriptome analysis of key reductase genes involved in the 1-deoxynojirimycin biosynthetic pathway in mulberry leaves and cloning, prokaryotic xxpression, and functional analysis of MaSDR1 and MaSDR2. Journal of Agricultural and Food Chemistry 68 (44):12345–57. doi: 10.1021/acs.jafc.0c04832.
  • Liu, Q., X. Li, C. Li, Y. Zheng, and G. Peng. 2015. 1-deoxynojirimycin alleviates insulin resistance via activation of insulin signaling PI3K/AKT pathway in skeletal muscle of db/db mice. Molecules (Basel, Switzerland) 20 (12):21700–14. doi: 10.3390/molecules201219794.
  • Liu, Q., X. Li, C. Li, Y. Zheng, F. Wang, H. Li, and G. Peng. 2016. 1-Deoxynojirimycin alleviates liver injury and improves hepatic glucose metabolism in db/db mice. Molecules (Basel, Switzerland) 21 (3):279. doi: 10.3390/molecules21030279.
  • Liu, S. X., J. L. Hua, and H. L. Li. 2011. Study on ultrasonic extraction of 1-deoxynojirimycin (DNJ) and polysaccharides from mulberry leaves. Advanced Materials Research 236–238:2759–64. doi: 10.4028/www.scientific.net/AMR.236-238.2759.
  • Liu, Y., Y. Hou, G. Wang, X. Zheng, and H. Hao. 2020. Gut microbial metabolites of aromatic amino acids as signals in Host-Microbe Interplay. Trends in Endocrinology and Metabolism: TEM 31 (11):818–34. doi: 10.1016/j.tem.2020.02.012.
  • Lou, D. S., F. M. Zou, H. Yan, and Z. Z. Gui. 2011. Factors influencing the biosynthesis of 1-deoxynojirimycin in Morus alba L. African Journal of Agricultural Research 6 (13):2998–3006.
  • Miyahara, C., M. Miyazawa, S. Satoh, A. Sakai, and S. Mizusaki. 2004. Inhibitory effects of mulberry leaf extract on postprandial hyperglycemia in normal rats. Journal of Nutritional Science and Vitaminology 50 (3):161–4. doi: 10.3177/jnsv.50.161.
  • Mohammad, S., and C. Thiemermann. 2020. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Frontiers in Immunology 11:594150. doi: 10.3389/fimmu.2020.594150.
  • Molinar-Toribio, E., J. Pérez-Jiménez, S. Ramos-Romero, L. Gómez, N. Taltavull, M. R. Nogués, A. Adeva, O. Jáuregui, J. Joglar, P. Clapés, et al. 2015. D-Fagomine attenuates metabolic alterations induced by a high-energy-dense diet in rats. Food & Function 6 (8):2614–9. doi: 10.1039/c5fo00591d.
  • Morrison, D. J., and T. Preston. 2016. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7 (3):189–200. doi: 10.1080/19490976.2015.1134082.
  • Murao, S., and S. Miyata. 1980. Isolation and characterization of a new trehalase inhibitor, S-GI. Agricultural and Biological Chemistry 44 (1):219–21.
  • Nakagawa, K., H. Kubota, T. Kimura, S. Yamashita, T. Tsuzuki, S. Oikawa, and T. Miyazawa. 2007. Occurrence of orally administered mulberry 1-deoxynojirimycin in rat plasma. Journal of Agricultural and Food Chemistry 55 (22):8928–33. doi: 10.1021/jf071559m.
  • Nakagawa, K., H. Kubota, T. Tsuzuki, J. Kariya, T. Kimura, S. Oikawa, and T. Miyazawa. 2008. Validation of an ion trap tandem mass spectrometric analysis of mulberry 1-deoxynojirimycin in human plasma: Application to pharmacokinetic studies. Bioscience, Biotechnology, and Biochemistry 72 (8):2210–3. doi: 10.1271/bbb.80200.
  • Nakagawa, K., K. Ogawa, O. Higuchi, T. Kimura, T. Miyazawa, and M. Hori. 2010. Determination of iminosugars in mulberry leaves and silkworms using hydrophilic interaction chromatography-tandem mass spectrometry. Analytical Biochemistry 404 (2):217–22. doi: 10.1016/j.ab.2010.05.007.
  • Nakanishi, H., S. Onose, E. Kitahara, S. Chumchuen, M. Takasaki, H. Konishi, and R. Kanekatsu. 2011. Effect of environmental conditions on the α-glucosidase inhibitory activity of mulberry leaves. Bioscience, Biotechnology, and Biochemistry 75 (12):2293–6. doi: 10.1271/bbb.110407.
  • Nojima, H., I. Kimura, F. J. Chen, Y. Sugihara, M. Haruno, A. Kato, and N. Asano. 1998. Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in streptozotocin-diabetic mice. Journal of Natural Products 61 (3):397–400.
  • Nuengchamnong, N., K. Ingkaninan, W. Kaewruang, S. Wongareonwanakij, and B. Hongthongdaeng. 2007. Quantitative determination of 1-deoxynojirimycin in mulberry leaves using liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 44 (4):853–8. doi: 10.1016/j.jpba.2007.03.031.
  • Ofek, I., and E. H. Beachey. 1978. Mannose binding and epithelial cell adherence of Escherichia coli. Infection and Immunity 22 (1):247–54. doi: 10.1128/iai.22.1.247-254.1978.
  • Ouyang, Z., and J. Chen. 2004. Determination of 1-deoxynojirimycin in Morus alba L. leaves in different Seasons. Food Science 25:211–3.
  • Parida, I. S., S. Takasu, J. Ito, R. Ikeda, K. Yamagishi, T. Kimura, T. Eitsuka, and K. Nakagawa. 2020. Supplementation of Bacillus amyloliquefaciens AS385 culture broth powder containing 1-deoxynojirimycin in a high-fat diet altered the gene expressions related to lipid metabolism and insulin signaling in mice epididymal white adipose tissue. Food & Function 11 (5):3926–40. doi: 10.1039/d0fo00271b.
  • Qiao, Y., M. Ito, T. Kimura, T. Ikeuchi, T. Takita, and K. Yasukawa. 2021. Inhibitory effect of Morus australis leaf extract and its component iminosugars on intestinal carbohydrate-digesting enzymes. Journal of Bioscience and Bioengineering 132 (3):226–33. doi: 10.1016/j.jbiosc.2021.05.005.
  • Ramos-Romero, S., E. Molinar-Toribio, L. Gómez, J. Pérez-Jiménez, M. Casado, P. Clapés, B. Piña, and J. L. Torres. 2014. Effect of (D)-fagomine on excreted Enterobacteria and weight gain in rats fed a high-fat high-sucrose diet. Obesity (Silver Spring, Md.) 22 (4):976–9. doi: 10.1002/oby.20640.
  • Ramos-Romero, S., M. Hereu, L. Atienza, J. Casas, N. Taltavull, M. Romeu, S. Amézqueta, G. Dasilva, I. Medina, and J. L. Torres. 2018. Functional effects of the buckwheat iminosugar D-fagomine on rats with diet-induced prediabetes. Molecular Nutrition & Food Research 62 (16):1800373. doi: 10.1002/mnfr.201800373.
  • Ramya, V., U. Nidoni, S. Hiregoudar, C. T. Ramachandra, J. Ashoka, and V. Lavanya. 2016. Process optimization of supercritical carbon dioxide (SC-CO2) extraction parameters for extraction of deoxynojirimycin (1-DNJ) from mulberry (Morus alba L.) leaves. Journal of Applied and Natural Science 8 (1):405–11. doi: 10.31018/jans.v8i1.807.
  • Robinson, R. 1917. LXXV-A theory of the mechanism of the phytochemical synthesis of certain alkaloids. Journal of the Chemical Society, Transactions 111:876–99. doi: 10.1039/CT9171100876.
  • Rodríguez-Sánchez, S.,J. E. Quintanilla-López,A. C. Soria, andM. L. Sanz. 2014. Evaluation of different hydrophilic stationary phases for the simultaneous determination of iminosugars and other low molecular weight carbohydrates in vegetable extracts by liquid chromatography tandem mass spectrometry. Journal of Chromatography. A 1372C:81–90. doi:10.1016/j.chroma.2014.10.079.
  • Rodríguez-Sánchez, S., L. Ruiz-Aceituno, M. L. Sanz, and A. C. Soria. 2013. New methodologies for the extraction and fractionation of bioactive carbohydrates from mulberry (Morus alba) leaves. Journal of Agricultural and Food Chemistry 61 (19):4539–45. doi: 10.1021/jf305049k.
  • Rodríguez-Sánchez, S., O. Hernández-Hernández, A. I. Ruiz-Matute, and M. L. Sanz. 2011. A derivatization procedure for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates by GC-MS in mulberry (Morus sp.). Food Chemistry 126 (1):353–9. doi: 10.1016/j.foodchem.2010.10.097.
  • Ryu, I. H., and T. O. Kwon. 2012. Enhancement of piperidine alkaloid contents by lactic acid fermentation of mulberry leaves (Morus alba L.). Korean Journal of Medicinal Crop Science 20 (6):472–8. doi: 10.7783/KJMCS.2012.20.6.472.
  • Sánchez-Salcedo, E. M., P. Mena, C. García-Viguera, F. Hernández, and J. J. Martínez. 2015. (Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. Journal of Functional Foods 18:1039–46. doi: 10.1016/j.jff.2015.03.053.
  • Sanna, S., N. R. van Zuydam, A. Mahajan, A. Kurilshikov, A. Vich Vila, U. Võsa, Z. Mujagic, A. A. M. Masclee, D. M. A. E. Jonkers, M. Oosting, et al. 2019. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics 51 (4):600–5.
  • Scofield, A. M., L. E. Fellows, R. J. Nash, and G. W. J. Fleet. 1986. Inhibition of mammalian digestive disaccharidases by polyhydroxy alkaloids. Life Sciences 39 (7):645–50. doi: 10.1016/0024-3205(86)90046-9.
  • Shibano, M., T. Daisuke, Y. Tanaka, A. Masuda, S. Orihara, M. Yasuda, and G. Kusano. 2001. Determination of 1-deoxynojirimycin and 2,5-dihydroxymethyl 3,4-dihydroxypyrrolidine contents of Commelina communis var. hortensis and the antihyperglycemic activity. Natural Medicines 55 (5):251–4.
  • Shibano, M., Y. Fujimoto, K. Kushino, G. Kusano, and K. Baba. 2004. Biosynthesis of 1-deoxynojirimycin in Commelina communis: A difference between the microorganisms and plants. Phytochemistry 65 (19):2661–5. doi: 10.1016/j.phytochem.2004.08.013.
  • Shiffman, D., J. Z. Louie, M. P. Caulfield, P. M. Nilsson, J. J. Devlin, and O. Melander. 2017. LDL subfractions are associated with incident cardiovascular disease in the Malmö Prevention Project Study. Atherosclerosis 263:287–92. doi: 10.1016/j.atherosclerosis.2017.07.003.
  • Shuang, E., R. Kijima, T. Honma, K. Yamamoto, Y. Hatakeyama, Y. Kitano, T. Kimura, K. Nakagawa, T. Miyazawa, and T. Tsuduki. 2014. 1-Deoxynojirimycin attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells. Experimental Gerontology 55:63–9. doi: 10.1016/j.exger.2014.03.025.
  • Singh, A. M., L. Zhang, J. Avery, A. Yin, Y. Du, H. Wang, Z. Li, H. Fu, H. Yin, and S. Dalton. 2020. Human beige adipocytes for drug discovery and cell therapy in metabolic diseases. Nature Communications 11 (1):2758. doi: 10.1038/s41467-020-16340-3.
  • Sugiyama, M., M. Takahashi, T. Katsube, A. Koyama, and H. Itamura. 2016. Effects of applied nitrogen amounts on the functional components of mulberry (Morus alba L.) leaves. Journal of Agricultural and Food Chemistry 64 (37):6923–9. doi: 10.1021/acs.jafc.6b01922.
  • Sugiyama, M., T. Katsube, A. Koyama, and H. Itamura. 2013. Varietal differences in the flavonol content of mulberry (Morus spp.) leaves and genetic analysis of quercetin 3-(6-malonylglucoside) for component breeding. Journal of Agricultural and Food Chemistry 61 (38):9140–7. doi: 10.1021/jf403136w.
  • Sugiyama, M., T. Katsube, A. Koyama, and H. Itamura. 2016. Effect of solar radiation on the functional components of mulberry (Morus alba L.) leaves. Journal of the Science of Food and Agriculture 96 (11):3915–21. doi: 10.1002/jsfa.7614.
  • Sugiyama, M., T. Katsube, A. Koyama, and H. Itamura. 2017. Seasonal changes in functional component contents in mulberry (Morus alba L.) leaves. The Horticulture Journal 86 (4):534–42. doi: 10.2503/hortj.OKD-053.
  • Sun, S. G., R. Y. Chen, and D. Q. Yu. 2001. Structures of two new benzofuran derivatives from the bark of Mulberry tree (Morus macroura Miq.). Journal of Asian Natural Products Research 3 (4):253–9. doi: 10.1080/10286020108040364.
  • Sun, Z., H. Zhao, and Z. Liu. 2019. Preparation of 1-deoxynojirimycin controlled release matrix pellets of capsules and evaluation in vitro-in vivo to enhance bioavailability. Journal of Drug Delivery Science and Technology 52:477–87. doi: 10.1016/j.jddst.2019.05.015.
  • Sun, Z., S. Yuan, H. Zhao, Z. Wang, and Z. Liu. 2017. Preparation and evaluation of 1-deoxynojirimycin sustained-release pellets vs conventional immediate-release tablets. Journal of Microencapsulation 34 (3):293–8. doi: 10.1080/02652048.2017.1321694.
  • Takasu, S., I. S. Parida, J. Ito, Y. Kojima, T. Eitsuka, T. Kimura, and K. Nakagawa. 2020. Intestinal absorption and tissue distribution of Aza-sugars from mulberry leaves and evaluation of their transport by sugar transporters. Journal of Agricultural and Food Chemistry 68 (24):6656–63. doi: 10.1021/acs.jafc.0c03005.
  • Takasu, S., I. S. Parida, S. Onose, J. Ito, R. Ikeda, K. Yamagishi, O. Higuchi, F. Tanaka, T. Kimura, T. Miyazawa, et al. 2018. Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin. PLoS One 13 (6):e0199057. doi: 10.1371/journal.pone.0199057.
  • Tchabo, W., Y. Ma, G. K. Kaptso, E. Kwaw, R. W. Cheno, L. Xiao, R. Osae, M. Wu, and M. Farooq. 2019. Process analysis of mulberry (Morus alba) leaf extract encapsulation: Effects of spray drying conditions on bioactive encapsulated powder quality. Food and Bioprocess Technology 12 (1):122–46. doi: 10.1007/s11947-018-2194-2.
  • Thaipitakwong, T., O. Supasyndh, Y. Rasmi, and P. Aramwit. 2020. A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complementary Therapies in Medicine 49 (102292):102292.
  • Tomar, P. C., N. Lakra, and S. N. Mishra. 2013. Cadaverine: A lysine catabolite involved in plant growth and development. Plant Signaling & Behavior 8 (10):e25850. doi: 10.4161/psb.25850.
  • Trøseid, M., T. K. Nestvold, K. Rudi, H. Thoresen, E. W. Nielsen, and K. T. Lappegård. 2013. Plasma lipopolysaccharide is closely associated with glycemic control and abdominal obesity: Evidence from bariatric surgery. Diabetes Care 36 (11):3627–32. doi: 10.2337/dc13-0451.
  • Tsuduki, T., I. Kikuchi, T. Kimura, K. Nakagawa, and T. Miyazawa. 2013. Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Food Chemistry 139 (1–4):16–23. doi: 10.1016/j.foodchem.2013.02.025.
  • Tsuduki, T., Y. Nakamura, T. Honma, K. Nakagawa, T. Kimura, I. Ikeda, and T. Miyazawa. 2009. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the beta-oxidation system in rat liver. Journal of Agricultural and Food Chemistry 57 (22):11024–9. doi: 10.1021/jf903132r.
  • Vichasilp, C., K. Nakagawa, P. Sookwong, O. Higuchi, F. Kimura, and T. Miyazawa. 2012a. A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chemistry 134 (4):1823–30. doi: 10.1016/j.foodchem.2012.03.086.
  • Vichasilp, C., K. Nakagawa, P. Sookwong, O. Higuchi, S. Luemunkong, and T. Miyazawa. 2012b. Development of high 1-deoxynojirimycin (DNJ) content mulberry tea and use of response surface methodology to optimize tea-making conditions for highest DNJ extraction. LWT - Food Science and Technology 45 (2):226–32. doi: 10.1016/j.lwt.2011.09.008.
  • Vichasilp, C., K. Nakagawa, P. Sookwong, Y. Suzuki, F. Kimura, O. Higuchi, and T. Miyazawa. 2009. Optimization of 1-deoxynojirimycin extraction from mulberry leaves by using response surface methodology. Bioscience, Biotechnology, and Biochemistry 73 (12):2684–9. doi: 10.1271/bbb.90543.
  • Wang, D., L. Zhao, D. Wang, J. Liu, X. Yu, Y. Wei, and Z. Ouyang. 2018. Transcriptome analysis and identification of key genes involved in 1-deoxynojirimycin biosynthesis of mulberry (Morus alba L.). PeerJ. 6:e5443. doi: 10.7717/peerj.5443.
  • Wang, D., L. Zhao, J. Jiang, J. Liu, D. Wang, X. Yu, Y. Wei, and Z. Ouyang. 2018. Cloning, expression, and functional analysis of lysine decarboxylase in mulberry (Morus alba L.). Protein Expression and Purification 151:30–7. doi: 10.1016/j.pep.2018.06.004.
  • Wang, G. Q., L. Zhu, M. L. Ma, X. C. Chen, Y. Gao, T. Y. Yu, G. S. Yang, and W. J. Pang. 2015. Mulberry 1-deoxynojirimycin inhibits adipogenesis by repression of the ERK/PPARγ signaling pathway in porcine intramuscular adipocytes. Journal of Agricultural and Food Chemistry 63 (27):6212–20. doi: 10.1021/acs.jafc.5b01680.
  • Wang, R., Y. Li, W. Mu, Z. Li, J. Sun, B. Wang, Z. Zhong, X. Luo, C. Xie, and Y. Huang. 2018. Mulberry leaf extract reduces the glycemic indexes of four common dietary carbohydrates. Medicine 97 (34):e11996. doi: 10.1097/MD.0000000000011996.
  • Wang, T., C. Q. Li, H. Zhang, and J. W. Li. 2014. Response surface optimized extraction of 1-deoxynojirimycin from mulberry leaves (Morus alba L.) and preparative separation with resins. Molecules (Basel, Switzerland) 19 (6):7040–56. doi: 10.3390/molecules19067040.
  • Wu, H., W. Zeng, L. Chen, B. Yu, Y. Guo, G. Chen, and Z. Liang. 2018. Integrated multi-spectroscopic and molecular docking techniques to probe the interaction mechanism between maltase and 1-deoxynojirimycin, an α-glucosidase inhibitor. International Journal of Biological Macromolecules 114:1194–202.
  • Xiao, B. X., Q. Wang, L. Q. Fan, L. T. Kong, S. R. Guo, and Q. Chang. 2014. Pharmacokinetic mechanism of enhancement by Radix Pueraria flavonoids on the hyperglycemic effects of Cortex Mori extract in rats. Journal of Ethnopharmacology 151 (2):846–51. doi: 10.1016/j.jep.2013.11.038.
  • Xu, B., D. Y. Zhang, Z. Y. Liu, Y. Zhang, L. Liu, L. Li, C. C. Liu, and G. H. Wu. 2015. Rapid determination of 1-deoxynojirimycin in Morus alba L. leaves by direct analysis in real time (DART) mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 114:447–54. doi: 10.1016/j.jpba.2015.06.010.
  • Yang, S., J. Mi, Z. Liu, B. Wang, X. Xia, R. Wang, Y. Liu, and Y. Li. 2017. Pharmacokinetics, tissue distribution, and elimination of three active alkaloids in rats after oral administration of the effective fraction of alkaloids from Ramulus mori, an innovative hypoglycemic agent. Molecules 22 (10):1616. doi: 10.3390/molecules22101616.
  • Yatsunami, K., M. Ichida, and S. Onodera. 2007. The relationship between 1-deoxynojirimycin content and alpha-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (Morus spp.) in Kyoto, Japan. Journal of Natural Medicines 62 (1):63–6. doi: 10.1007/s11418-007-0185-0.
  • Ye, E. J., and M. J. Bae. 2010. Comparison of components between mulberry leaf tea and fermented mulberry leaf tea. Journal of the Korean Society of Food Science and Nutrition 39 (3):421–7. doi: 10.3746/jkfn.2010.39.3.421.
  • Yoshihashi, T., H. T. T. Do, P. Tungtrakul, S. Boonbumrung, and K. Yamaki. 2010. Simple, selective, and rapid quantification of 1-deoxynojirimycin in mulberry leaf products by high-performance anion-exchange chromatography with pulsed amperometric detection. Journal of Food Science 75 (3):C246–250. doi: 10.1111/j.1750-3841.2010.01528.x.
  • Yoshikuni, Y. 1988. Inhibition of intestinal α-glucosidase activity and postprandial hyperglycemia by moranoline and its N-alkyl derivatives. Agricultural and Biological Chemistry 52 (1):121–8. doi: 10.1271/bbb1961.52.121.
  • Zheng, J., L. Zhu, B. Hu, X. Zou, H. Hu, Z. Zhang, N. Jiang, J. Ma, H. Yang, and H. Liu. 2019. 1-Deoxynojirimycin improves high fat diet-induced nonalcoholic steatohepatitis by restoring gut dysbiosis. The Journal of Nutritional Biochemistry 71:16–26. doi: 10.1016/j.jnutbio.2019.05.013.
  • Zhu, W., Z. Zhong, S. Liu, B. Yang, S. Komatsu, Z. Ge, and J. Tian. 2019. Organ-specific analysis of Morus alba using a gel-free/label-free proteomic technique. International Journal of Molecular Sciences 20 (2):365. doi: 10.3390/ijms20020365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.