1,112
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Interaction between four galactans with different structural characteristics and gut microbiota

, , , & ORCID Icon

References

  • Aalbers, F., J. P. Turkenburg, G. J. Davies, L. Dijkhuizen, and A. L. V. Bueren. 2015. Structural and functional characterization of a novel family GH115 4-O-methyl-alpha-glucuronidase with specificity for decorated arabinogalactans. Journal of Molecular Biology 427 (24):3935–46. doi: 10.1016/j.jmb.2015.07.006.
  • Aguirre, M., C. Bussolo de Souza, and K. Venema. 2016. The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLoS One 11 (7):e0159236. doi: 10.1371/journal.pone.0159236.
  • Benjdia, A., E. C. Martens, J. I. Gordon, and O. Berteau. 2011. Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. The Journal of Biological Chemistry 286 (29):25973–82. doi: 10.1074/jbc.M111.228841.
  • Brown, C. T., I. Sharon, B. C. Thomas, C. J. Castelle, M. J. Morowitz, and J. F. Banfield. 2013. Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life. Microbiome 1 (1):30. doi: 10.1186/2049-2618-1-30.
  • Cantarel, B. L., V. Lombard, and B. Henrissat. 2012. Complex carbohydrate utilization by the healthy human microbiome. PLoS One 7 (6):e28742. doi: 10.1371/journal.pone.0028742.
  • Cartmell, A., J. Muñoz-Muñoz, J. A. Briggs, D. A. Ndeh, E. C. Lowe, A. Baslé, N. Terrapon, K. Stott, T. Heunis, J. Gray, et al. 2018. A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology 3 (11):1314–26. doi: 10.1038/s41564-018-0258-8.
  • Chen, J. 2013. Molecular mechanism of the Escherichia coli maltose transporter. Current Opinion in Structural Biology 23 (4):492–8. doi: 10.1016/j.sbi.2013.03.011.
  • Crociani, F., A. Alessandrini, M. M. Mucci, and B. Biavati. 1994. Degradation of complex carbohydrates by Bifidobacterium spp. International Journal of Food Microbiology 24 (1–2):199–210. doi: 10.1016/0168-1605(94)90119-8.
  • D’Elia, J. N., and A. A. Salyers. 1996. Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron. Journal of Bacteriology 178 (24):7180–6. doi: 10.1128/jb.178.24.7180-6.1996.
  • Daguet, D., I. Pinheiro, A. Verhelst, S. Possemiers, and M. Marzorati. 2016. Arabinogalactan and fructooligosaccharides improve the gut barrier function in distinct areas of the colon in the Simulator of the Human Intestinal Microbial Ecosystem. Journal of Functional Foods 20:369–79. doi: 10.1016/j.jff.2015.11.005.
  • Deutscher, J., F. M. Désirée Aké, M. Derkaoui, A. C. Zébré, T. N. Cao, H. Bouraoui, T. Kentache, A. Mokhtari, E. Milohanic, and P. Joyet. 2014. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: Regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiology and Molecular Biology Reviews: MMBR 78 (2):231–56. doi: 10.1128/MMBR.00001-14.
  • Doyle, J. P., P. Giannouli, B. Rudolph, and E. R. Morris. 2010. Preparation, authentication, rheology and conformation of theta carrageenan. Carbohydrate Polymers 80 (3):648–54. doi: 10.1016/j.carbpol.2009.10.029.
  • El Kaoutari, A., F. Armougom, J. I. Gordon, D. Raoult, and B. Henrissat. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews. Microbiology 11 (7):497–504. doi: 10.1038/nrmicro3050.
  • Fang, Q., J. Hu, Q. Nie, and S. Nie. 2019. Effects of polysaccharides on glycometabolism based on gut microbiota alteration. Trends in Food Science & Technology 92:65–70. doi: 10.1016/j.tifs.2019.08.015.
  • Foley, M. H., D. W. Cockburn, and N. M. Koropatkin. 2016. The Sus operon: A model system for starch uptake by the human gut Bacteroidetes. Cellular and Molecular Life Sciences: CMLS 73 (14):2603–17. doi: 10.1007/s00018-016-2242-x.
  • Fujita, K., A. Sakamoto, S. Kaneko, T. Kotake, Y. Tsumuraya, and K. Kitahara. 2019. Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Applied Microbiology and Biotechnology 103 (3):1299–310. doi: 10.1007/s00253-018-9566-4.
  • Fujita, K., T. Sakaguchi, A. Sakamoto, M. Shimokawa, and K. Kitahara. 2014. Bifidobacterium longum subsp. longum exo-β-1,3-galactanase, an enzyme for the degradation of type II arabinogalactan. Applied and Environmental Microbiology 80 (15):4577–84. doi: 10.1128/AEM.00802-14.
  • Fujita, K., Y. Sasaki, and K. Kitahara. 2019. Degradation of plant arabinogalactan proteins by intestinal bacteria: Characteristics and functions of the enzymes involved. Applied Microbiology and Biotechnology 103 (18):7451–7. doi: 10.1007/s00253-019-10049-0.
  • Funami, T., M. Hiroe, S. Noda, I. Asai, S. Ikeda, and K. Nishinari. 2007. Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloids 21 (4):617–29. doi: 10.1016/j.foodhyd.2006.07.013.
  • Glenwright, A. J., K. R. Pothula, S. P. Bhamidimarri, D. S. Chorev, A. Baslé, S. J. Firbank, H. Zheng, C. V. Robinson, M. Winterhalter, U. Kleinekathöfer, et al. 2017. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature 541 (7637):407–11. doi: 10.1038/nature20828.
  • Goellner, E. M., J. Utermoehlen, R. Kramer, and B. Classen. 2011. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydrate Polymers 86 (4):1739–44. doi: 10.1016/j.carbpol.2011.07.006.
  • Harris, S., S. Powers, A. Monteagudo-Mera, O. Kosik, A. Lovegrove, P. Shewry, and D. Charalampopoulos. 2020. Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. European Journal of Nutrition 59 (1):297–307. doi: 10.1007/s00394-019-01908-7.
  • Hatada, Y., Y. Ohta, and K. Horikoshi. 2006. Hyperproduction and application of alpha-agarase to enzymatic enhancement of antioxidant activity of porphyran. Journal of Agricultural and Food Chemistry 54 (26):9895–900. doi: 10.1021/jf0613684.
  • Hehemann, J. H., A. B. Boraston, and M. Czjzek. 2014. A sweet new wave: Structures and mechanisms of enzymes that digest polysaccharides from marine algae. Current Opinion in Structural Biology 28:77–86. doi: 10.1016/j.sbi.2014.07.009.
  • Hehemann, J. H., A. G. Kelly, N. A. Pudlo, E. C. Martens, and A. B. Boraston. 2012. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proceedings of the National Academy of Sciences of the United States of America 109 (48):19786–91. doi: 10.1073/pnas.1211002109.
  • Hehemann, J. H., G. Correc, T. Barbeyron, W. Helbert, M. Czjzek, and G. Michel. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464 (7290):908–12. doi: 10.1038/nature08937.
  • Hinz, S. W. A., M. I. Pastink, L. A. M. van den Broek, J. P. Vincken, and A. G. J. Voragen. 2005. Bifidobacterium longum endogalactanase liberates galactotriose from type I galactans. Applied and Environmental Microbiology 71 (9):5501–10. doi: 10.1128/aem.71.9.5501-5510.2005.
  • Hu, B., Q. Gong, Y. Wang, Y. Ma, J. Li, and W. Yu. 2006. Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 12 (5–6):260–6. doi: 10.1016/j.anaerobe.2006.07.005.
  • Huang, J., Q. Wang, Q. Xu, Y. Zhang, B. Lin, X. Guan, L. Qian, and Y. Zheng. 2019. In vitro fermentation of O acetyl arabinoxylan from bamboo shavings by human colonic microbiota. International Journal of Biological Macromolecules 125:27–34. doi: 10.1016/j.ijbiomac.2018.12.024.
  • Inaba, M., T. Maruyama, Y. Yoshimi, T. Kotake, K. Matsuoka, T. Koyama, T. Tryfona, P. Dupree, and Y. Tsumuraya. 2015. L-Fucose-containing arabinogalactan-protein in radish leaves. Carbohydrate Research 415:1–11. doi: 10.1016/j.carres.2015.07.002.
  • Jiang, P., W. Meng, F. Shi, C. Chen, Y. Sun, and L. Jiao. 2020. Structural characteristics, antioxidant properties and antiaging activities of galactan produced by Mentha haplocalyx Briq. Carbohydrate Polymers 234:115936. doi: 10.1016/j.carbpol.2020.115936.
  • Jiao, G., G. Yu, J. Zhang, and H. S. Ewart. 2011. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs 9 (2):196–223. doi: 10.3390/md9020196.
  • Korach-Rechtman, H., S. Freilich, S. Gerassy-Vainberg, K. Buhnik-Rosenblau, Y. Danin-Poleg, H. Bar, and Y. Kashi. 2019. Murine genetic background has a stronger impact on the composition of the gut microbiota than maternal inoculation or exposure to unlike exogenous microbiota. Applied and Environmental Microbiology 85 (18):e00826-19. doi: 10.1128/AEM.00826-19.
  • La Rosa, S. L., M. L. Leth, L. Michalak, M. E. Hansen, N. A. Pudlo, R. Glowacki, G. Pereira, C. T. Workman, M. Arntzen, P. B. Pope, et al. 2019. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nature Communications 10 (1):905. doi: 10.1038/s41467-019-08812-y.
  • Lahaye, M. 2001. Developments on gelling algal galactans, their structure and physico-chemistry. Journal of Applied Phycology 13 (2):173–84. doi: 10.1023/A:1011142124213.
  • Leth, M. L., M. Ejby, C. Workman, D. A. Ewald, S. S. Pedersen, C. Sternberg, M. L. Bahl, T. R. Licht, F. L. Aachmann, B. Westereng, et al. 2018. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nature Microbiology 3 (5):570–80. doi: 10.1038/s41564-018-0132-8.
  • Li, M., G. Li, L. Zhu, Y. Yin, X. Zhao, C. Xiang, G. Yu, and X. Wang. 2014. Isolation and characterization of an agaro-oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals. PLoS One 9 (3):e91106. doi: 10.1371/journal.pone.0091106.
  • Li, M., Q. Shang, G. Li, X. Wang, and G. Yu. 2017. Degradation of marine algae-derived carbohydrates by Bacteroidetes isolated from human gut microbiota. Marine Drugs 15 (4):92. doi: 10.3390/md15040092.
  • Loosveld, A.-M A., P. J. Grobet, and J. A. Delcour. 1997. Contents and structural features of water-extractable arabinogalactan in wheat flour fractions. Journal of Agricultural and Food Chemistry 45 (6):1998–2002. doi: 10.1021/jf960901k.
  • Luis, A. S., J. Briggs, X. Zhang, B. Farnell, D. Ndeh, A. Labourel, A. Baslé, A. Cartmell, N. Terrapon, K. Stott, et al. 2018. Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology 3 (2):210–9. doi: 10.1038/s41564-017-0079-1.
  • Marinho-Soriano, E. 2001. Agar polysaccharides from Gracilaria species (Rhodophyta, Gracilariaceae). Journal of Biotechnology 89 (1):81–4. doi: 10.1016/S0168-1656(01)00255-3.
  • Martens, E. C., E. C. Lowe, H. Chiang, N. A. Pudlo, M. Wu, N. P. McNulty, D. W. Abbott, B. Henrissat, H. J. Gilbert, D. N. Bolam, et al. 2011. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biology 9 (12):e1001221. doi: 10.1371/journal.pbio.1001221.
  • Martens, E. C., H. C. Chiang, and J. I. Gordon. 2008. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host & Microbe 4 (5):447–57. doi: 10.1016/j.chom.2008.09.007.
  • Matulová, M., P. Capek, S. Kaneko, L. Navarini, and F. S. Liverani. 2011. Structure of arabinogalactan oligosaccharides derived from arabinogalactan-protein of Coffea arabica instant coffee powder. Carbohydrate Research 346 (8):1029–36. doi: 10.1016/j.carres.2011.03.016.
  • Meng, Y., Y. Qu, W. Wu, L. Chen, L. Sun, G. Tai, Y. Zhou, and H. Cheng. 2019. Galactan isolated from Cantharellus cibarius modulates antitumor immune response by converting tumor-associated macrophages toward M1-like phenotype. Carbohydrate Polymers 226:115295. doi: 10.1016/j.carbpol.2019.115295.
  • Mi, Y., Y. X. Chin, W. X. Cao, Y. G. Chang, P. E. Lim, C. H. Xue, and Q. J. Tang. 2020. Native κ-carrageenan induced-colitis is related to host intestinal microecology. International Journal of Biological Macromolecules 147:284–94. doi: 10.1016/j.ijbiomac.2020.01.072.
  • Michalak, M., L. V. Thomassen, H. Roytio, A. C. Ouwehand, A. S. Meyer, and J. D. Mikkelsen. 2012. Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans in Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzyme and Microbial Technology 50 (2):121–9. doi: 10.1016/j.enzmictec.2011.11.001.
  • Michels, N., T. Van de Wiele, F. Fouhy, S. O’Mahony, G. Clarke, and J. Keane. 2019. Gut microbiome patterns depending on children’s psychosocial stress: Reports versus biomarkers. Brain, Behavior, and Immunity 80:751–62. doi: 10.1016/j.bbi.2019.05.024.
  • Morita, N., E. Umemoto, S. Fujita, A. Hayash, J. Kikuta, I. Kimura, T. Haneda, T. Imai, A. Inoue, H. Mimuro, et al. 2019. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites. Nature 566 (7742):110–4. doi: 10.1038/s41586-019-0884-1.
  • Munoz-Munoz, J., A. Cartmell, N. Terrapon, A. Baslé, B. Henrissat, and H. J. Gilbert. 2017. An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. The Journal of Biological Chemistry 292 (32):13271–83. doi: 10.1074/jbc.M117.794578.
  • Munoz-Munoz, J., A. Cartmell, N. Terrapon, B. Henrissat, and H. J. Gilbert. 2017. Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proceedings of the National Academy of Sciences of the United States of America 114 (19):4936–41. doi: 10.1073/pnas.1701130114.
  • Navarro, D. A., A. M. Ricci, M. C. Rodríguez, and C. A. Stortz. 2011. Xylogalactans from Lithothamnion heterocladum, a crustose member of the Corallinales (Rhodophyta). Carbohydrate Polymers 84 (3):944–51. doi: 10.1016/j.carbpol.2010.12.048.
  • Ndeh, D., and H. J. Gilbert. 2018. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiology Reviews 42 (2):146–64. doi: 10.1093/femsre/fuy002.
  • Okawa, M., K. Fukamachi, H. Tanaka, and T. Sakamoto. 2013. Identification of an exo-β-1,3-D-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan. Applied Microbiology and Biotechnology 97 (22):9685–94. doi: 10.1007/s00253-013-4759-3.
  • Ozaki, S., N. Oki, S. Suzuki, and S. Kitamura. 2010. Structural characterization and hypoglycemic effects of arabinogalactan-protein from the tuberous cortex of the white-skinned sweet potato (Ipomoea batatas L.). Journal of Agricultural and Food Chemistry 58 (22):11593–9. doi: 10.1021/jf101283f.
  • Pluvinage, B., J. M. Grondin, C. Amundsen, L. Klassen, P. E. Moote, Y. Xiao, D. Thomas, N. A. Pudlo, A. Anele, E. C. Martens, et al. 2018. Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nature Communications 9 (1):1043. doi: 10.1038/s41467-018-03366-x.
  • Ponder, G. R., and G. N. Richards. 1997. Arabinogalactan from western larch, part III: Alkaline degradation revisited, with novel conclusions on molecular structure. Carbohydrate Polymers 34 (4):251–61. doi: 10.1016/S0144-8617(97)00099-4.
  • Prajapati, V. D., P. M. Maheriya, G. K. Jani, and H. K. Solanki. 2014. Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydrate Polymers 105:97–112. doi: 10.1016/j.carbpol.2014.01.067.
  • Rakoff-Nahoum, S., K. R. Foster, and L. E. Comstock. 2016. The evolution of cooperation within the gut microbiota. Nature 533 (7602):255–9. doi: 10.1038/nature17626.
  • Rogowski, A., J. A. Briggs, J. C. Mortimer, T. Tryfona, N. Terrapon, E. C. Lowe, A. Basle, C. Morland, A. M. Day, H. Zheng, et al. 2016. Corrigendum: Glycan complexity dictates microbial resource allocation in the large intestine. Nature Communications 7:10705. doi: 10.1038/ncomms10705.
  • Sanders, M. E., D. J. Merenstein, G. Reid, G. R. Gibson, and R. A. Rastall. 2019. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews. Gastroenterology & Hepatology 16 (10):605–16. doi: 10.1038/s41575-019-0173-3.
  • Schwalm, N. D., and E. A. Groisman. 2017. Navigating the gut buffet: Control of polysaccharide utilization in Bacteroides spp. Trends in Microbiology 25 (12):1005–15. doi: 10.1016/j.tim.2017.06.009.
  • Seong, H., J. H. Bae, J. S. Seo, S. A. Kim, T. J. Kim, and N. S. Han. 2019. Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. Journal of Functional Foods 57:408–16. doi: 10.1016/j.jff.2019.04.014.
  • Shang, Q., H. Jiang, C. Cai, J. Hao, G. Li, and G. Yu. 2018. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview. Carbohydrate Polymers 179:173–85. doi: 10.1016/j.carbpol.2017.09.059.
  • Shang, Q., W. Sun, X. Shan, H. Jiang, C. Cai, J. Hao, G. Li, and G. Yu. 2017. Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicology Letters 279:87–95. doi: 10.1016/j.toxlet.2017.07.904.
  • Shimoda, R., K. Okabe, T. Kotake, K. Matsuoka, T. Koyama, T. Tryfona, H. Liang, P. Dupree, and Y. Tsumuraya. 2014. Enzymatic fragmentation of carbohydrate moieties of radish arabinogalactan-protein and elucidation of the structures. Bioscience, Biotechnology, and Biochemistry 78 (5):818–31. doi: 10.1080/09168451.2014.910100.
  • Shin, J. H., Y. H. Park, M. Sim, S. A. Kim, H. Joung, and D. M. Shin. 2019. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Research in Microbiology 170 (4–5):192–201. doi: 10.1016/j.resmic.2019.03.003.
  • Sheridan, P. O., J. C. Martin, T. D. Lawley, H. P. Browne, H. M. B. Harris, A. Bernalier-Donadille, S. H. Duncan, P. W. O’Toole, K. P Scott, and H. J Flint. 2016. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microbial Genomics 2 (2):e000043. doi: 10.1099/mgen.0.000043.
  • Solis, A. G., M. Klapholz, J. Zhao, and M. Levy. 2020. The bidirectional nature of microbiome-epithelial cell interactions. Current Opinion in Microbiology 56:45–51. doi: 10.1016/j.mib.2020.06.007.
  • Speciale, I., R. Verma, F. D. Lorenzo, A. Molinaro, S. H. Im, and C. D. Castro. 2019. Bifidobacterium bifidum presents on the cell surface a complex mixture of glucans and galactans with different immunological properties. Carbohydrate Polymers 218:269–78. doi: 10.1016/j.carbpol.2019.05.006.
  • Sugano, Y., I. Terada, M. Arita, M. Noma, and T. Matsumoto. 1993. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Applied and Environmental Microbiology 59 (5):1549–54. doi: 10.1128/aem.59.5.1549-1554.1993.
  • Sun, Y., X. Cui, M. Duan, C. Ai, S. Song, and X. Chen. 2019. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells. Journal of Functional Foods 59:80–91. doi: 10.1016/j.jff.2019.05.036.
  • Terpend, K., S. Possemiers, D. Daguet, and M. Marzorati. 2013. Arabinogalactan and fructo-oligosaccharides have a different fermentation profile in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Environmental Microbiology Reports 5 (4):595–603. doi: 10.1111/1758-2229.12056.
  • Tryfona, T., H. C. Liang, T. Kotake, S. Kaneko, J. Marsh, H. Ichinose, A. Lovegrove, Y. Tsumuraya, P. R. Shewry, E. Stephens, et al. 2010. Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydrate Research 345 (18):2648–56. doi: 10.1016/j.carres.2010.09.018.
  • Tryfona, T., H. C. Liang, T. Kotake, Y. Tsumuraya, E. Stephens, and P. Dupree. 2012. Structural characterization of arabidopsis leaf arabinogalactan polysaccharides. Plant Physiology 160 (2):653–66. doi: 10.1104/pp.112.202309.
  • Tsumuraya, Y., K. Ogura, Y. Hashimoto, H. Mukoyama, and S. Yamamoto. 1988. Arabinogalactan-proteins from primary and mature roots of radish (Raphanus sativus L.). Plant Physiology 86 (1):155–60. doi: 10.1104/pp.86.1.155.
  • Wang, J., L. Zhang, Y. Yu, and P. C. K. Cheung. 2009. Enhancement of antitumor activities in sulfated and carboxymethylated polysaccharides of Ganoderma lucidum. Journal of Agricultural and Food Chemistry 57 (22):10565–72. doi: 10.1021/jf902597w.
  • Wang, Y., G. Chen, Y. Peng, Y. Rui, X. Zeng, and H. Ye. 2019. Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera. LWT - Food Science and Technology 100:167–74. doi: 10.1016/j.lwt.2018.10.028.
  • Wu, Y., J. Wan, U. Choe, Q. Pham, N. W. Schoene, Q. He, B. Li, L. Yu, and T. T. Y. Wang. 2019. Interactions between food and gut microbiota: Impact on human health. Annual Review of Food Science and Technology 10:389–408. doi: 10.1146/annurev-food-032818-121303.
  • Xu, S. Y., J. J. Aweya, N. Li, R. Y. Deng, W. Y. Chen, J. Tang, and K. L. Cheong. 2019. Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota. Food Chemistry 289:177–86. doi: 10.1016/j.foodchem.2019.03.050.
  • Yan, N. 2015. Structural biology of the major facilitator superfamily transporters. Annual Review of Biophysics 44:257–83. doi: 10.1146/annurev-biophys-060414-033901.
  • Yang, G., Y. Qu, Y. Meng, Y. Wang, C. Song, H. Cheng, X. Li, L. Sun, and Y. Zhou. 2019. A novel linear 3-O-methylated galactan isolated from Cantharellus cibarius activates macrophages. Carbohydrate Polymers 214:34–43. doi: 10.1016/j.carbpol.2019.03.002.
  • Yun, E. J., I. G. Choi, and K. H. Kim. 2015. Red macroalgae as a sustainable resource for bio-based products. Trends in Biotechnology 33 (5):247–9. doi: 10.1016/j.tibtech.2015.02.006.
  • Yun, E. J., S. Lee, H. T. Kim, J. G. Pelton, S. Kim, H. J. Ko, I. G. Choi, and K. H. Kim. 2015. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environmental Microbiology 17 (5):1677–88. doi: 10.1111/1462-2920.12607.
  • Zhang, C. Q., X. Chen, and K. Ding. 2019. Structural characterization of a galactan from Dioscorea opposita Thunb. and its bioactivity on selected Bacteroides strains from human gut microbiota. Carbohydrate Polymers 218:299–306. doi: 10.1016/j.carbpol.2019.04.084.
  • Zhang, Q., H. Qi, T. Zhao, E. Deslandes, N. M. Ismaeli, F. Molloy, and A. T. Critchley. 2005. Chemical characteristics of a polysaccharide from Porphyra capensis (Rhodophyta). Carbohydrate Research 340 (15):2447–50. doi: 10.1016/j.carres.2005.08.009.
  • Zhao, T., Q. Zhang, H. Qi, H. Zhang, X. Niu, Z. Xu, and Z. Li. 2006. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. International Journal of Biological Macromolecules 38 (1):45–50. doi: 10.1016/j.ijbiomac.2005.12.018.
  • Zhou, C., X. Yu, Y. Zhang, R. He, and H. Ma. 2012. Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydrate Polymers 87 (3):2046–51. doi: 10.1016/j.carbpol.2011.10.026.
  • Zhu, Y., L. Dong, L. Huang, Z. Shi, J. Dong, Y. Yao, and R. Shen. 2020. Effects of oat β-glucan, oat resistant starch, and the whole oat flour on insulin resistance, inflammation, and gut microbiota in high-fat-diet-induced type 2 diabetic rats. Journal of Functional Foods 69:103939. doi: 10.1016/j.jff.2020.103939.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.