518
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Antioxidant assessment of agricultural produce using fluorescence techniques: a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & show all

References

  • Abdel-Hamid, R., A. Bakr, E. F. Newair, and F. Garcia. 2019. Simultaneous voltammetric determination of gallic and protocatechuic acids in mango juice using a reduced graphene oxide-based electrochemical sensor. Beverages 5 (1):17. doi: 10.3390/beverages5010017.
  • Agati, G., E. Azzarello, S. Pollastri, and M. Tattini. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science: An International Journal of Experimental Plant Biology 196:67–76. doi: 10.1016/j.plantsci.2012.07.014.
  • Al Riza, D. F., N. Kondo, P. Catalano, and F. Giametta. 2019. A preliminary study on the potential of front face fluorescence spectroscopy for Italian mono-cultivar extra virgin olive oil discrimination. Journal of Agricultural Engineering 50 (1):5–11. doi: 10.4081/jae.2018.877.
  • Al Riza, D. F., N. Kondo, V. K. Rotich, C. Perone, and F. Giametta. 2021. Cultivar and geographical origin authentication of Italian extra virgin olive oil using front-face fluorescence spectroscopy and chemometrics. Food Control 121:107604. doi: 10.1016/j.foodcont.2020.107604.
  • Al-Kofahi, Y., A. Zaltsman, R. Graves, W. Marshall, and M. Rusu. 2018. A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinformatics 19 (1):365. doi: 10.1186/s12859-018-2375-z.
  • Amarowicz, R., and F. Shahidi. 2017. Antioxidant activity of broad bean seed extract and its phenolic composition. Journal of Functional Foods 38:656–62. doi: 10.1016/j.jff.2017.04.002.
  • Anbazhagan, V., A. Kalaiselvan, M. Jaccob, P. Venuvanalingam, and R. Renganathan. 2008. Investigations on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by certain flavonoids. Journal of Photochemistry and Photobiology. B, Biology 91 (2–3):143–50. doi: 10.1016/j.jphotobiol.2008.03.003.
  • Apak, R., S. Gorinstein, V. Böhm, K. M. Schaich, M. Özyürek, and K. Güçlü. 2013. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure and Applied Chemistry 85 (5):957–98. doi: 10.1351/PAC-REP-12-07-15.
  • Atmaca, G. 2004. Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal 45 (5):776–88. doi: 10.3349/ymj.2004.45.5.776.
  • Ayaz, M., M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune. 2019. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access 7:129551–83. doi: 10.1109/ACCESS.2019.2932609.
  • Bansal, V., A. Sharma, C. Ghanshyam, and M. L. Singla. 2014. Coupling of chromatographic analyses with pretreatment for the determination of bioactive compounds in Emblica officinalis juice. Analytical Methods 6 (2):410–8. doi: 10.1039/C3AY41375F.
  • Baschieri, A., M. D. Ajvazi, J. L. F. Tonfack, L. Valgimigli, and R. Amorati. 2017. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chemistry 232:656–63. doi: 10.1016/j.foodchem.2017.04.036.
  • Ben Ahmed, Z., M. Yousfi, J. Viaene, B. Dejaegher, K. Demeyer, D. Mangelings, and Y. V. Heyden. 2016. Determination of optimal extraction conditions for phenolic compounds from: Pistacia atlantica leaves using the response surface methodology. Analytical Methods 8 (31):6107–14. doi: 10.1039/C6AY01739H.
  • Bigelow, C. E. 2005. Biological applications of confocal fluorescence polarization microscopy. New York, USA: University of Rochester.
  • Broderick, C. E., and P. H. Cooke. 2009. Fruit composition, tissues, and localization of antioxidants and capsaicinoids in capsicum peppers by fluorescence microscopy. Acta Horticulturae 841:85–90. doi: 10.17660/ActaHortic.2009.841.7.
  • Campa, C., L. Mondolot, A. Rakotondravao, L. P. R. Bidel, A. Gargadennec, E. Couturon, P. La Fisca, J. J. Rakotomalala, C. Jay-Allemand, and A. P. Davis. 2012. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: Biological implications and uses. Annals of Botany 110 (3):595–613. doi: 10.1093/aob/mcs119.
  • Canter, P. H., B. Wider, and E. Ernst. 2007. The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: A systematic review of randomized clinical trials. Rheumatology (Oxford, England) 46 (8):1223–33. doi: 10.1093/rheumatology/kem116.
  • Cao, L., H. Yu, S. Shao, S. Wang, and Y. Guo. 2014. Evaluating the antioxidant capacity of polyphenols with an off–on fluorescence probe and the mechanism study. Analytical Methods 6 (18):7149. doi: 10.1039/C4AY01276C.
  • Chen, H., K. Liu, L. Hu, A. A. Al-Ghamdi, and X. Fang. 2015. New concept ultraviolet photodetectors. Materials Today 18 (9):493–502. doi: 10.1016/j.mattod.2015.06.001.
  • Chen, J., B. Q. Li, Y. Q. Cui, E. Yu, and H. L. Zhai. 2015. A fast and effective method of quantitative analysis of VB1, VB2 and VB6 in B-vitamins complex tablets based on three-dimensional fluorescence spectra. Journal of Food Composition and Analysis 41:122–8. doi: 10.1016/j.jfca.2015.02.003.
  • Cheng, H. D., X. H. Jiang, Y. Sun, and J. Wang. 2001. Color image segmentation: Advances and prospects. Pattern Recognition 34 (12):2259–81. doi: 10.1016/S0031-3203(00)00149-7.
  • Chevion, S., M. A. Roberts, and M. Chevion. 2000. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radical Biology and Medicine 28 (6):860–70. doi: 10.1016/S0891-5849(00)00178-7.
  • Chong, P. L.-G., and M. Olsher. 2007. Fluorometric assay for detection of sterol oxidation in liposomal membranes, 145–58. New Jersey, USA: Humana Press. doi: 10.1007/978-1-59745-519-0_10.
  • Council, N. R. 2010. Seeing photons: Progress and limits of visible and infrared sensor arrays. Washington, DC: National Academies Press. doi:10.17226/12896.
  • Croce, A. C., and G. Bottiroli. 2014. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. European Journal of Histochemistry: EJH 58 (4):2461. doi: 10.4081/ejh.2014.2461.
  • Daud, D., S. C. Yang, C. C. Balaja, F. Ja’afar, H. M. Yasin, E. Kusrini, W. W. Prihandini, and A. Usman. 2020. Radical scavenging activity assay and red fluorescence microscopy studies: Antioxidant properties of selected young and mature leaves for application in pharmaceutical industry. Evergreen 7 (2):216–20. doi: 10.5109/4055222.
  • Demirkaya, F., Y. Kadioglu, O. Senol, and M. Yaman. 2013. Spectrofluorimetric determination of α-tocopherol in capsules and human plasma. Indian Journal of Pharmaceutical Sciences 75:563–8. doi: 10.4103/0250-474X.122867.
  • Di Meo, F., V. Lemaur, J. Cornil, R. Lazzaroni, J. L. Duroux, Y. Olivier, and P. Trouillas. 2013. Free radical scavenging by natural polyphenols: Atom versus electron transfer. The Journal of Physical Chemistry. A 117 (10):2082–92. doi: 10.1021/jp3116319.
  • Donaldson, L. 2020. Autofluorescence in plants. Molecules 25 (10):2393. doi: 10.3390/molecules25102393.
  • Finley, J. W., A. N. Kong, K. J. Hintze, E. H. Jeffery, L. L. Ji, and X. G. Lei. 2011. Antioxidants in foods: State of the science important to the food industry. Journal of Agricultural and Food Chemistry 59 (13):6837–46. doi: 10.1021/jf2013875.
  • Frankel, E. N. 2011. Nutritional and biological properties of extra virgin olive oil. Journal of Agricultural and Food Chemistry 59 (3):785–92. doi: 10.1021/jf103813t.
  • Fujita, K., M. Tsuta, M. Kokawa, and J. Sugiyama. 2010. Detection of deoxynivalenol using fluorescence excitation–emission matrix. Food and Bioprocess Technology 3 (6):922–7. doi: 10.1007/s11947-010-0397-2.
  • Gillbro, T., and R. J. Cogdell. 1989. Carotenoid fluorescence. Chemical Physics Letters 158 (3–4):312–6. doi: 10.1016/0009-2614(89)87342-7.
  • Guo, X., H. Yu, Z. Yan, H. Gao, and Y. Zhang. 2018. Tracking variations of fluorescent dissolved organic matter during wastewater treatment by accumulative fluorescence emission spectroscopy combined with principal component, second derivative and canonical correlation analyses. Chemosphere 194:463–70. doi: 10.1016/j.chemosphere.2017.12.023.
  • Higashi-Okai, K., H. Nagino, K. Yamada, and Y. Okai. 2006. Antioxidant and prooxidant activities of B group vitamins in lipid peroxidation. Journal of UOEH 28 (4):359–68. https://www.jstage.jst.go.jp/article/juoeh/28/4/28_KJ00004412058/_article/. doi: 10.7888/juoeh.28.359.
  • Homocianu, M., A. Airinei, and D. O. Dorohoi. 2011. Solvent effects on the electronic absorption and fluorescence spectra. Journal of Advanced Research in Physics 2 (1):1–9.
  • Hoyos-Arbeláez, J., L. Blandón-Naranjo, M. Vázquez, and J. Contreras-Calderón. 2018. Antioxidant capacity of mango fruit (Mangifera indica). An electrochemical study as an approach to the spectrophotometric methods. Food Chemistry 266 (March):435–40. doi: 10.1016/j.foodchem.2018.06.044.
  • Hunt, G. 1980. Phenolic constituents of tomato fruit cuticles. Phytochemistry 19 (5):1415–9. doi: 10.1016/S0031-9422(00)82090-7.
  • Issaad, F. Z., I. P. G. Fernandes, T. A. Enache, C. Mouats, I. A. Rodrigues, and A. M. Oliveira-Brett. 2017. Flavonoids in selected Mediterranean fruits: Extraction, electrochemical detection and ­total antioxidant capacity evaluation. Electroanalysis 29 (2):358–66. doi: 10.1002/elan.201600370.
  • Itakura, K., Y. Saito, T. Suzuki, N. Kondo, and F. Hosoi. 2019. Estimation of citrus maturity with fluorescence spectroscopy using deep learning. Horticulturae 5 (1): 2. doi: 10.3390/horticulturae5010002.
  • Jamme, F., S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers. 2013. Deep UV autofluorescence microscopy for cell biology and tissue histology. Biology of the Cell 105 (7):277–88. doi: 10.1111/boc.201200075.
  • Kaur, C., and H. C. Kapoor. 2001. Antioxidants in fruits and vegetables - The millennium’s health. International Journal of Food Science and Technology 36 (7):703–25. doi: 10.1046/j.1365-2621.2001.00513.x.
  • Khan, M. A., N. Maeda, M. Jo, Y. Akamatsu, R. Tanabe, Y. Yamada, and H. Hirayama. 2019. 13 mW operation of a 295-310 nm AlGaN UV-B LED with a p-AlGaN transparent contact layer for real world applications. Journal of Materials Chemistry C 7 (1):143–52. doi: 10.1039/C8TC03825B.
  • Komorsky-Lovrić, Š., and I. Novak. 2011. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes. Journal of Food Science 76 (6):C916-C920. doi: 10.1111/j.1750-3841.2011.02256.x.
  • Konagaya, K., D. F. Al Riza, S. Nie, M. Yoneda, T. Hirata, N. Takahashi, M. Kuramoto, Y. Ogawa, T. Suzuki, and N. Kondo. 2020. Monitoring mature tomato (red stage) quality during storage using ultraviolet-induced visible fluorescence image. Postharvest Biology and Technology 160:111031. doi: 10.1016/j.postharvbio.2019.111031.
  • Konarska, A., and M. Domaciuk. 2018. Differences in the fruit structure and the location and content of bioactive substances in Viburnum opulus and Viburnum lantana fruits. Protoplasma 255 (1):25–41. doi: 10.1007/s00709-017-1130-z.
  • Korfhage, N., M. Mühling, S. Ringshandl, A. Becker, B. Schmeck, and B. Freisleben. 2020. Detection and segmentation of morphologically complex eukaryotic cells in fluorescence microscopy images via feature pyramid fusion. PLOS Computational Biology 16 (9):1–16. doi: 10.1371/journal.pcbi.1008179.
  • Kyriakidis, N. B., and P. Skarkalis. 2000. Fluorescence spectra measurement of olive oil and other vegetable oils. Journal of AOAC International 83 (6):1435–9. doi: 10.1093/jaoac/83.6.1435.
  • Lagorio, M. G., G. B. Cordon, and A. Iriel. 2015. Reviewing the relevance of fluorescence in biological systems. Photochemical and Photobiological Sciences 14 (9):1538–59. doi: 10.1039/c5pp00122f.
  • Lakowicz, J. R. 2006. Principles of fluorescence spectroscopy, 1–954. Boston, MA: Springer. doi: 10.1007/978-0-387-46312-4.
  • Langhals, H. 2020. Fluorescence and fluorescent dyes. Physical Sciences Reviews 5 (8):20190100. doi: 10.1515/psr-2019-0100.
  • Leite, K. C. d S., L. F. Garcia, G. S. Lobón, D. V. Thomaz, E. K. G. Moreno, M. F. d Carvalho, M. L. Rocha, W. T. P. d Santos, and E. d. S. Gil. 2018. Antioxidant activity evaluation of dried herbal extracts: An electroanalytical approach. Brazilian Journal of Pharmacognosy 28 (3):325–32. doi: 10.1016/j.bjp.2018.04.004.
  • Lleó, L., N. Herná Ndez-Sá Nchez, F. Ammari, and J. M. Roger. 2016. 3D front-face fluorescence spectroscopy for characterization of extra virgin olive oil. Agricultural Engineering International: CIGR Journal 18 (4):190–199.
  • Madiwale, G. P., L. Reddivari, D. G. Holm, and J. Vanamala. 2011. Storage elevates phenolic content and antioxidant activity but suppresses antiproliferative and pro-apoptotic properties of colored-flesh potatoes against human colon cancer cell lines. Journal of Agricultural and Food Chemistry 59 (15):8155–66. doi: 10.1021/jf201073g.
  • Mehretie, S., D. F. Al Riza, S. Yoshito, and N. Kondo. 2018. Classification of raw Ethiopian honeys using front face fluorescence spectra with multivariate analysis. Food Control 84:83–8. doi: 10.1016/j.foodcont.2017.07.024.
  • Meyer, R. 2011. Antioxidant activity measured by fluorescence: Investigation of antioxidant and probe structure as well as their mobility and position. Bremen, Germany: Jacobs University.
  • Moreno, E. K. G., D. V. Thomaz, F. B. Machado, K. C. S. Leite, E. S. B. Rodrigues, M. A. Fernandes, M. F. Carvalho, M. T. de Oliveira, M. P. Caetano, C. E. d C. Peixoto, et al. 2019. Antioxidant study and electroanalytical investigation of selected herbal samples used in folk medicine. International Journal of Electrochemical Science 14 (1):838–47. doi: 10.20964/2019.01.82.
  • Muharfiza, D. Al Riza, Y. Saito, K. Itakura, Y. Kohno, T. Suzuki, M. Kuramoto, and N. Kondo. 2017. Monitoring of fluorescence characteristics of satsuma mandarin (Citrus unshiu Marc.) during the maturation period. Horticulturae 3 (4):51. doi: 10.3390/horticulturae3040051.
  • Muramoto, Y., M. Kimura, and S. Nouda. 2014. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semiconductor Science and Technology 29 (8):084004. doi: 10.1088/0268-1242/29/8/084004.
  • Nayak, B., R. H. Liu, and J. Tang. 2015. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Critical Reviews in Food Science and Nutrition 55 (7):887–918. doi: 10.1080/10408398.2011.654142.
  • Nie, S., D. F. Al Riza, Y. Ogawa, T. Suzuki, M. Kuramoto, N. Miyata, and N. Kondo. 2020. Potential of a double lighting imaging system for characterization of “Hayward” kiwifruit harvest indices. Postharvest Biology and Technology 162 (September 2019):111113. doi: 10.1016/j.postharvbio.2019.111113.
  • Nishina, H. 2015. Development of speaking plant approach technique for intelligent greenhouse. Agriculture and Agricultural Science Procedia 3:9–13. doi: 10.1016/j.aaspro.2015.01.004.
  • Oliveira, W., and J. Santos. 2020. Determination of total antioxidant capacity using thiamine as a natural fluorescent probe. Journal of the Brazilian Chemical Society. 31 (12):2479–2490. doi: 10.21577/0103-5053.20200123.
  • Park, S. Y., S. A. Yoon, Y. Cha, and M. H. Lee. 2021. Recent advances in fluorescent probes for cellular antioxidants: Detection of NADH, hNQO1, H2S, and other redox biomolecules. Coordination Chemistry Reviews 428:213613. doi: 10.1016/j.ccr.2020.213613.
  • Park, Y. S., M. Leontowicz, H. Leontowicz, K. S. Ham, S. G. Kang, Y. K. Park, A. D. Rombolà, E. Katrich, and S. Gorinstein. 2015. Fluorescence and ultraviolet spectroscopic evaluation of phenolic compounds, antioxidant and binding activities in some kiwi fruit cultivars. Spectroscopy Letters 48 (8):586–92. doi: 10.1080/00387010.2014.933355.
  • Pérez-Bueno, M. L., M. Pineda, and M. Barón. 2019. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science 10: 1135. doi: 10.3389/fpls.2019.01135.
  • Pérez-Bueno, M. L., M. Pineda, F. M. Cabeza, and M. Barón. 2016. Multicolor fluorescence imaging as a candidate for disease detection in plant phenotyping. Frontiers in Plant Science 7:1790. doi: 10.3389/fpls.2016.01790.
  • Piljac-Žegarac, J., L. Valek, S. Martinez, and A. Belščak. 2009. Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chemistry 113 (2):394–400. doi: 10.1016/j.foodchem.2008.07.048.
  • Pisoschi, A. M., and G. P. Negulescu. 2012. Methods for total antioxidant activity determination: A review. Biochemistry & Analytical Biochemistry 1 (1):1–10. doi: 10.4172/2161-1009.1000106.
  • Pisoschi, A. M., C. Cimpeanu, and G. Predoi. 2015. Electrochemical methods for total antioxidant capacity and its main contributors determination: A review. Open Chemistry 13 (1):824–56. doi: 10.1515/chem-2015-0099.
  • Rumin, J., H. Bonnefond, B. Saint-Jean, C. Rouxel, A. Sciandra, O. Bernard, J.-P. Cadoret, and G. Bougaran. 2015. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for Biofuels 8 (1):42. doi: 10.1186/s13068-015-0220-4.
  • Ryder, A. G., C. A. Stedmon, N. Harrit, and R. Bro. 2017. Calibration, standardization, and quantitative analysis of multidimensional ­fluorescence (MDF) measurements on complex mixtures (IUPAC Technical Report). Pure and Applied Chemistry 89 (12):1849–70. doi: 10.1515/pac-2017-0610.
  • Sarmadi, B. H., and A. Ismail. 2010. Antioxidative peptides from food proteins: A review. Peptides 31 (10):1949–56. doi: 10.1016/j.peptides.2010.06.020.
  • Seeram, N. P., and M. G. Nair. 2002. Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. Journal of Agricultural and Food Chemistry 50 (19):5308–12. doi: 10.1021/jf025671q.
  • Servili, M., R. Selvaggini, S. Esposto, A. Taticchi, G. F. Montedoro, and G. Morozzi. 2004. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. Journal of Chromatography A 1054 (1–2):113–27. doi: 10.1016/j.chroma.2004.08.070.
  • Shafi, U., R. Mumtaz, J. García-Nieto, S. A. Hassan, S. A. R. Zaidi, and N. Iqbal. 2019. Precision agriculture techniques and practices: From considerations to applications. Sensors (Switzerland) 19 (17):3796. doi: 10.3390/s19173796.
  • Sikorska, E., A. Romaniuk, I. V. Khmelinskii, R. Herance, J. L. Bourdelande, M. Sikorski, and J. Kozioł. 2004. Characterization of edible oils using total luminescence spectroscopy. Journal of Fluorescence 14 (1):25–35. doi: 10.1023/B:JOFL.0000014656.75245.62.
  • Sikorska, E., I. Khmelinskii, and M. Sikorski. 2012a. Analysis of olive oils by fluorescence spectroscopy: Methods and applications. In Olive oil - Constituents, quality, health properties and bioconversions.London, UK: InTech. doi: 10.5772/30676.
  • Sikorska, E., I. Khmelinskii, and M. Sikorski. 2012b. Analysis of olive oils by fluorescence spectroscopy: Methods and applications. In Olive oil - Constituents, quality, health properties and bioconversions. London, UK: InTech doi:10.5772/30676.
  • Song, P. ‐S., and T. A. Moore. 1974. On the photoreceptor pigment for phototropism and phototaxis: Is a carotenoid the most likely candidate? Photochemistry and Photobiology 19 (6):435–41. doi: 10.1111/j.1751-1097.1974.tb06535.x.
  • Suhling, K., L. M. Hirvonen, J. A. Levitt, P.-H. Chung, C. Tregidgo, A. Le Marois, D. A. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, et al. 2015. Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments. Medical Photonics 27:3–40. doi: 10.1016/j.medpho.2014.12.001.
  • Taiz, L., and E. Zeiger. 2002. Plant physiology (L. Taiz & E. Zeiger (eds.); 3rd ed.). Sunderland, USA: Sinauer Associates.
  • Talamond, P., J. L. Verdeil, and G. Conéjéro. 2015. Secondary metabolite localization by autofluorescence in living plant cells. Molecules (Basel, Switzerland) 20 (3):5024–37. doi: 10.3390/molecules20035024.
  • Tang, W., J. Chen, Z. Wang, H. Xie, and H. Hong. 2018. Deep learning for predicting toxicity of chemicals: A mini review. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews 36 (4):252–71. doi: 10.1080/10590501.2018.1537563.
  • Tena, N., J. Martín, and A. G. Asuero. 2020. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9 (5):451. doi: 10.3390/antiox9050451.
  • Triantis, T. M., E. Yannakopoulou, A. Nikokavoura, D. Dimotikali, and K. Papadopoulos. 2007. Chemiluminescent studies on the antioxidant activity of amino acids. Analytica Chimica Acta 591 (1):106–11. doi: 10.1016/j.aca.2007.03.054.
  • Trinh, A. L., S. Ber, A. Howitt, P. O. Valls, M. W. Fries, A. R. Venkitaraman, and A. Esposito. 2019. Fast single-cell biochemistry: Theory, open source microscopy and applications. Methods and Applications in Fluorescence 7 (4):44001. doi: 10.1088/2050-6120/ab3bd2.
  • Tseng, Y. C., and S. W. Chu. 2017. High spatio-temporal-resolution detection of chlorophyll fluorescence dynamics from a single chloroplast with confocal imaging fluorometer. Plant Methods 13 (1):1–11. doi: 10.1186/s13007-017-0194-2.
  • Tuccio, L., L. Cavigli, F. Rossi, O. Dichala, F. Katsogiannos, I. Kalfas, and G. Agati. 2020. Fluorescence-sensor mapping for the in vineyard non-destructive assessment of crimson seedless table grape quality. Sensors 20 (4):983. doi: 10.3390/s20040983.
  • Ulku, A., A. Ardelean, M. Antolovic, S. Weiss, E. Charbon, C. Bruschini, and X. Michalet. 2020. Wide-field time-gated SPAD imager for phasor-based FLIM applications. Methods and Applications in Fluorescence 8 (2):024002. doi: 10.1088/2050-6120/ab6ed7.
  • Watu, A., N. Metussin, H. M. Yasin, and A. Usman. 2018. The total antioxidant capacity and fluorescence imaging of selected plant leaves commonly consumed in Brunei Darussalam. 020001. doi: 10.1063/1.5023935.
  • Wu, Y., F. F. Sun, D. M. Tong, and B. M. Taylor. 1996. Changes in membrane properties during energy depletion-induced cell injury studied with fluorescence microscopy. Biophysical Journal 71 (1):91–100. doi: 10.1016/S0006-3495(96)79243-3.
  • Wünsch, U. J., K. R. Murphy, and C. A. Stedmon. 2015. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition. Frontiers in Marine Science 2 (NOV):98. doi: 10.3389/fmars.2015.00098.
  • Yang, Z., H. Peng, W. Wang, and T. Liu. 2010. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science 116 (5):2658–67. doi: 10.1002/app.
  • Yoshioka, Y., M. Nakayama, Y. Noguchi, and H. Horie. 2013. Use of image analysis to estimate anthocyanin and UV-excited fluorescent phenolic compound levels in strawberry fruit. Breeding Science 63 (2):211–7. doi: 10.1270/jsbbs.63.211.
  • Yu, J., X. Zhang, X. Hao, X. Zhang, M. Zhou, C. S. Lee, and X. Chen. 2014. Near-infrared fluorescence imaging using organic dye nanoparticles. Biomaterials 35 (10):3356–64. doi: 10.1016/j.biomaterials.2014.01.004.
  • Zandomeneghi, M., and G. Zandomeneghi. 2005. Comment on cluster analysis applied to the exploratory analysis of commercial Spanish olive oils by means of excitation-emission fluorescence spectroscopy. Journal of Agricultural and Food Chemistry 53 (14):5829–30. doi: 10.1021/jf047797o.
  • Ziyatdinova, G. K., and H. C. Budnikov. 2014. Evaluation of the antioxidant properties of spices by cyclic voltammetry. Journal of Analytical Chemistry 69 (10):990–7. doi: 10.1134/S1061934814100189.
  • Ziyatdinova, G., Y. Zelenova, and H. Budnikov. 2020. Novel modified electrode with immobilized galvinoxyl radical for the voltammetric determination of antioxidant activity. Journal of Electroanalytical Chemistry 856:113677. doi: 10.1016/j.jelechem.2019.113677.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.