1,671
Views
2
CrossRef citations to date
0
Altmetric
Review

Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products

ORCID Icon, , ORCID Icon, , , , & show all

References

  • Ahmad, S., Khan, H. Z. Siddiqui, M. Y. Khan, S. Rehman, U. Shahab, T. Godovikova, V. Silnikov, and Moinuddin. 2018. AGEs, RAGEs and S-RAGE; friend or foe for cancer. Seminars in Cancer Biology 49:44–55. doi: 10.1016/j.semcancer.2017.07.001.
  • Ahmed, M. U., E. B. Frye, T. P. Degenhardt, S. R. Thorpe, and J. W. Baynes. 1997. Nε-(Carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochemical Journal 324 (2):565–70. doi: 10.1042/bj3240565.
  • Ahmed, M. U., S. R. Thorpe, and J. W. Baynes. 1986. Identification of Nε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. Journal of Biological Chemistry 261 (11):4889–994. doi: 10.1016/S0021-9258(19)89188-3.
  • Akıllıoğlu, H. G., and M. N. Lund. 2022. Quantification of advanced glycation end products and amino acid cross-links in foods by high-resolution mass spectrometry: Applicability of acid hydrolysis. Food Chemistry 366:130601. doi: 10.1016/j.foodchem.2021.130601.
  • Alamir, I., C. Niquet-Leridon, P. Jacolot, C. Rodriguez, M. Orosco, P. M. Anton, and F. J. Tessier. 2013. Digestibility of extruded proteins and metabolic transit of N ε-carboxymethyllysine in rats. Amino Acids 44 (6):1441–9. doi: 10.1007/s00726-012-1427-3.
  • Aljahdali, N., P. Gadonna-Widehem, C. Delayre-Orthez, D. Marier, B. Garnier, F. Carbonero, and P. M. Anton. 2017. Repeated oral exposure to N Ε-carboxymethyllysine, a Maillard reaction product, alleviates gut microbiota dysbiosis in colitic mice. Digestive Diseases and Sciences 62 (12):3370–84. doi: 10.1007/s10620-017-4767-8.
  • Ángel, R.-H J., E. Guerra-Hernández, and B. G. García-Villanova. 2004. Pyrraline content in enteral formula processing and storage and model systems. European Food Research and Technology 219 (1):42–7. doi: 10.1007/s00217-004-0934-1.
  • Assar, S. H., C. Moloney, M. Lima, R. Magee, and J. M. Ames. 2009. Determination of Nepsilon-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids 36 (2):317–26. doi: 10.1007/s00726-008-0071-4.
  • Baidoshvili, A., P. A. Krijnen, K. Kupreishvili, C. Ciurana, W. Bleeker, R. Nijmeijer, C. A. Visser, F. C. Visser, C. J. Meijer, W. Stooker, et al. 2006. N(Epsilon)-(carboxymethyl)lysine depositions in intramyocardial blood vessels in human and rat acute myocardial infarction: A predictor or reflection of infarction? Arteriosclerosis, Thrombosis, and Vascular Biology 26 (11):2497–503. doi: 10.1161/01.ATV.0000245794.45804.ab.
  • Bergmann, R., R. Helling, C. Heichert, M. Scheunemann, P. Mäding, H. Wittrisch, B. Johannsen, and T. Henle. 2001. Radio fluorination and positron emission tomography (PET) as a new approach to study the in vivo distribution and elimination of the advanced glycation endproducts Nε‐carboxymethyllysine (CML) and Nε‐carboxyethyllysine (CEL). Nahrung/Food 45 (3):182–8. doi: 10.1002/1521-3803(20010601)45:33.0.CO;2-Q.
  • Bierhaus, A., P. M. Humpert, M. Morcos, T. Wendt, T. Chavakis, B. Arnold, D. M. Stern, and P. P. Nawroth. 2005. Understanding rage, the receptor for advanced glycation end products. Journal of Molecular Medicine (Berlin, Germany) 83 (11):876–86. doi: 10.1007/s00109-005-0688-7.
  • Bierhaus, A., S. Schiekofer, M. Schwaninger, M. Andrassy, P. M. Humpert, J. Chen, M. Hong, T. Luther, T. Henle, I. Klöting, et al. 2001. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappab. Diabetes 50 (12):2792–808. doi: 10.2337/diabetes.50.12.2792.
  • Birlouez-Aragon, I., G. Saavedra, F. J. Tessier, A. Galinier, L. Ait-Ameur, F. Lacoste, C. N. Niamba, N. Alt, V. Somoza, and J. M. Lecerf. 2010. A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. The American Journal of Clinical Nutrition 91 (5):1220–6. doi: 10.3945/ajcn.2009.28737.
  • Brett, J., A. M. Schmidt, S. D. Yan, Y. S. Zou, and A. Shaw. 1994. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. American Journal of Pathology 143 (6):1699–712. doi: 10.1097/00000433-199312000-00015.
  • Brownlee, M., H. Vlassara, and A. Cerami. 1984. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Annals of Internal Medicine 101 (4):527–37. doi: 10.7326/0003-4819-101-4-527.
  • Bui, T. P. N., A. D. Troise, V. Fogliano, and W. M. de Vos. 2019. Anaerobic degradation of n-ε-carboxymethyllysine, a major glycation end-product, by human intestinal bacteria. Journal of Agricultural and Food Chemistry 67 (23):6594–602. doi: 10.1021/acs.jafc.9b02208.
  • Cerami, C., H. Founds, I. Nicholl, T. Mitsuhashi, D. Giordano, S. Vanpatten, A. Lee, Y. Al-Abed, H. Vlassara, R. Bucala, et al. 1997. Tobacco smoke is a source of toxic reactive glycation products. Proceedings of the National Academy of Sciences of the United States of America 94 (25):13915–20. doi: 10.1073/pnas.94.25.13915.
  • Chao, P-c, C-c Hsu, and M-c Yin. 2009. Analysis of glycative products in sauces and sauce-treated foods. Food Chemistry 113 (1):262–6. doi: 10.1016/j.foodchem.2008.06.076.
  • Charissou, A., L. Ait-Ameur, and I. Birlouez-Aragon. 2007. Evaluation of a gas chromatography/mass spectrometry method for the quantification of carboxymethyllysine in food samples. Journal of Chromatography. A 1140 (1–2):189–94. doi: 10.1016/j.chroma.2006.11.066.
  • Chaudhuri, J., Y. Bains, S. Guha, A. Kahn, D. Hall, N. Bose, A. Gugliucci, and P. Kapahi. 2018. The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality. Cell Metabolism 28 (3):337–52. doi: 10.1016/j.cmet.2018.08.014.
  • Chellan, P., and R. H. Nagaraj. 1999. Protein crosslinking by the Maillard reaction: Dicarbonyl-derived imidazolium crosslinks in aging and diabetes. Archives of Biochemistry and Biophysics 368 (1):98–104. doi: 10.1006/abbi.1999.1291.
  • Delgado-Andrade, C. 2016. Carboxymethyl-lysine: Thirty years of investigation in the field of age formation. Food & Function 7 (1):46–57. doi: 10.1039/c5fo00918a.
  • Delgado-Andrade, C., and V. Fogliano. 2018. Dietary advanced glycosylation end-products (dages) and melanoidins formed through the Maillard reaction: Physiological consequences of their intake. Annual Review of Food Science and Technology 9 (1):271–91. doi: 10.1146/annurev-food-030117-012441.
  • Delgado-Andrade, C., S. Pastoriza de la Cueva, M. J. Peinado, J. Á. Rufián-Henares, M. P. Navarro, and L. A. Rubio. 2017. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products. Food Research International 100:134–42. doi: 10.1016/j.foodres.2017.06.067.
  • Delgado-Andrade, C., F. J. Tessier, C. Niquet-Leridon, I. Seiquer, and M. P. Navarro. 2012. Study of the urinary and faecal excretion of Nepsilon-carboxymethyllysine in young human volunteers. Amino Acids 43 (2):595–602. doi: 10.1007/s00726-011-1107-8.
  • Fernando, D. H., J. M. Forbes, P. W. Angus, and C. B. Herath. 2019. Development and progression of non-alcoholic fatty liver disease: The role of advanced glycation end products. International Journal of Molecular Sciences 20 (20):5037. doi: 10.3390/ijms20205037.
  • Filla, L. A., and J. L. Edwards. 2016. Metabolomics in diabetic complications. Molecular bioSystems 12 (4):1090–105. doi: 10.1039/C6MB00014B.
  • Forster, A., Y. Kuhne, and T. Henle. 2005. Studies on absorption and elimination of dietary Maillard reaction products. Annals of the New York Academy of Sciences 1043:474–81. doi: 10.1196/annals.1333.054.
  • Fu, M.-X., J. R. Requena, A. J. Jenkins, T. J. Lyons, J. W. Baynes, and S. R. Thorpe. 1996. The advanced glycation end product, N-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. The Journal of Biological Chemistry 271 (17):9982–6. doi: 10.1074/jbc.271.17.9982.
  • Fu, Q., L. Li, and B. Li. 2012. Formation of Nε-(carboxymethyl)lysine in saccharide-lysine model systems by different heat treatments. International Journal of Food Engineering 8 (3):2724. doi: 10.1515/1556-3758.2724.
  • Ganesan, A., S. Chaussonnerie, A. Tarrade, C. Dauga, T. Bouchez, E. Pelletier, D. L. Paslier, and A. Sghir. 2008. Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ‘synergistetes’, isolated from an anaerobic sludge digester. International Journal of Systematic and Evolutionary Microbiology 58 (Pt 9):2003–12. doi: 10.1099/ijs.0.65645-0.
  • Garay-Sevilla, M. E., M. S. Beeri, M. P. de la Maza, A. Rojas, S. Salazar-Villanea, and J. Uribarri. 2020. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: A narrative review. Nutrition Research Reviews 33 (2):298–311. doi: 10.1017/S0954422420000104.
  • Geissler, S., M. Hellwig, M. Zwarg, F. Markwardt, T. Henle, and M. Brandsch. 2010. Transport of the advanced glycation end products alanylpyrraline and pyrralylalanine by the human proton-coupled peptide transporter Hpept1. Journal of Agricultural and Food Chemistry 58 (4):2543–7. doi: 10.1021/jf903791u.
  • Gentile, C. L., and T. L. Weir. 2018. The gut microbiota at the intersection of diet and human healthy. Science (New York, N.Y.) 362 (6416):776–−80. doi: 10.1126/science.aau5812.
  • Gironès, X., A. Guimerà, C.-Z. Cruz-Sánchez, A. Ortega, N. Sasaki, Z. Makita, J. V. Lafuente, R. Kalaria, and F. F. Cruz-Sánchez. 2004. N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer’s disease . Free Radical Biology & Medicine 36 (10):1241–7. doi: 10.1016/j.freeradbiomed.2004.02.006.
  • Gkogkolou, P., and M. Böhm. 2012. Advanced glycation end products: Key players in skin aging? Dermato-endocrinology 4 (3):259–70. doi: 10.4161/derm.22028.
  • Goldberg, T., W. Cai, M. Peppa, V. Dardaine, B. S. Baliga, J. Uribarri, and H. Vlassara. 2004. Advanced glycoxidation end products in commonly consumed foods. Journal of the American Dietetic Association 104 (8):1287–91. doi: 10.1016/j.jada.2004.05.214.
  • Gomez-Ojeda, A., S. Jaramillo-Ortiz, K. Wrobel, K. Wrobel, G. Barbosa-Sabanero, C. Luevano-Contreras, M. P. de la Maza, J. Uribarri, M. D. Del Castillo, and M. E. Garay-Sevilla. 2018. Comparative evaluation of three different elisa assays and HPLC-ESI-ITMS/MS for the analysis of N(epsilon)-carboxymethyl lysine in food samples. Food Chemistry 243:11–8. doi: 10.1016/j.foodchem.2017.09.098.
  • Grunwald, S., R. Krause, M. Bruch, T. Henle, and M. Brandsch. 2006. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. The British Journal of Nutrition 95 (6):1221–8. doi: 10.1079/bjn20061793.
  • Guilbaud, A., M. Howsam, C. Niquet-Leridon, F. Delguste, M. Fremont, S. Lestavel, P. Maboudou, A. Garat, S. Schraen, B. Onraed, et al. 2020. The effect of lactobacillus fermentum ME-3 treatment on glycation and diabetes complications. Molecular Nutrition & Food Research 64 (6):e1901018. doi: 10.1002/mnfr.201901018.
  • Han, K., W. Jin, Z. Mao, S. Dong, Q. Zhang, Y. Yang, B. Chen, H. Wu, and M. Zeng. 2018. Microbiome and butyrate production are altered in the gut of rats fed a glycated fish protein diet. Journal of Functional Foods 47:423–33. doi: 10.1016/j.jff.2018.06.007.
  • Harsha, P., and V. Lavelli. 2019. Use of grape pomace phenolics to counteract endogenous and exogenous formation of advanced glycation end-products. Nutrients 11 (8):1917. doi: 10.3390/nu1108:1917.
  • Hartkopf, J., C. Pahlke, G. Lüdemann, and H. F. Erbersdobler. 1994. Determination of Nε -carboxymethyllysine by a reversed-phase high-performance liquid chromatography method. Journal of Chromatography A 672 (1-2):242–6. doi: 10.1016/0021-9673(94)80613-6.
  • Hegele, J., T. Buetler, and T. Delatour. 2008. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products. Analytica Chimica Acta 617 (1–2):85–96. doi: 10.1016/j.aca.2007.12.027.
  • Hellwig, M., C. Auerbach, N. Müller, P. Samuel, S. Kammann, F. Beer, F. Gunzer, and T. Henle. 2019. Metabolization of the advanced glycation end product N-Ε-carboxymethyllysine (CML) by different probiotic E. coli strains. Journal of Agricultural and Food Chemistry 67 (7):1963–72. doi: 10.1021/acs.jafc.8b06748.
  • Hellwig, M., D. Bunzel, M. Huch, C. M. Franz, S. E. Kulling, and T. Henle. 2015. Stability of individual Maillard reaction products in the presence of the human colonic microbiota. Journal of Agricultural and Food Chemistry 63 (30):6723–30. doi: 10.1021/acs.jafc.5b01391.
  • Hellwig, M., S. Geissler, R. Matthes, A. Peto, C. Silow, M. Brandsch, and T. Henle. 2011. Transport of free and peptide-bound glycated amino acids: Synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Chembiochem 12 (8):1270–9. doi: 10.1002/cbic.201000759.
  • Hellwig, M., S. Geissler, A. Peto, I. Knutter, M. Brandsch, and T. Henle. 2009. Transport of free and peptide-bound pyrraline at intestinal and renal epithelial cells. Journal of Agricultural and Food Chemistry 57 (14):6474–80. doi: 10.1021/jf901224p.
  • Hellwig, M., and T. Henle. 2012. Quantification of the Maillard reaction product 6-(2-formyl-1-pyrrolyl)-L-norleucine (formyline) in food. European Food Research and Technology 235 (1):99–106. doi: 10.1007/s00217-012-1738-3.
  • Hellwig, M., J. Ruckriemen, D. Sandner, and T. Henle. 2017. Unique pattern of protein-bound Maillard reaction products in manuka (Leptospermum scoparium) honey. Journal of Agricultural and Food Chemistry 65 (17):3532–40. doi: 10.1021/acs.jafc.7b00797.
  • Hellwig, M., S. Witte, and T. Henle. 2016. Free and protein-bound Maillard reaction products in beer: Method development and a survey of different beer types. Journal of Agricultural and Food Chemistry 64 (38):7234–43. doi: 10.1021/acs.jafc.6b02649.
  • Hemmler, D., C. Roullier-Gall, J. W. Marshall, M. Rychlik, A. J. Taylor, and P. Schmitt-Kopplin. 2017. Evolution of complex Maillard chemical reactions, resolved in time. Scientific Reports 7 (1):3227. doi: 10.1038/s41598-017-03691-z.
  • Henle, T. 2003. AGEs in foods: Do they play a role in uremia? Kidney International Supplement 63 (84):S145–S7. doi: 10.1046/j.1523-1755.63.s84.16.x.
  • Hodge, J. E. 1953. Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry 1 (15):928– 51. doi: 10.1021/jf60015a004.
  • Hohmann, C., K. Liehr, C. Henning, R. Fiedler, M. Girndt, M. Gebert, M. Hulko, M. Storr, and M. A. Glomb. 2017. Detection of free advanced glycation end products in vivo during hemodialysis. Journal of Agricultural and Food Chemistry 65 (4):930–7. doi: 10.1021/acs.jafc.6b05013.
  • Hull, G. L. J., J. V. Woodside, J. M. Ames, and G. J. Cuskelly. 2012. Nε-(carboxymethyl)lysine content of foods commonly consumed in a western style diet. Food Chemistry 131 (1):170–4. doi: 10.1016/j.foodchem.2011.08.055.
  • Kierdorf, K., and G. Fritz. 2013. Rage regulation and signaling in inflammation and beyond. Journal of Leukocyte Biology 94 (1):55–68. doi: 10.1189/jlb.1012519.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Backhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Koschinsky, T., C.-J. He, T. Mitsuhashi, R. Bucala, C. Liu, C. Buenting, K. Heitmann, and H. Vlassara. 1997. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proceedings of the National Academy of Sciences of the United States of America 94 (12):6474–9. doi: 10.1073/pnas.94.12.6474.
  • Lee, H.-M., S.-Y. Yang, J. Han, Y. K. Kim, Y. J. Kim, M. S. Rhee, and K.-W. Lee. 2019. Optimization of spray drying parameters and food additives to reduce glycation using response surface methodology in powdered infant formulas. Food Science and Biotechnology 28 (3):769–77. doi: 10.1007/s10068-018-0524-9.
  • Lee, H. W., M. J. Gu, J. Y. Lee, S. Lee, Y. Kim, and S. K. Ha. 2021. Methylglyoxal-lysine dimer, an advanced glycation end product, induces inflammation via interaction with rage in mesangial cells. Molecular Nutrition & Food Research 65 (13):e2000799. doi: 10.1002/mnfr.202000799.
  • Li, C., L. Zhang, W. Gao, C. Lai, and H. Dong. 2021. Robust detection of advanced glycation endproducts in milk powder using ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Food Analytical Methods 14 (7):1472–81. doi: 10.1007/s12161-021-01986-6.
  • Li, M., M. Zeng, Z. He, Z. Zheng, F. Qin, G. Tao, S. Zhang, and J. Chen. 2015a. Effects of long-term exposure to free Nε-(carboxymethyl)lysine on rats fed a high-fat diet. Journal of Agricultural and Food Chemistry 63 (51):10995–1001. doi: 10.1021/acs.jafc.5b05750.
  • Li, M., M. Zeng, Z. He, Z. Zheng, F. Qin, G. Tao, S. Zhang, and J. Chen. 2015b. Increased accumulation of protein-bound N(epsilon)-(carboxymethyl)lysine in tissues of healthy rats after chronic oral N(epsilon)-(carboxymethyl)lysine. Journal of Agricultural and Food Chemistry 63 (5):1658–63. doi: 10.1021/jf505063t.
  • Li, Y., L. Li, B. Li, L. Han, X. Li, Z. Xu, and H. Bian. 2015. Optimization of pretreatment for free and bound Nε-(carboxymethyl)lysine analysis in soy sauce. Food Analytical Methods 8 (1):195–202. doi: 10.1007/s12161-014-9892-9.
  • Li, Y., W. Quan, X. D. Jia, Z. Y. He, Z. J. Wang, M. M. Zeng, and J. Chen. 2021. Profiles of initial, intermediate, and advanced stages of harmful Maillard reaction products in whole-milk powders pre-treated with different heat loads during 18 months of storage. Food Chemistry 351:129361. doi: 10.1016/j.foodchem.2021.129361.
  • Li, Y., Y. Wu, W. Quan, X. Jia, Z. He, Z. Wang, B. Adhikari, J. Chen, and M. Zeng. 2021. Quantitation of furosine, furfurals, and advanced glycation end products in milk treated with pasteurization and sterilization methods applicable in China. Food Research International (Ottawa, Ont.) 140:110088. doi: 10.1016/j.foodres.2020.110088.
  • Li, Y., C. Xue, W. Quan, F. Qin, Z. Wang, Z. He, M. Zeng, and J. Chen. 2021. Assessment the influence of salt and polyphosphate on protein oxidation and Nepsilon-(carboxymethyl)lysine and Nepsilon-(carboxyethyl)lysine formation in roasted beef patties. Meat Science 177:108489. doi: 10.1016/j.meatsci.2021.108489.
  • Liang, Z., X. Chen, L. Li, B. Li, and Z. Yang. 2020. The fate of dietary advanced glycation end products in the body: From oral intake to excretion. Critical Reviews in Food Science and Nutrition 60 (20):3475–17. doi: 10.1080/10408398.2019.1693958.
  • Liang, Z., L. Li, H. Qi, X. Zhang, Z. Xu, and B. Li. 2016. Determination of free-form and peptide bound pyrraline in the commercial drinks enriched with different protein hydrolysates. International Journal of Molecular Sciences 17 (7):1053. doi: 10.3390/ijms17071053.
  • Lin, J. A., C. H. Wu, and G. C. Yen. 2018. Perspective of advanced glycation end products on human health. Journal of Agricultural and Food Chemistry 66 (9):2065–70. doi: 10.1021/acs.jafc.7b05943.
  • Liu, J. J., S. Liu, R. L. Gurung, J. Ching, J. P. Kovalik, T. Y. Tan, and S. C. Lim. 2018. Urine tricarboxylic acid cycle metabolites predict progressive chronic kidney disease in type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism 103 (12):4357–64. doi: 10.1210/jc.2018-00947.
  • Mao, Z., Y. Ren, Q. Zhang, S. Dong, K. Han, G. Feng, H. Wu, and Y. Zhao. 2019. Glycated fish protein supplementation modulated gut microbiota composition and reduced inflammation but increased accumulation of advanced glycation end products in high-fat diet fed rats. Food & Function 10 (6):3439–51. doi: 10.1039/C9FO00599D.
  • Martinez-Saez, N., B. Fernandez-Gomez, W. Cai, J. Uribarri, and M. D. Del Castillo. 2019. In vitro formation of Maillard reaction products during simulated digestion of meal-resembling systems. Food Research International (Ottawa, Ont.) 118:72–80. doi: 10.1016/j.foodres.2017.09.056.
  • Miyata, T., S. Taneda, R. Kawai, Y. Ueda, S. Horiuchi, M. Hara, K. Maeda, and V. Monnier. 1996. Identification of pentosidine as a native structure for advanced glycation end products in beta-2-microglobulin-containing amyloid fibrils in patients with dialysis-related amyloidosis. Proceedings of the National Academy of Sciences of the United States of America 93 (6):2353–8. doi: 10.1073/pnas.93.6.2353.
  • Møller, N., S. Meek, M. Bigelow, J. Andrews, and K. S. Nair. 2000. The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: A metabolic role of the kidney. Proceedings of the National Academy of Sciences of the United States of America 97 (3):1242–6. doi: 10.1073/pnas.97.3.1242.
  • Moura, F. A., M. O. F. Goulart, S. B. G. Campos, P. M. Da, and S. Amylly. 2020. The close interplay of nitro-oxidative stress, advanced glycation end products and inflammation in inflammatory bowel diseases. Current Medicinal Chemistry 27 (13):2059–76. doi: 10.2174/0929867325666180904115633.
  • Nie, C., Y. Li, H. Qian, H. Ying, and L. Wang. 2020. Advanced glycation end products in food and their effects on intestinal tract. Critical Reviews in Food Science and Nutrition 2020:1–13. doi: 10.1080/10408398.2020.1863904.
  • Niu, L., X. Sun, J. Tang, J. Wang, B. A. Rasco, K. Lai, and Y. Huang. 2017. Free and protein-bound N-carboxymethyllysine and N-carboxyethyllysine in fish muscle: Biological variation and effects of heat treatment. Journal of Food Composition and Analysis 57:56–63. doi: 10.1016/j.jfca.2016.12.017.
  • Nomi, Y., H. Annaka, S. Sato, E. Ueta, T. Ohkura, K. Yamamoto, S. Homma, E. Suzuki, and Y. Otsuka. 2016. Simultaneous quantitation of advanced glycation end products in soy sauce and beer by liquid chromatography-tandem mass spectrometry without ion-pair reagents and derivatization. Journal of Agricultural and Food Chemistry 64 (44):8397–405. doi: 10.1021/acs.jafc.6b02500.
  • Nowotny, K., D. Schroter, M. Schreiner, and T. Grune. 2018. Dietary advanced glycation end products and their relevance for human health. Ageing Research Reviews 47:55–66. doi: 10.1016/j.arr.2018.06.005.
  • Parveen, A., R. Sultana, S. M. Lee, T. H. Kim, and S. Y. Kim. 2021. Phytochemicals against anti-diabetic complications: Targeting the advanced glycation end product signaling pathway. Archives of Pharmacal Research 44 (4):378–401. doi: 10.1007/s12272-021-01323-9.
  • Poulsen, M. W., R. V. Hedegaard, J. M. Andersen, B. de Courten, S. Bugel, J. Nielsen, L. H. Skibsted, and L. O. Dragsted. 2013. Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology 60:10–37. doi: 10.1016/j.fct.2013.06.052.
  • Prasad, K. 2019. AGE-RAGE stress: A changing landscape in pathology and treatment of Alzheimer’s disease. Molecular and Cellular Biochemistry 459 (1–2):95–112. doi: 10.1007/s11010-019-03553-4.
  • Qiu, X. X., M. G. Macchietto, X. T. Liu, Y. Lu, Y. W. Ma, H. Guo, M. Saqui-Salces, D. A. Bernlohr, C. Chen, S. Shen, et al. 2021. Identification of gut microbiota and microbial metabolites regulated by an antimicrobial peptide lipocalin 2 in high fat diet-induced obesity. International Journal of Obesity (2005) 45 (1):143–54. doi: 10.1038/s41366-020-00712-2.
  • Qu, W., C. Nie, J. Zhao, X. Ou, Y. Zhang, S. Yang, X. Bai, Y. Wang, J. Wang, and J. Li. 2018. Microbiome-metabolomics analysis of the impacts of long-term dietary advanced-glycation-end-product consumption on C57bl/6 mouse fecal microbiota and metabolites. Journal of Agricultural and Food Chemistry 66 (33):8864–75. doi: 10.1021/acs.jafc.8b01466.
  • Qu, W., X. Yuan, J. Zhao, Y. Zhang, J. Hu, J. Wang, and J. Li. 2017. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Molecular Nutrition & Food Research 61 (10):1700118. doi: 10.1002/mnfr.201700118.
  • Quan, W., Y. Jiao, Y. Li, C. Xue, G. Liu, Z. Wang, F. Qin, Z. He, M. Zeng, and J. Chen. 2021. Metabolic changes from exposure to harmful Maillard reaction products and high-fat diet on sprague-dawley rats. Food Research International 141 (6):110129. doi: 10.1016/j.foodres.2021.110129.
  • Quan, W., Y. Jiao, C. Xue, Y. Li, G. Liu, Z. He, F. Qin, M. Zeng, and J. Chen. 2021. The effect of exogenous free N(epsilon)-(carboxymethyl)lysine on diabetic-model goto-kakizaki rats: Metabolomics analysis in serum and urine. Journal of Agricultural and Food Chemistry 69 (2):783–93. doi: 10.1021/acs.jafc.0c06445.
  • Raman, K. G., P. L. Sappington, R. Yang, R. M. Levy, J. M. Prince, S. Liu, S. K. Watkins, A. M. Schmidt, T. R. Billiar, and M. P. Fink. 2006. The role of rage in the pathogenesis of intestinal barrier dysfunction after hemorrhagic shock. American Journal of Physiology. Gastrointestinal and Liver Physiology 291 (4):G556–65. doi: 10.1152/ajpgi.00055.2006.
  • Ramanan, D., and K. Cadwell. 2016. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host & Microbe 19 (4):434–41. doi: 10.1016/j.chom.2016.03.003.
  • Rhee, S. Y., and Y. S. Kim. 2018. The role of advanced glycation end products in diabetic vascular complications. Diabetes & Metabolism Journal 42 (3):188–95. doi: 10.4093/dmj.2017.0105.
  • Roncero-Ramos, I., C. Delgado-Andrade, F. J. Tessier, C. Niquet-Leridon, C. Strauch, V. M. Monnier, and M. P. Navarro. 2013. Metabolic transit of N(epsilon)-carboxymethyl-lysine after consumption of ages from bread crust. Food & Function 4 (7):1032–9. doi: 10.1039/c3fo30351a.
  • Roncero-Ramos, I., C. Niquet-Leridon, C. Strauch, V. M. Monnier, F. J. Tessier, M. P. Navarro, and C. Delgado-Andrade. 2014. An advanced glycation end product (age)-rich diet promotes Nepsilon-carboxymethyl-lysine accumulation in the cardiac tissue and tendons of rats. Journal of Agricultural and Food Chemistry 62 (25):6001–6. doi: 10.1021/jf501005n.
  • Ruiz, H. H., R. Ramasamy, and A. M. Schmidt. 2020. Advanced glycation end products: Building on the concept of the “common soil” in metabolic disease. Endocrinology 161 (1):bqz006. doi: 10.1210/endocr/bqz006.
  • Scheijen, J. L. J. M., E. Clevers, L. Engelen, P. C. Dagnelie, F. Brouns, C. D. A. Stehouwer, and C. G. Schalkwijk. 2016. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary age database. Food Chemistry 190:1145–50. doi: 10.1016/j.foodchem.2015.06.049.
  • Scheijen, J. L. J. M., N. M. J. Hanssen, M. M. van Greevenbroek, C. J. Van der Kallen, E. J. M. Feskens, C. D. A. Stehouwer, and C. G. Schalkwijk. 2018. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The codam study. Clinical Nutrition (Edinburgh, Scotland) 37 (3):919–25. doi: 10.1016/j.clnu.2017.03.019.
  • Scott, K. P., S. W. Gratz, P. O. Sheridan, H. J. Flint, and S. H. Duncan. 2013. The influence of diet on the gut microbiota. Pharmacological Research 69 (1):52–60. doi: 10.1016/j.phrs.2012.10.020.
  • Sebekova, K., and K. Brouder Sebekova. 2019. Glycated proteins in nutrition: Friend or foe? Experimental Gerontology 117:76–90. doi: 10.1016/j.exger.2018.11.012.
  • Sekhar, R. V., S. V. McKay, S. G. Patel, A. P. Guthikonda, V. T. Reddy, A. Balasubramanyam, and F. Jahoor. 2011. Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 34 (1):162–7. doi: 10.2337/dc10-1006.
  • Sell, D. R., and V. M. Monnier. 1989. Structure elucidation of a senescence cross-link from human extracellular matrix. The Journal of Biological Chemistry 264 (36):21597–602. doi: 10.1016/S0021-9258(20)88225-8.
  • Sheng, B., L. Larsen, T. Le, and D. Zhao. 2018. Digestibility of bovine serum albumin and peptidomics of the digests: Effect of glycation derived from α-dicarbonyl compounds. Molecules 23 (4):712. doi: 10.3390/molecules23040712.
  • Singh, R., A. Barden, T. Mori, and L. Beilin. 2001. Advanced glycation end-products: A review. Diabetologia 44 (2):129–46. doi:10.1007/s001250100676.
  • Smith, L., J. Villaret-Cazadamont, S. P. Claus, C. Canlet, H. Guillou, N. J. Cabaton, and S. Ellero-Simatos. 2020. Important considerations for sample collection in metabolomics studies with a special focus on applications to liver functions. Metabolites 10 (3):104. doi: 10.3390/metabo10030104.
  • Snelson, M., and M. T. Coughlan. 2019. Dietary advanced glycation end products: Digestion, metabolism and modulation of gut microbial ecology. Nutrients 11 (2):215. doi: 10.3390/nu11020215.
  • Snelson, M., S. M. Tan, R. E. Clarke, C. de Pasquale, V. Thallas-Bonke, T.-V. Nguyen, S. A. Penfold, B. E. Harcourt, K. C. Sourris, R. S. Lindblom, et al. 2021. Processed foods drive intestinal barrier permeability and microvascular diseases. Science Advances 7 (14):eabe4841. doi: 10.1126/sciadv.abe4841.
  • Somoza, V., E. Wenzel, C. Weiss, I. Clawin-Radecker, N. Grubel, and H. F. Erbersdobler. 2006. Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats. Molecular Nutrition & Food Research 50 (9):833–41. doi: 10.1002/mnfr.200600021.
  • Sun, X., X. Li, J. Tang, K. Lai, B. A. Rasco, and Y. Huang. 2021. Formation of protein-bound N(epsilon)-carboxymethyllysine and N(epsilon)-carboxyethyllysine in ground pork during commercial sterilization as affected by the type and concentration of sugars. Food Chemistry 336:127706. doi: 10.1016/j.foodchem.2020.127706.
  • Sun, X., J. Tang, J. Wang, B. A. Rasco, K. Lai, and Y. Huang. 2015. Formation of advanced glycation endproducts in ground beef under pasteurisation conditions. Food Chemistry 172:802–7. doi: 10.1016/j.foodchem.2014.09.129.
  • Sun, X., J. Tang, J. Wang, B. A. Rasco, K. Lai, and Y. Huang. 2016. Formation of free and protein-bound carboxymethyllysine and carboxyethyllysine in meats during commercial sterilization. Meat Science 116 (3):1–7. doi: 10.1016/j.meatsci.2016.01.009.
  • Tareke, E., A. Forslund, C. H. Lindh, C. Fahlgren, and E. Ostman. 2013. Isotope dilution ESI-LC-MS/MS for quantification of free and total Nepsilon-(1-carboxymethyl)-L-lysine and free Nepsilon-(1-carboxyethyl)-L-lysine: Comparison of total Nepsilon-(1-carboxymethyl)-L-lysine levels measured with new method to elisa assay in gruel samples. Food Chemistry 141 (4):4253–9. doi: 10.1016/j.foodchem.2013.07.003.
  • Tessier, F. J., and I. Birlouez-Aragon. 2012. Health effects of dietary Maillard reaction products: The results of icare and other studies. Amino Acids 42 (4):1119–31. doi: 10.1007/s00726-010-0776-z.
  • Tessier, F. J., E. Boulanger, and M. Howsam. 2021. Metabolic transit of dietary advanced glycation end-products—The case of Nɛ-carboxymethyllysine. Glycoconjugate Journal 38 (3):311–7. doi: 10.1007/s10719-020-09950-y.
  • Tessier, F. J., C. Niquet-Leridon, P. Jacolot, C. Jouquand, M. Genin, A. M. Schmidt, N. Grossin, and E. Boulanger. 2016. Quantitative assessment of organ distribution of dietary protein-bound (13) C-labeled N(varepsilon)-carboxymethyllysine after a chronic oral exposure in mice. Molecular Nutrition & Food Research 60 (11):2446–56. doi: 10.1002/mnfr.201600140.
  • Thomas, M. C., J. M. Forbes, and M. E. Cooper. 2005. Advanced glycation end products and diabetic nephropathy. American Journal of Therapeutics 12 (6):562–72. doi: 10.1097/01.mjt.0000178769.52610.69.
  • Thornalley, P. J. 2005. Measurement of protein glycation, glycated peptides, and glycation free adducts. Peritoneal Dialysis International 25 (6):522–33. doi: 10.1177/089686080502500603.
  • Uribarri, J., W. Cai, O. Sandu, M. Peppa, T. Goldberg, and H. Vlassara. 2005. Diet-derived advanced glycation end products are major contributors to the body’s age pool and induce inflammation in healthy subjects. Annals of the New York Academy of Sciences 1043:461–6. doi: 10.1196/annals.1333.052.
  • Uribarri, J., M. D. del Castillo, M. P. de la Maza, R. Filip, A. Gugliucci, C. Luevano-Contreras, M. H. Macías-Cervantes, D. H. Markowicz Bastos, A. Medrano, T. Menini, et al. 2015. Dietary advanced glycation end products and their role in health and disease. Advances in Nutrition (Bethesda, Md.) 6 (4):461–73. doi: 10.3945/an.115.008433.
  • Uribarri, J., S. Woodruff, S. Goodman, W. Cai, X. Chen, R. Pyzik, A. Yong, G. E. Striker, and H. Vlassara. 2010. Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association 110 (6):911–6 e12. doi: 10.1016/j.jada.2010.03.018.
  • Urpi-Sarda, M., E. Almanza-Aguilera, S. Tulipani, F. J. Tinahones, J. Salas-Salvadó, and C. Andres-Lacueva. 2015. Metabolomics for biomarkers of type 2 diabetes mellitus: Advances and nutritional intervention trends. Current Cardiovascular Risk Reports 9 (3):12. doi: 10.1007/s12170-015-0440-y.
  • van der Lugt, T., A. Opperhuizen, A. Bast, and M. F. Vrolijk. 2020. Dietary advanced glycation endproducts and the gastrointestinal tract. Nutrients 12 (9):2814. doi: 10.3390/nu12092814.
  • van der Lugt, T., K. Venema, S. van Leeuwen, M. F. Vrolijk, A. Opperhuizen, and A. Bast. 2020. Gastrointestinal digestion of dietary advanced glycation endproducts using an in vitro model of the gastrointestinal tract (TIM-1). Food & Function 11 (7):6297–307. doi: 10.1039/d0fo00450b.
  • van der Lugt, T., M. F. Vrolijk, T. F. H. Bovee, S. P. J. van Leeuwen, S. Vonsovic, A. Hamers, A. Opperhuizen, and A. Bast. 2021. Gastrointestinal digestion of dietary advanced glycation endproducts increases their pro-inflammatory potential. Food & Function 12 (15):6691–6. doi: 10.1039/d1fo00956g.
  • van Dongen, K. C. W., A. M. A. Linkens, S. M. W. Wetzels, K. Wouters, T. Vanmierlo, M. P. H. van de Waarenburg, J. L. J. M. Scheijen, W. M. de Vos, C. Belzer, and C. G. Schalkwijk. 2021. Dietary advanced glycation endproducts (ages) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Research International (Ottawa, Ont.) 147 (1):110547. doi: 10.1016/j.foodres.2021.110547.
  • Vaziri, N. D., Y.-Y. Zhao, and M. V. Pahl. 2016. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment. Nephrology, Dialysis, Transplantation 31 (5):737–46. doi: 10.1093/ndt/gfv095.
  • Wang, R., Y. Yin, and Z.-J. Zhu. 2019. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Analytical and Bioanalytical Chemistry 411 (19):4349–57. doi: 10.1007/s00216-019-01709-1.
  • Wang, Y. X., H. Xu, X. Liu, L. Liu, Y. N. Wu, and Z. Y. Gong. 2019. Studies on mechanism of free Nε-(carboxymethyl)lysine-induced toxic injury in mice. Journal of Biochemical and Molecular Toxicology 33 (7):e22322. doi: 10.1002/jbt.22322.
  • Wang, Z-q, L-l Jing, J-c Yan, Z. Sun, Z-y Bao, C. Shao, Q-w Pang, Y. Geng, L-l Zhang, and L-h Li. 2018. Role of ages in the progression and regression of atherosclerotic plaques. Glycoconjugate Journal 35 (5):443–50. doi: 10.1007/s10719-018-9831-x.
  • Wei, Q., T. Liu, and D.-W. Sun. 2018. Advanced glycation end-products (ages) in foods and their detecting techniques and methods: A review. Trends in Food Science & Technology 82:32–45. doi: 10.1016/j.tifs.2018.09.020.
  • Wu, Q., Y. Chen, Y. Ouyang, Y. He, J. Xiao, L. Zhang, and N. Feng. 2021. Effect of catechin on dietary ages absorption and cytotoxicity in Caco-2 cells. Food Chemistry 355 (7):129574. doi: 10.1016/j.foodchem.2021.129574.
  • Xu, D., L. Li, X. Zhang, H. Yao, M. Yang, Z. Gai, B. Li, and D. Zhao. 2019. Degradation of peptide-bound Maillard reaction products in gastrointestinal digests of glyoxal-glycated casein by human colonic microbiota. Journal of Agricultural and Food Chemistry 67 (43):12094–104. doi: 10.1021/acs.jafc.9b03520.
  • Xu, H., Z. Wang, Y. Wang, S. Hu, and N. Liu. 2013. Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration. PLoS One 8 (3):e57897. doi: 10.1371/journal.pone.0057897.
  • Yaacoub, R., R. Saliba, B. Nsouli, G. Khalaf, and I. Birlouez-Aragon. 2008. Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds. Journal of Agricultural and Food Chemistry 56 (16):7082–90. doi: 10.1021/jf800808d.
  • Yao, J., X. Zong, C. Cui, L. Mu, and H. Zhao. 2018. Metabonomics analysis of nonvolatile small molecules of beers during forced ageing. International Journal of Food Science & Technology 53 (7):1698–704. doi: 10.1111/ijfs.13754.
  • Yuan, X., J. Zhao, W. Qu, Y. Zhang, B. Jia, Z. Fan, Q. He, and J. Li. 2018. Accumulation and effects of dietary advanced glycation end products on the gastrointestinal tract in rats. International Journal of Food Science & Technology 53 (10):2273–81. doi: 10.1111/ijfs.13817.
  • Zeng, C., Y. Li, J. Ma, L. Niu, and F. R. Tay. 2019. Clinical/translational aspects of advanced glycation end-products. Trends in Endocrinology and Metabolism: TEM 30 (12):959–73. doi: 10.1016/j.tem.2019.08.005.
  • Zhang, G., G. Huang, L. Xiao, and A. E. Mitchell. 2011. Determination of advanced glycation endproducts by LC-MS/MS in raw and roasted almonds (Prunus dulcis). Journal of Agricultural and Food Chemistry 59 (22):12037–46. doi: 10.1021/jf202515k.
  • Zhang, Q., Y. Wang, and L. Fu. 2020. Dietary advanced glycation end‐products: Perspectives linking food processing with health implications. Comprehensive Reviews in Food Science and Food Safety 19 (5):2559–87. doi: 10.1111/1541-4337.12593.
  • Zhang, Q., F. Zha, S. Dong, and Y. Zhao. 2020. Formation of glycated products and quality attributes of shrimp patties affected by different cooking conditions. Journal of Aquatic Food Product Technology 29 (2):175–85. doi: 10.1080/10498850.2019.1707927.
  • Zhang, W., M. M. Poojary, V. Rauh, C. A. Ray, K. Olsen, and M. N. Lund. 2019. Quantitation of α-dicarbonyls and advanced glycation endproducts in conventional and lactose-hydrolyzed ultrahigh temperature milk during 1 year of storage. Journal of Agricultural and Food Chemistry 67 (46):12863–74. doi: 10.1021/acs.jafc.9b05037.
  • Zhao, D., T. T. Le, L. B. Larsen, L. Li, D. Qin, G. Su, and B. Li. 2017. Effect of glycation derived from Α-dicarbonyl compounds on the in vitro digestibility of Β-casein and Β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione. Food Research International (Ottawa, Ont.) 102:313–22. doi: 10.1016/j.foodres.2017.10.002.
  • Zhao, D., L. Li, T. T. Le, L. B. Larsen, G. Su, Y. Liang, and B. Li. 2017. Digestibility of glyoxal-glycated beta-casein and beta-lactoglobulin and distribution of peptide-bound advanced glycation end products in gastrointestinal digests. Journal of Agricultural and Food Chemistry 65 (28):5778–88. doi: 10.1021/acs.jafc.7b01951.
  • Zhao, D., B. Sheng, Y. Wu, H. Li, D. Xu, Y. Nian, S. Mao, C. Li, X. Xu, and G. Zhou. 2019. Comparison of free and bound advanced glycation end products in food: A review on the possible influence on human health. Journal of Agricultural and Food Chemistry 67 (51):14007–18. doi: 10.1021/acs.jafc.9b05891.
  • Zhou, X., M. M. Ulaszewska, C. De Gobba, A. Rinnan, M. W. Poulsen, J. Chen, F. Mattivi, R. V. Hedegaard, L. H. Skibsted, and L. O. Dragsted. 2021. New advanced glycation end products observed in rat urine by untargeted metabolomics after feeding with heat-treated skimmed milk powder. Molecular Nutrition & Food Research 65 (7):e2001049. doi: 10.1002/mnfr.202001049.
  • Zhou, Y., Q. Lin, C. Jin, L. Cheng, X. Zheng, M. Dai, and Y. Zhang. 2015. Simultaneous analysis of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine in foods by ultra-performance liquid chromatography-mass spectrometry with derivatization by 9-fluorenylmethyl chloroformate. Journal of Food Science 80 (2):C207–17. doi: 10.1111/1750-3841.12744.
  • Zhu, Z., R. Fang, Y. Cheng, I. A. Khan, J. Huang, B. Li, and M. Huang. 2020. Content of free and protein-binding Nε-carboxymethyllysine and Nε-carboxyethyllysine in different parts of braised chicken. Food Science & Nutrition 8 (2):767–76. doi: 10.1002/fsn3.1317.
  • Zhu, Z., M. Huang, Y. Cheng, I. A. Khan, and J. Huang. 2020. A comprehensive review of Nε-carboxymethyllysine and Nε-carboxyethyllysine in thermal processed meat products. Trends in Food Science & Technology 98:30–40. doi: 10.1016/j.tifs.2020.01.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.