1,214
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications

, ORCID Icon &

References

  • Affandi, M. M. R. M., T. Julianto, and A. Majeed. 2012. Enhanced oral bioavailability of astaxanthin with droplet size reduction. Food Science and Technology Research 18 (4):549–54. doi: 10.3136/fstr.18.549.
  • Ajeeshkumar, K. K., P. A. Aneesh, N. Raju, M. Suseela, C. N. Ravishankar, and S. Benjakul. 2021. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1280–306. doi: 10.1111/1541-4337.12725.
  • Alarcón-Alarcón, C., M. Inostroza-Riquelme, C. Torres-Gallegos, C. Araya, M. Miranda, J. C. Sánchez-Caamaño, I. Moreno-Villoslada, and F. A. Oyarzun-Ampuero. 2018. Protection of astaxanthin from photodegradation by its inclusion in hierarchically assembled nano and microstructures with potential as food. Food Hydrocolloids 83:36–44. doi: 10.1016/j.foodhyd.2018.04.033.
  • Alavi, M., N. Karimi, and M. Safaei. 2017. Application of various types of liposomes in drug delivery systems. Advanced Pharmaceutical Bulletin 7 (1):3–9. doi: 10.15171/apb.2017.002.
  • Al-Tarifi, B. Y., A. Mahmood, S. Assaw, and H. I. Sheikh. 2020. Application of astaxanthin and its lipid stability in bakery product. Current Research in Nutrition and Food Science Journal 8 (3):962–74. doi: 10.12944/CRNFSJ.8.3.24.
  • Anarjan, N., H. Jafarizadeh Malmiri, T. C. Ling, and C. P. Tan. 2014. Effects of pH, ions, and thermal treatments on physical stability of astaxanthin nanodispersions. International Journal of Food Properties 17 (4):937–47. doi: 10.1080/10942912.2012.685680.
  • Anarjan, N., H. Mirhosseini, B. S. Baharin, and C. P. Tan. 2010. Effect of processing conditions on physicochemical properties of ­astaxanthin nanodispersions. Food Chemistry 123 (2):477–83. doi: 10.1016/j.foodchem.2010.05.036.
  • Anarjan, N., H. Mirhosseini, B. S. Baharin, and C. P. Tan. 2011. Effect of processing conditions on physicochemical properties of sodium caseinate-stabilized astaxanthin nanodispersions. LWT - Food Science and Technology 44 (7):1658–65. doi: 10.1016/j.lwt.2011.01.013.
  • Anarjan, N., and C. P. Tan. 2013a. Chemical stability of astaxanthin nanodispersions in orange juice and skimmed milk as model food systems. Food Chemistry 139 (1–4):527–31. doi: 10.1016/j.foodchem.2013.01.012.
  • Anarjan, N., and C. P. Tan. 2013b. Developing a three component stabilizer system for producing astaxanthin nanodispersions. Food Hydrocolloids 30 (1):437–47. doi: 10.1016/j.foodhyd.2012.07.002.
  • Anarjan, N., and C. P. Tan. 2013c. Physico-chemical stability of astaxanthin nanodispersions prepared with polysaccharides as stabilizing agents. International Journal of Food Sciences and Nutrition 64 (6):744–8. doi: 10.3109/09637486.2013.783001.
  • Anarjan, N., and C. P. Tan. 2013d. Effects of storage temperature, atmosphere and light on chemical stability of astaxanthin nanodispersions. Journal of the American Oil Chemists’ Society 90 (8):1223–7. doi: 10.1007/s11746-013-2270-8.
  • Anarjan, N., C. P. Tan, T. C. Ling, K. L. Lye, H. J. Malmiri, I. A. Nehdi, Y. K. Cheah, H. Mirhosseini, and B. S. Baharin. 2011. Effect of organic-phase solvents on physicochemical properties and cellular uptake of astaxanthin nanodispersions. Journal of Agricultural and Food Chemistry 59 (16):8733–41. doi: 10.1021/jf201314u.
  • Anarjan, N., C. P. Tan, I. A. Nehdi, and T. C. Ling. 2012. Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food Chemistry 135 (3):1303–9. doi: 10.1016/j.foodchem.2012.05.091.
  • Bassijeh, A., S. Ansari, and S. M. H. Hosseini. 2020. Astaxanthin encapsulation in multilayer emulsions stabilized by complex coacervates of whey protein isolate and Persian gum and its use as a natural colorant in a model beverage. Food Research International 137:109689. doi: 10.1016/j.foodres.2020.109689.
  • Boonlao, N., S. Shrestha, M. B. Sadiq, and A. K. Anal. 2020. Influence of whey protein-xanthan gum stabilized emulsion on stability and in vitro digestibility of encapsulated astaxanthin. Journal of Food Engineering 272:109859. doi: 10.1016/j.jfoodeng.2019.109859.
  • Burgos-Díaz, C., M. Opazo-Navarrete, M. Soto-Añual, F. Leal-Calderón, and M. Bustamante. 2020. Food-grade Pickering emulsion as a novel astaxanthin encapsulation system for making powder-based products: Evaluation of astaxanthin stability during processing, storage, and its bioaccessibility. Food Research International (Ottawa, ON) 134:109244. doi: 10.1016/j.foodres.2020.109244.
  • Bustamante, A., L. Masson, J. Velasco, J. M. Del Valle, and P. Robert. 2016. Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha-tocopherol. Food Chemistry 190:1013–21. doi: 10.1016/j.foodchem.2015.06.062.
  • Bustos-Garza, C., J. Yáñez-Fernández, and B. E. Barragán-Huerta. 2013. Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Research International 54 (1):641–9. doi: 10.1016/j.foodres.2013.07.061.
  • Che, H., Q. Li, T. Zhang, D. Wang, L. Yang, J. Xu, T. Yanagita, C. Xue, Y. Chang, and Y. Wang. 2018. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer’s disease in APP/PS1 double-transgenic mice. Journal of Agricultural and Food Chemistry 66 (19):4948–57. doi: 10.1021/acs.jafc.8b00988.
  • Chen, Z., G. Shu, N. Taarji, C. J. Barrow, M. Nakajima, N. Khalid, and M. A. Neves. 2018. Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: Insights of formulation, stability and release properties. Food Chemistry 261:322–8. doi: 10.1016/j.foodchem.2018.04.054.
  • Ciapara, I. H., L. F. Valenzuela, F. M. G. Valenci, and A. M. A. Minal. 2002. Method of preparing chitosan microcapsules of astaxanthin and product thus obtained. WO2004021798A1, filed September 3, 2002, and issued March 18, 2004.
  • Darachai, P., M. Limpawattana, M. Hawangjoo, and W. Klaypradit. 2019. Effects of shrimp waste types and their cooking on properties of extracted astaxanthin and its characteristics in liposomes. Journal of Food and Nutrition Research 7 (7):530–6. doi: 10.12691/jfnr-7-7-7.
  • Davidov-Pardo, G., C. E. Gumus, and D. J. McClements. 2016. Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chemistry 196:821–7. doi: 10.1016/j.foodchem.2015.10.018.
  • Dopierała, K., K. Karwowska, A. D. Petelska, and K. Prochaska. 2020. Thermodynamic, viscoelastic and electrical properties of lipid membranes in the presence of astaxanthin. Biophysical Chemistry 258:106318. doi: 10.1016/j.bpc.2019.106318.
  • Edelman, R., S. Engelberg, L. Fahoum, E. G. Meyron-Holtz, and Y. D. Livney. 2019. Potato protein-based carriers for enhancing bioavailability of astaxanthin. Food Hydrocolloids 96:72–80. doi: 10.1016/j.foodhyd.2019.04.058.
  • Ekpe, L., K. Inaku, and V. Ekpe. 2018. Antioxidant effects of astaxanthin in various diseases—a review. Journal of Molecular Pathophysiology 7 (1):1. doi: 10.5455/jmp.20180627120817.
  • El-Agamy, S. E., A. K. Abdel-Aziz, S. Wahdan, A. Esmat, and S. S. Azab. 2018. Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: Impact on oxidative, inflammatory, and apoptotic Machineries. Molecular Neurobiology 55 (7):5727–40. doi: 10.1007/s12035-017-0797-7.
  • Evans, D. A., and M. Rabie. 2006. Algal and algal extract dietary supplement composition. US20080124391A1, filed November 28,2006, and issued May 29, 2008.
  • Fakhri, S., F. Abbaszadeh, L. Dargahi, and M. Jorjani. 2018. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological Research 136:1–20. doi: 10.1016/j.phrs.2018.08.012.
  • Fang, S., X. Zhao, Y. Liu, X. Liang, and Y. Yang. 2019. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocolloids 93:102–10. doi: 10.1016/j.foodhyd.2019.02.024.
  • Farruggia, C., M. Kim, M. Bae, Y. Lee, T. Pham, Y. Yang, M. Han, Y. Park, and J. Lee. 2018. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. The Journal of Nutritional Biochemistry 62:202–9. doi: 10.1016/j.jnutbio.2018.09.005.
  • Fathi, M., M. R. Mozafari, and M. Mohebbi. 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology 23 (1):13–27. doi: 10.1016/j.tifs.2011.08.003.
  • Geng, Q., Y. Zhao, L. Wang, L. Xu, X. Chen, and J. Han. 2020. Development and evaluation of astaxanthin as nanostructure lipid carriers in topical delivery. Aaps Pharmscitech 21 (8):318. doi: 10.1208/s12249-020-01822-w.
  • Gomez-Estaca, J., T. A. Comunian, P. Montero, R. Ferro-Furtado, and C. S. Favaro-Trindade. 2016. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin-cashew gum complex. Food Hydrocolloids 61:155–62. doi: 10.1016/j.foodhyd.2016.05.005.
  • Guan, L., J. Liu, H. Yu, H. Tian, G. Wu, B. Liu, P. Dong, J. Li, and X. Liang. 2019. Water-dispersible astaxanthin-rich nanopowder: Preparation, oral safety and antioxidant activity in vivo. Food Function 10 (3):1386–97. doi: 10.1039/c8fo01593g.
  • Gulzar, S., and S. Benjakul. 2020. Characteristics and storage stability of nanoliposomes loaded with shrimp oil as affected by ultrasonication and microfluidization. Food Chemistry 310:125916. doi: 10.1016/j.foodchem.2019.125916.
  • Higuera-Ciapara, I., L. Felix-Valenzuela, F. M. Goycoolea, and W. Argüelles-Monal. 2004. Microencapsulation of astaxanthin in a chitosan matrix. Carbohydrate Polymers 56 (1):41–5. doi: 10.1016/j.carbpol.2003.11.012.
  • Hu, Q., S. Hu, E. Fleming, J. Lee, and Y. Luo. 2020. Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. International Journal of Biological Macromolecules 151:747–56. doi: 10.1016/j.ijbiomac.2020.02.170.
  • Huang, J., W. Xie, L. Liu, Y. Song, F. Pan, H. Bai, T. Pan, Y. Lv, J. Chen, J. Shi, et al. 2021. Nanostructured lipid carriers in alginate microgels for the delivery of astaxanthin. European Journal of Lipid Science and Technology 123 (2):2000191. doi: 10.1002/ejlt.202000191.
  • Jiang, G., and M. Zhu. 2019. Preparation of astaxanthin-encapsulated complex with zein and oligochitosan and its application in food processing. LWT - Food Science and Technology 106:179–85. doi: 10.1016/j.lwt.2019.02.055.
  • Kaga, K., M. Honda, T. Adachi, M. Honjo, Wahyudiono, H. Kanda, and M. Goto. 2018. Nanoparticle formation of PVP/astaxanthin inclusion complex by solution-enhanced dispersion by supercritical fluids (SEDS): Effect of PVP and astaxanthin Z-isomer content. The Journal of Supercritical Fluids 136:44–51. doi: 10.1016/j.supflu.2018.02.008.
  • Khalid, N., G. Shu, B. J. Holland, I. Kobayashi, M. Nakajima, and C. J. Barrow. 2017. Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin. Food Research International (Ottawa, ON) 102:364–71. doi: 10.1016/j.foodres.2017.06.019.
  • Khalid, N., G. Shu, I. Kobayashi, M. Nakajima, and C. J. Barrow. 2017. Formulation and characterization of monodisperse O/W emulsions encapsulating astaxanthin extracts using microchannel emulsification: Insights of formulation and stability evaluation. Colloids and Surfaces B: Biointerfaces 157:355–65. doi: 10.1016/j.colsurfb.2017.06.003.
  • Langdon, C., A. Nordgreen, M. Hawkyard, and K. Hamre. 2008. Evaluation of wax spray beads for delivery of low-molecular weight, water-soluble nutrients and antibiotics to Artemia. Aquaculture 284 (1–4):151–8. doi: 10.1016/j.aquaculture.2008.07.032.
  • Liang, H., M. Li, and Q. Yuan. 2014. Solid lipid nanometer particle for astaxanthin and preparation method of solid lipid nanometer particle. CN104257632A, filed Octubre 24, 2014, and issued January 7, 2015.
  • Liu, Y., L. Huang, D. Li, Y. Wang, Z. Chen, C. Zou, W. Liu, Y. Ma, M. Cao, and G. Liu. 2020. Re-assembled oleic acid-protein complexes as nano-vehicles for astaxanthin: Multispectral analysis and molecular docking. Food Hydrocolloids 103:105689. doi: 10.1016/j.foodhyd.2020.105689.
  • Liu, G., M. Hu, Z. Zhao, Q. Lin, D. Wei, and Y. Jiang. 2019. Enhancing the stability of astaxanthin by encapsulation in poly (l-lactic acid) microspheres using a supercritical anti-solvent process. Particuology 44:54–62. doi: 10.1016/j.partic.2018.04.006.
  • Liu, X., D. J. McClements, Y. Cao, and H. Xiao. 2016. Chemical and physical stability of astaxanthin-enriched emulsion-based delivery Systems. Food Biophysics 11 (3):302–10. doi: 10.1007/s11483-016-9443-6.
  • Liu, C., Y. Tan, Y. Xu, D. J. McCleiments, and D. Wang. 2019. Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems. International Journal of Biological Macromolecules 140:985–97. doi: 10.1016/j.ijbiomac.2019.08.071.
  • Liu, Y., and N. J. Tuckerton. 2014. Pharmaceutical composition containing lutein and antioxidant for treating and preventing human disease. US20150320699A1, filed May 8, 2014, and issued Novermber 12, 2015.
  • Liu, X., R. Zhang, D. J. McClements, F. Li, H. Liu, Y. Cao, and H. Xiao. 2018. Nanoemulsion-based delivery systems for nutraceuticals: Influence of long-chain triglyceride (LCT) type on in vitro digestion and astaxanthin bioaccessibility. Food Biophysics 13 (4):412–21. doi: 10.1007/s11483-018-9547-2.
  • Liu, Z., Y. Zhou, L. Wang, Z. Ye, L. Liu, J. Cheng, F. Wang, A. El-Din Bekhit, and R. M. Aadil. 2021. Multi-spectroscopies and molecular docking insights into the interaction mechanism and antioxidant activity of astaxanthin and β-lactoglobulin nanodispersions. Food Hydrocolloids 117:106739. doi: 10.1016/j.foodhyd.2021.106739.
  • Li, M., M. R. Zahi, Q. Yuan, F. Tian, and H. Liang. 2016. Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. European Journal of Lipid Science and Technology 118 (4):592–602. doi: 10.1002/ejlt.201400650.
  • Li, P., S. Zhang, K. Gu, and N. Zhang. 2018. Preparation of astaxanthin-loaded liposomes: Characterization, storage stability and antioxidant activity. CyTA - Journal of Food 16 (1):607–18. doi: 10.1080/19476337.2018.1437080.
  • Lu, Q., H. Li, Y. Zou, H. Liu, and L. Yang. 2021. Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. Algal Research 54:102178. doi: 10.1016/j.algal.2020.102178.
  • McClements, D. J. 2010. Design of nano-laminated coatings to control bioavailability of lipophilic food components. Journal of Food Science 75 (1):R30–R42. doi: 10.1111/j.1750-3841.2009.01452.x.
  • Mezquita, P. C., B. E. Barragán-Huerta, J. P. Ramírez, and C. O. Hinojosa. 2014. Stability of astaxanthin in yogurt used to simulate apricot color, under refrigeration. Food Science and Technology (Campinas) 34 (3):559–65. doi: 10.1590/1678-457x.6386.
  • Mezzomo, N., E. D. Paz, M. Maraschin, Á. Martín, M. J. Cocero, and S. R. S. Ferreira. 2012. Supercritical anti-solvent precipitation of carotenoid fraction from pink shrimp residue: Effect of operational conditions on encapsulation efficiency. The Journal of Supercritical Fluids 66:342–9. doi: 10.1016/j.supflu.2011.08.006.
  • Morales, E., C. Burgos-Díaz, R. N. Zúñiga, J. Jorkowski, M. Quilaqueo, and M. Rubilar. 2021. Influence of O/W emulsion interfacial ionic membranes on the encapsulation efficiency and storage stability of powder microencapsulated astaxanthin. Food and Bioproducts Processing 126:143–54. doi: 10.1016/j.fbp.2020.12.014.
  • Niizawa, I., B. Y. Espinaco, S. E. Zorrilla, and G. A. Sihufe. 2019. Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads. International Journal of Biological Macromolecules 121:601–8. doi: 10.1016/j.ijbiomac.2018.10.044.
  • Oh, H., J. S. Lee, D. Sung, J. Lim, and W. I. Choi. 2020. Potential antioxidant and wound healing effect of nano-liposol with high loading amount of astaxanthin. International Journal of Nanomedicine 15:9231–40. doi: 10.2147/IJN.S272650.
  • Pan, L., H. Wang, and K. Gu. 2018. Nanoliposomes as vehicles for astaxanthin: Characterization, in vitro release evaluation and structure. Molecules 23 (11):2822. doi: 10.3390/molecules23112822.
  • Peng, C., C. Chang, R. Y. Peng, and C. Chyau. 2010. Improved membrane transport of astaxanthine by liposomal encapsulation. European Journal of Pharmaceutics and Biopharmaceutics 75 (2):154–61. doi: 10.1016/j.ejpb.2010.03.004.
  • Qiang, M., X. Pang, D. Ma, C. Ma, and F. Liu. 2020. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes. Molecules 25 (3):610. doi: 10.3390/molecules25030610.
  • Qiao, X., L. Yang, J. Gu, Y. Cao, Z. Li, J. Xu, and C. Xue. 2021. Kinetic interactions of nanocomplexes between astaxanthin esters with different molecular structures and β-lactoglobulin. Food Chemistry 335:127633. doi: 10.1016/j.foodchem.2020.127633.
  • Rostamabadi, H., S. R. Falsafi, and S. M. Jafari. 2019. Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release: Official Journal of the Controlled Release Society 298:38–67. doi: 10.1016/j.jconrel.2019.02.005.
  • Salatti-Dorado, J., D. García-Gómez, V. Rodriguez-Ruiz, V. Gueguen, G. Pavon-Djavid, and S. Rubio. 2019. Multifunctional green supramolecular solvents for cost-effective production of highly stable astaxanthin-rich formulations from Haematococcus pluvialis. Food Chemistry 279:294–302. doi: 10.1016/j.foodchem.2018.11.132.
  • Salvia-Trujillo, L., M. Artiga-Artigas, A. Molet-Rodríguez, A. Turmo-Ibarz, and O. Martín-Belloso. 2018. Emulsion-based nanostructures for the delivery of active ingredients in foods. Frontiers in Sustainable Food Systems 2: 79. doi: 10.3389/fsufs.2018.00079.
  • Sangsuriyawong, A., M. Limpawattana, D. Siriwan, and W. Klaypradit. 2019. Properties and bioavailability assessment of shrimp astaxanthin loaded liposomes. Food Science and Biotechnology 28 (2):529–37. doi: 10.1007/s10068-018-0495-x.
  • Shakeri, M., S. H. Razavi, and S. Shakeri. 2019. Carvacrol and astaxanthin co-entrapment in beeswax solid lipid nanoparticles as an efficient nano-system with dual antioxidant and anti-biofilm activities. LWT - Food Science and Technology 107:280–90. doi: 10.1016/j.lwt.2019.03.031.
  • Shanmugapriya, K., H. Kim, Y. W. Lee, and H. W. Kang. 2020. Cellulose nanocrystals/nanofibrils loaded astaxanthin nanoemulsion for the induction of apoptosis via ROS-dependent mitochondrial dysfunction in cancer cells under photobiomodulation. International Journal of Biological Macromolecules 149:165–77. doi: 10.1016/j.ijbiomac.2020.01.243.
  • Shanmugapriya, K., H. Kim, P. S. Saravana, B. Chun, and H. W. Kang. 2018. Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: Investigation on anticancer, wound healing, and antibacterial effects. Colloids and Surfaces. B, Biointerfaces 172:170–9. doi: 10.1016/j.colsurfb.2018.08.042.
  • Shen, X., T. Fang, J. Zheng, and M. Guo. 2019. Physicochemical properties and cellular uptake of astaxanthin-loaded emulsions. Molecules 24 (4):727. doi: 10.3390/molecules24040727.
  • Shen, Q., and S. Y. Quek. 2014. Microencapsulation of astaxanthin with blends of milk protein and fiber by spray drying. Journal of Food Engineering 123:165–71. doi: 10.1016/j.jfoodeng.2013.09.002.
  • Shen, X., C. Zhao, J. Lu, and M. Guo. 2018. Physicochemical properties of whey-protein-stabilized astaxanthin nanodispersion and its transport via a Caco-2 monolayer. Journal of Agricultural and Food Chemistry 66 (6):1472–8. doi: 10.1021/acs.jafc.7b05284.
  • Shrestha, S., M. B. Sadiq, and A. K. Anal. 2018. Culled banana resistant starch-soy protein isolate conjugate based emulsion enriched with astaxanthin to enhance its stability. International Journal of Biological Macromolecules 120:449–59. doi: 10.1016/j.ijbiomac.2018.08.066.
  • Shu, G., N. Khalid, Z. Chen, M. A. Neves, C. J. Barrow, and M. Nakajima. 2018. Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Food Chemistry 255:67–74. doi: 10.1016/j.foodchem.2018.02.062.
  • Song, R., Y. Qi, Z. Jia, X. Liu, and R. Wei. 2020. Astaxanthin-loaded zein/calcium alginate composite microparticles: Characterization, molecular interaction and release kinetics in fatty food simulant system. LWT - Food Science and Technology 134:110146. doi: 10.1016/j.lwt.2020.110146.
  • Soukoulis, C., and T. Bohn. 2018. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Critical Reviews in Food Science and Nutrition 58 (1):1–36. doi: 10.1080/10408398.2014.971353.
  • Sun, R., N. Xia, and Q. Xia. 2020. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. Journal of Dispersion Science and Technology 41 (12):1777–88. doi: 10.1080/01932691.2019.1635027.
  • Surh, J., E. A. Decker, and D. J. McClements. 2006. Influence of pH and pectin type on properties and stability of sodium-caseinate stabilized oil-in-water emulsions. Food Hydrocolloids 20 (5):607–18. doi: 10.1016/j.foodhyd.2005.07.004.
  • Tachaprutinun, A., T. Udomsup, C. Luadthong, and S. Wanichwecharungruang. 2009. Preventing the thermal degradation of astaxanthin through nanoencapsulation. International Journal of Pharmaceutics 374 (1–2):119–24. doi: 10.1016/j.ijpharm.2009.03.001.
  • Taksima, T., M. Limpawattana, and W. Klaypradit. 2015. Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. LWT - Food Science and Technology 62 (1):431–7. doi: 10.1016/j.lwt.2015.01.011.
  • Tamjidi, F., M. Shahedi, J. Varshosaz, and A. Nasirpour. 2014a. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innovative Food Science & Emerging Technologies 26:366–74. doi: 10.1016/j.ifset.2014.06.012.
  • Tamjidi, F., M. Shahedi, J. Varshosaz, and A. Nasirpour. 2014b. EDTA and α-tocopherol improve the chemical stability of astaxanthin loaded into nanostructured lipid carriers. European Journal of Lipid Science and Technology 116 (8):968–77. doi: 10.1002/ejlt.201300509.
  • Tamjidi, F., M. Shahedi, J. Varshosaz, and A. Nasirpour. 2017a. Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze-thawing. Journal of Food Science and Technology 54 (10):3132–41. doi: 10.1007/s13197-017-2749-7.
  • Tamjidi, F., M. Shahedi, J. Varshosaz, and A. Nasirpour. 2017b. Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems. Journal of the Science of Food and Agriculture 98 (2):511–8. doi: 10.1002/jsfa.8488.
  • Tirado, D. F., I. Palazzo, M. Scognamiglio, L. Calvo, G. D. Porta, and E. Reverchon. 2019. Astaxanthin encapsulation in ethyl cellulose carriers by continuous supercritical emulsions extraction: A study on particle size, encapsulation efficiency, release profile and antioxidant activity. The Journal of Supercritical Fluids 150:128–36. doi: 10.1016/j.supflu.2019.04.017.
  • Vakarelova, M., F. Zanoni, P. Lardo, G. Rossin, F. Mainente, R. Chignola, A. Menin, C. Rizzi, and G. Zoccatelli. 2017. Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology. Food Chemistry 221:289–95. doi: 10.1016/j.foodchem.2016.10.085.
  • Visioli, F., and C. Artaria. 2017. Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food & Function 8 (1):39–63. doi: 10.1039/c6fo01721e.
  • Wang, B., S. R. Duke, and Y. Wang. 2017. Microencapsulation of lipid materials by spray drying and properties of products. Journal of Food Process Engineering 40 (3):12477. doi: 10.1111/jfpe.12477.
  • Wang, T., Q. Hu, J. Lee, and Y. Luo. 2018. Solid lipid-polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin. Journal of Agricultural and Food Chemistry 66 (36):9473–80. doi: 10.1021/acs.jafc.8b02827.
  • Wang, Q., Y. Zhao, L. Guan, Y. Zhang, Q. Dang, P. Dong, J. Li, and X. Liang. 2017. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chemistry 227:9–15. doi: 10.1016/j.foodchem.2017.01.081.
  • Wei, Z., Y. Cheng, J. Zhu, and Q. Huang. 2019. Genipin-crosslinked ovotransferrin particle-stabilized Pickering emulsions as delivery vehicles for hesperidin. Food Hydrocolloids 94:561–73. doi: 10.1016/j.foodhyd.2019.04.008.
  • Wei, Z., and Q. Huang. 2019. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper. Journal of Agricultural and Food Chemistry 67 (5):1344–52. doi: 10.1021/acs.jafc.8b06063.
  • Wei, Z., J. Zhu, Y. Cheng, and Q. Huang. 2019. Ovotransferrin fibril-stabilized Pickering emulsions improve protection and bioaccessibility of curcumin. Food Research International (Ottawa, ON) 125:108602. doi: 10.1016/j.foodres.2019.108602.
  • Xia, Z., Y. Han, H. Du, D. J. McClements, Z. Tang, and H. Xiao. 2020. Exploring the effects of carrier oil type on in vitro bioavailability of β-carotene: A cell culture study of carotenoid-enriched nanoemulsions. LWT - Food Science and Technology 134 (4):110224. doi: 10.1016/j.lwt.2020.110224.
  • Xia, T., Z. Wei, and C. Xue. 2022. Impact of composite gelators on physicochemical properties of oleogels and astaxanthin delivery of oleogel-based nanoemulsions. LWT - Food Science and Technology 153:112454. doi: 10.1016/j.lwt.2021.112454.
  • Xia, T., C. Xue, and Z. Wei. 2021. Physicochemical characteristics, applications and research trends of edible Pickering emulsions. Trends in Food Science & Technology 107:1–15. doi: 10.1016/j.tifs.2020.11.019.
  • Xue, X., X. Han, Y. Li, X. Chu, W. Miao, J. Zhang, and S. Fan. 2017. Astaxanthin attenuates total body irradiation-induced hematopoietic system injury in mice via inhibition of oxidative stress and apoptosis. Stem Cell Research & Therapy 8 (1):7. doi: 10.1186/s13287-016-0464-3.
  • Yang, J., Q. Zhou, Z. Huang, Z. Gu, L. Cheng, L. Qiu, and Y. Hong. 2021. Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers. Food Hydrocolloids 119:106837. doi: 10.1016/j.foodhyd.2021.106837.
  • You, Z., Q. Wu, X. Zhou, X. Zhang, B. Yuan, L. Wen, W. Xu, S. Cui, X. Tang, and X. Zhang. 2019. Receptor-mediated delivery of astaxanthin-loaded nanoparticles to neurons: An enhanced potential for subarachnoid hemorrhage treatment. Frontiers in Neuroscience 13:989. doi: 10.3389/fnins.2019.00989.
  • Yuan, C., Z. Jin, X. Xu, H. Zhuang, and W. Shen. 2008. Preparation and stability of the inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin. Food Chemistry 109 (2):264–8. doi: 10.1016/j.foodchem.2007.07.051.
  • Zhang, X., W. Li, X. Dou, D. Nan, and G. He. 2020. Astaxanthin encapsulated in biodegradable calcium alginate microspheres for the treatment of hepatocellular carcinoma in vitro. Applied Biochemistry and Biotechnology 191 (2):511–27. doi: 10.1007/s12010-019-03174-z.
  • Zhang, X., W. Yin, Y. Qi, X. Li, W. Zhang, and G. He. 2017. Microencapsulation of astaxanthin in alginate using modified emulsion technology: Preparation, characterization, and cytostatic activity. The Canadian Journal of Chemical Engineering 95 (3):412–9. doi: 10.1002/cjce.22712.
  • Zhang, R., Z. Zhang, and D. J. McClements. 2020. Nanoemulsions: An emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids and Surfaces. B, Biointerfaces 194:111202. doi: 10.1016/j.colsurfb.2020.111202.
  • Zhou, Q., L. Yang, J. Xu, X. Qiao, Z. Li, Y. Wang, and C. Xue. 2018. Evaluation of the physicochemical stability and digestibility of microencapsulated esterified astaxanthins using in vitro and in vivo models. Food Chemistry 260:73–81. doi: 10.1016/j.foodchem.2018.03.046.
  • Zhou, X., J. Zhang, Y. Li, L. Cui, K. Wu, and H. Luo. 2021. Astaxanthin inhibits microglia M1 activation against inflammatory injury triggered by lipopolysaccharide through down-regulating miR-31-5p. Life Sciences 267 (10):118943. doi: 10.1016/j.lfs.2020.118943.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.