791
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Current findings support the potential use of bioactive peptides in enhancing zinc absorption in humans

, ORCID Icon & ORCID Icon

References

  • Adams, C. L., M. Hambidge, V. Raboy, J. A. Dorsch, L. Sian, J. L. Westcott, and N. F. Krebs. 2002. Zinc absorption from a low–phytic acid maize. The American Journal of Clinical Nutrition 76 (3):556–9. doi: 10.1093/ajcn/76.3.556.
  • Aihara, K., O. Kajimoto, H. Hirata, R. Takahashi, and Y. Nakamura. 2005. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. Journal of the American College of Nutrition 24 (4):257–65. doi: 10.1080/07315724.2005.10719473.
  • Aito-Inoue, M., D. Lackeyram, M. Z. Fan, K. Sato, and Y. Mine. 2007. Transport of a tripeptide, Gly-Pro-Hyp, across the porcine intestinal brush-border membrane. Journal of Peptide Science : An Official Publication of the European Peptide Society 13 (7):468–74. doi: 10.1002/psc.870.
  • Alvarez, C., M. Rendueles, and M. Diaz. 2012. The yield of peptides and amino acids following acid hydrolysis of haemoglobin from porcine blood. Animal Production Science 52 (5):313–20. doi: 10.1071/AN11218.
  • Álvarez, C., M. Rendueles, and M. Díaz. 2013. Alkaline hydrolysis of porcine blood haemoglobin: Applications for peptide and amino acid production. Animal Production Science 53 (2):121–8. doi: 10.1071/AN12148.
  • Amigo, L., and B. Hernández-Ledesma. 2020. Current evidence on the bioavailability of food bioactive peptides. Molecules 25 (19):4479. doi: 10.3390/molecules25194479.
  • Arai, S., M. Noguchi, S. Kurosawa, H. Kato, and M. Fujimaki. 1970. Applying proteolytic enzymes on soybean: 6. Deodorization effect of aspergillopeptidase A and debittering effect of Aspergillus acid carboxypeptidase. Journal of Food Science 35 (4):392–5. doi: 10.1111/j.1365-2621.1970.tb00940.x.
  • Babini, E., D. Tagliazucchi, S. Martini, L. D. Più, and A. Gianotti. 2017. LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chemistry 228:186–96. doi: 10.1016/j.foodchem.2017.01.143.
  • Baptista, D. P., B. D. Galli, F. G. Cavalheiro, F. Negrão, M. N. Eberlin, and M. L. Gigante. 2018. Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. International Dairy Journal 87:75–83. doi: 10.1016/j.idairyj.2018.08.001.
  • Bejjani, S., and J. Wu. 2013. Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial caco-2 cells. Journal of Agricultural and Food Chemistry 61 (7):1487–92. doi: 10.1021/jf302904t.
  • Bertini, I., C. Luchinat, and R. Monnanni. 1985. Zinc enzymes. Journal of Chemical Education 62 (11):924–7. doi: 10.1021/ed062p924.
  • Brandelli, A., D. J. Daroit, and A. P. F. Corrêa. 2015. Whey as a source of peptides with remarkable biological activities. Food Research International 73:149–61. doi: 10.1016/j.foodres.2015.01.016.
  • Briend, A. 2001. General experience with zinc supplementation: Are we ready for large-scale supplementation programs? Food and Nutrition Bulletin 22 (2):163–8. doi: 10.1177/156482650102200206.
  • Camarata, M. A., A. Ala, and M. L. Schilsky. 2019. Zinc maintenance therapy for Wilson disease: A comparison between zinc acetate and alternative zinc preparations. Hepatology Communications 3 (8):1151–8. doi: 10.1002/hep4.1384.
  • Carrasco-Castilla, J., A. J. Hernández-Álvarez, C. Jiménez-Martínez, C. Jacinto-Hernández, M. Alaiz, J. Girón-Calle, J. Vioque, and G. Dávila-Ortiz. 2012. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chemistry 135 (3):1789–95. doi: 10.1016/j.foodchem.2012.06.016.
  • Chakrabarti, S., S. Guha, and K. Majumder. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 10 (11):1738. doi: 10.3390/nu10111738.
  • Chasapis, C. T., P. S. A. Ntoupa, C. A. Spiliopoulou, and M. E. Stefanidou. 2020. Recent aspects of the effects of zinc on human health. Archives of Toxicology 94 (5):1443–60. doi: 10.1007/s00204-020-02702-9.
  • Chen, C., Y. J. Chi, M. Y. Zhao, and W. Xu. 2012. Influence of degree of hydrolysis on functional properties, antioxidant and ACE inhibitory activities of egg white protein hydrolysate. Food Science and Biotechnology 21 (1):27–34. doi: 10.1007/s10068-012-0004-6.
  • Chen, D., Z. Liu, W. Huang, Y. Zhao, S. Dong, and M. Zeng. 2013. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate. Journal of Functional Foods 5 (2):689–97. doi: 10.1016/j.jff.2013.01.012.
  • Chen, L., X. Shen, and G. Xia. 2020. Effect of molecular weight of tilapia (oreochromis niloticus) skin collagen peptide fractions on zinc-chelating capacity and bioaccessibility of the zinc-peptide fractions complexes in vitro digestion. Applied Sciences 10 (6):2041. doi: 10.3390/app10062041.
  • Chen, Q., L. Guo, F. Du, T. Chen, H. Hou, and B. Li. 2017. The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco‐2 cells. International Journal of Food Science & Technology 52 (5):1283–90. doi: 10.1111/ijfs.13396.
  • Chen, Z., W. Li, R. K. Santhanam, C. Wang, X. Gao, Y. Chen, C. Wang, L. Xu, and H. Chen. 2019. Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: Isolation, identification and molecular docking study. European Food Research and Technology 245 (3):677–89. doi: 10.1007/s00217-018-3190-5.
  • Cheng, S., M. Tu, H. Liu, G. Zhao, and M. Du. 2019. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Critical Reviews in Food Science and Nutrition 59 (sup1):S81–S95.
  • Davies, S. L., C. E. Gibbons, M. C. Steward, and D. T. Ward. 2008. Extracellular calcium- and magnesium-mediated regulation of passive calcium transport across Caco-2 monolayers. Biochimica et Biophysica Acta 1778 (10):2318–24. doi: 10.1016/j.bbamem.2008.05.013.
  • De Groot, A. P., and P. Slump. 1969. Effects of severe alkali treatment of proteins on amino acid composition and nutritive value. The Journal of Nutrition 98 (1):45–56. doi: 10.1093/jn/98.1.45.
  • Dent, M. P., S. O’Hagan, W. H. Braun, P. Schaetti, A. Marburger, and O. Vogel. 2007. A 90-day subchronic toxicity study and reproductive toxicity studies on ACE-inhibiting lactotripeptide. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 45 (8):1468–77. doi: 10.1016/j.fct.2007.02.006.
  • Devi, C. B., T. Nandakishore, N. Sangeeta, G. Basar, N. O. Devi, S. Jamir, and M. A. Singh. 2014. Zinc in human health. IOSR Journal of Dental and Medical Sciences 13 (7):18–23. doi: 10.9790/0853-13721823.
  • Di Stasio, L., G. Picariello, M. Mongiello, R. Nocerino, R. Berni Canani, S. Bavaro, L. Monaci, P. Ferranti, and G. Mamone. 2017. Peanut digestome: Identification of digestion resistant IgE binding peptides. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 107 (Pt A):88–98. doi: 10.1016/j.fct.2017.06.029.
  • Ding, L., L. Wang, Y. Zhang, and J. Liu. 2015. Transport of antihypertensive peptide RVPSL, ovotransferrin 328-332, in human intestinal Caco-2 cell monolayer. Journal of Agricultural and Food Chemistry 63 (37):8143–50. doi: 10.1021/acs.jafc.5b01824.
  • Ding, L., Y. Zhang, Y. Jiang, L. Wang, B. Liu, and J. Liu. 2014. Transport of egg white ACE-inhibitory peptide, Gln-Ile-Gly-Leu-Phe, in human intestinal Caco-2 cell monolayers with cytoprotective effect. Journal of Agricultural and Food Chemistry 62 (14):3177–82. doi: 10.1021/jf405639w.
  • Doorten, A. P. S., J. A. G. Vd Wiel, and D. Jonker. 2009. Safety evaluation of an IPP tripeptide-containing milk protein hydrolysate. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 47 (1):55–61. doi: 10.1016/j.fct.2008.10.001.
  • Eckert, E., F. Bamdad, and L. Chen. 2014. Metal solubility enhancing peptides derived from barley protein. Food Chemistry 159:498–506. doi: 10.1016/j.foodchem.2014.03.061.
  • El Mecherfi, K. E., O. Rouaud, S. Curet, H. Negaoui, J. M. Chobert, O. Kheroua, D. Saidi, and T. Haertlé. 2015. Peptic hydrolysis of bovine beta‐ lactoglobulin under microwave treatment reduces its allergenicity in an ex vivo murine allergy model. International Journal of Food Science & Technology 50 (2):356–64. doi: 10.1111/ijfs.12653.
  • Etcheverry, P., J. C. Wallingford, D. D. Miller, and R. P. Glahn. 2004. Calcium, zinc, and iron bioavailabilities from a commercial human milk fortifier: A comparison study. Journal of Dairy Science 87 (11):3629–37. doi: 10.3168/jds.S0022-0302(04)73501-8.
  • Feng, Y., J. Zhang, Y. Miao, W. Guo, G. Feng, Y. Yang, T. Guo, H. Wu, and M. Zeng. 2020. Prevention of zinc precipitation with calcium phosphate by casein hydrolysate improves zinc absorption in mouse small intestine ex vivo via a nanoparticle-mediated mechanism. Journal of Agricultural and Food Chemistry 68 (2):652–9. doi: 10.1021/acs.jafc.9b07097.
  • Fernández-Musoles, R., J. B. Salom, M. Castelló-Ruiz, M. d Mar Contreras, I. Recio, and P. Manzanares. 2013. Bioavailability of antihypertensive lactoferricin B-derived peptides: Transepithelial transport and resistance to intestinal and plasma peptidases. International Dairy Journal 32 (2):169–74. doi: 10.1016/j.idairyj.2013.05.009.
  • FitzGerald, R., and G. O’cuinn. 2006. Enzymatic debittering of food protein hydrolysates. Biotechnology Advances 24 (2):234–7. doi: 10.1016/j.biotechadv.2005.11.002.
  • Friedman, M., C. E. Levin, and A. T. Noma. 1984. Factors governing lysinoalanine formation in soy proteins. Journal of Food Science 49 (5):1282–8. doi: 10.1111/j.1365-2621.1984.tb14970.x.
  • Fu, T., S. Zhang, Y. Sheng, Y. Feng, Y. Jiang, Y. Zhang, M. Yu, and C. Wang. 2020. Isolation and characterization of zinc-binding peptides from mung bean protein hydrolysates. European Food Research and Technology 246 (1):113–24. doi: 10.1007/s00217-019-03397-8.
  • Gallegos Tintoré, S., C. Torres Fuentes, J. Solorza Feria, M. Alaiz, J. Girón Calle, A. L. Martínez Ayala, L. Chel Guerrero, and J. Vioque. 2015. Antioxidant and chelating activity of nontoxic Jatropha curcas L. protein hydrolysates produced by in vitro digestion using pepsin and pancreatin. Journal of Chemistry 2015:1–9. doi: 10.1155/2015/190129.
  • García-Nebot, M. J., A. Alegría, R. Barberá, G. Clemente, and F. Romero. 2009. Does the addition of caseinophosphopeptides or milk improve zinc in vitro bioavailability in fruit beverages? Food Research International 42 (10):1475–82. doi: 10.1016/j.foodres.2009.08.005.
  • García-Nebot, M. J., R. Barberá, and A. Alegría. 2013. Iron and zinc bioavailability in Caco-2 cells: Influence of caseinophosphopeptides. Food Chemistry 138 (2–3):1298–303. doi: 10.1016/j.foodchem.2012.10.113.
  • García-Tejedor, A., L. Sánchez-Rivera, I. Recio, J. B. Salom, and P. Manzanares. 2015. Dairy Debaryomyces hansenii strains produce the antihypertensive casein-derived peptides LHLPLP and HLPLP. LWT - Food Science and Technology 61 (2):550–6. doi: 10.1016/j.lwt.2014.12.019.
  • Giri, A., M. Nasu, and T. Ohshima. 2012. Bioactive properties of Japanese fermented fish paste, fish miso, using koji inoculated with Aspergillus oryzae. International Journal of Nutition and Food Science 1:13–22.
  • Gomez, M. J., P. Gaya, M. Nunez, and M. Medina. 1996. Effect of Lactobacillus plantarum as adjunct starter on the flavour and texture of a semi-hard cheese made from pasteurised cows’ milk. Le Lait 76 (5):461–72. doi: 10.1051/lait:1996535.
  • Goodman, B. E. 2010. Insights into digestion and absorption of major nutrients in humans. Advances in Physiology Education 34 (2):44–53. doi: 10.1152/advan.00094.2009.
  • Gorissen, S. H., J. J. Crombag, J. M. Senden, W. H. Waterval, J. Bierau, L. B. Verdijk, and L. J. Van Loon. 2018. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 50 (12):1685–95. doi: 10.1007/s00726-018-2640-5.
  • Guo, L., P. A. Harnedy, M. B. O’Keeffe, L. Zhang, B. Li, H. Hou, and R. J. FitzGerald. 2015. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry 173:536–42. doi: 10.1016/j.foodchem.2014.10.055.
  • Guzmán, F., S. Barberis, and A. Illanes. 2007. Peptide synthesis: Chemical or enzymatic. Electronic Journal of Biotechnology 10 (2):0– 314. doi: 10.2225/vol10-issue2-fulltext-13.
  • Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A. D. Moltke Sørensen, and C. Jacobsen. 2018. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58 (18):3097–129. doi: 10.1080/10408398.2017.1352564.
  • Hansen, M., B. Sandström, and B. Lönnerdal. 1996. The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets assessed in rat pups and Caco-2 cells. Pediatric Research 40 (4):547–52. doi: 10.1203/00006450-199610000-00006.
  • Hansen, M., B. Sandström, M. Jensen, and S. S. Sørensen. 1997a. Effect of casein phosphopeptides on zinc and calcium absorption from bread meals. Journal of Trace Elements in Medicine and Biology 11 (3):143–9. doi: 10.1016/S0946-672X(97)80041-7.
  • Hansen, M., B. Sandström, M. Jensen, and S. S. Sørensen. 1997b. Casein phosphopeptides improve zinc and calcium absorption from rice-based but not from whole-grain infant cereal. Journal of Pediatric Gastroenterology and Nutrition 24 (1):56–62.
  • Herrero-Fresno, A., N. Martínez, E. Sánchez-Llana, M. Díaz, M. Fernández, M. C. Martin, V. Ladero, and M. A. Alvarez. 2012. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model. International Journal of Food Microbiology 157 (2):297–304. doi: 10.1016/j.ijfoodmicro.2012.06.002.
  • Hou, Y., Z. Wu, Z. Dai, G. Wang, and G. Wu. 2017. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology 8 (1):1–13. doi: 10.1186/s40104-017-0153-9.
  • Ibrahim, S. 2013. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malaysiana 42 (3):279–87.
  • Jiang, L., B. Wang, B. Li, C. Wang, and Y. Luo. 2014. Preparation and identification of peptides and their zinc complexes with antimicrobial activities from silver carp, (Hypophthalmichthys molitrix) protein hydrolysates. Food Research International 64: 91–8. doi: 10.1016/j.foodres.2014.06.008
  • Jiao, K., J. Gao, T. Zhou, J. Yu, H. Song, Y. Wei, and X. Gao. 2019. Isolation and purification of a novel antimicrobial peptide from Porphyra yezoensis. Journal of Food Biochemistry 43 (7):e12864. doi: 10.1111/jfbc.12864.
  • Joy, E. J. M., E. L. Ander, S. D. Young, C. R. Black, M. J. Watts, A. D. C. Chilimba, B. Chilima, E. W. P. Siyame, A. A. Kalimbira, R. Hurst, et al. 2014. Dietary mineral supplies in Africa. Physiologia Plantarum 151 (3):208–29. doi: 10.1111/ppl.12144.
  • Karametsi, K., S. Kokkinidou, I. Ronningen, and D. G. Peterson. 2014. Identification of bitter peptides in aged cheddar cheese. Journal of Agricultural and Food Chemistry 62 (32):8034–41. doi: 10.1021/jf5020654.
  • Karami, Z., S. H. Peighambardoust, J. Hesari, B. Akbari-Adergani, and D. Andreu. 2019. Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience 32 (100450):100450. doi: 10.1016/j.fbio.2019.100450.
  • Kim, E. K., J. W. Hwang, Y. S. Kim, C. B. Ahn, Y. J. Jeon, H. J. Kweon, Y. Y. Bahk, S. H. Moon, B. T. Jeon, and P. J. Park. 2013. A novel bioactive peptide derived from enzymatic hydrolysis of Ruditapes philippinarum: Purification and investigation of its free-radical quenching potential. Process Biochemistry 48 (2):325–30. doi: 10.1016/j.procbio.2012.10.016.
  • Kim, H. O., and E. C. Li-Chan. 2006. Quantitative structure − activity relationship study of bitter peptides. Journal of Agricultural and Food Chemistry 54 (26):10102–11. doi: 10.1021/jf062422j.
  • Kim, K.-B.-W.-R., S.-Y. Lee, E.-J. Song, K.-E. Kim, and D.-H. Ahn. 2011. Effect of heat and autoclave on allergenicity of porcine serum albumin. Food Science and Biotechnology 20 (2):455–9. doi: 10.1007/s10068-011-0063-0.
  • Kreider, R. B., M. Iosia, M. Cooke, G. Hudson, C. Rasmussen, H. Chen, O. Mollstedt, and M. H. Tsai. 2011. Bioactive properties and clinical safety of a novel milk protein peptide. Nutrition Journal 10 (1):99– 8. doi: 10.1186/1475-2891-10-99.
  • Kurosaki, T., M. Maeno, J. H. Mennear, and B. K. Bernard. 2005. Studies of the tox- icological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-lsoleucyl-L-prolyl- L-proline): VI. Effects of Lactobacillus helveticus-fermented milk powder on fertility and reproductive performance of rats. International Journal of Toxicology 24 (4_suppl):61–89. doi: 10.1080/10915810500259630.
  • Laity, J. H., B. M. Lee, and P. E. Wright. 2001. Zinc finger proteins: New insights into structural and functional diversity. Current Opinion in Structural Biology 11 (1):39–46. doi: 10.1016/S0959-440X(00)00167-6.
  • Lazzerini, M., and H. Wanzira. 2016. Oral zinc for treating diarrhoea in children. The Cochrane Database of Systematic Reviews 12:CD005436–108. doi: 10.1002/14651858.CD005436.pub5.
  • Lemieux, L., and R. E. Simard. 1991. Bitter flavour in dairy products. I. A review of the factors likely to influence its development, mainly in cheese manufacture. Le Lait 71 (6):599–636. doi: 10.1051/lait:1991647.
  • Li, C., G. Bu, F. Chen, and T. Li. 2020. Preparation and structural characterization of peanut peptide–zinc chelate. CyTA - Journal of Food 18 (1):409–16. doi: 10.1080/19476337.2020.1767695.
  • Li, J., C. Gong, Z. Wang, R. Gao, J. Ren, X. Zhou, H. Wang, H. Xu, F. Xiao, Y. Cao, et al. 2019. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc. Marine Drugs 17 (6):341–58. doi: 10.3390/md17060341.
  • Li, T., C. Shi, C. Zhou, X. Sun, Y. Ang, X. Dong, M. Huang, and G. Zhou. 2020. Purification and characterization of novel antioxidant peptides from duck breast protein hydrolysates. LWT-Food Science and Technology 125:109215. doi: 10.1016/j.lwt.2020.109215.
  • Li, Y., J. Zhao, X. Liu, X. Xia, Y. Wang, and J. Zhou. 2017. Transport of a novel Angiotensin-I-converting enzyme inhibitory peptide Ala-His-Leu-Leu across human intestinal epithelial Caco-2 cells. Journal of Medicinal Food 20 (3):243–50. doi: 10.1089/jmf.2016.3842.
  • Liang, R., S. Zhang, and Y. Lin. 2014. Recombinant expression of bioactive peptides: A review. Advanced Materials Research 881–883:331–4. doi: 10.4028/www.scientific.net/AMR.881-883.331.
  • Lin, Q., Q. Xu, J. Bai, W. Wu, H. Hong, and J. Wu. 2017. Transport of soybean protein- derived antihypertensive peptide LSW across Caco-2 monolayers. Journal of Functional Foods 39:96–102. doi: 10.1016/j.jff.2017.10.011.
  • Lindeberg, G., H. Bennich, and Å. Engström. 1991. Purification of synthetic peptides Immobilized metal ion affinity chromatography (IMAC). International Journal of Peptide and Protein Research 38 (3):253–9. doi: 10.1111/j.1399-3011.1991.tb01436.x.
  • Linnankoski, J., J. Mäkelä, J. Palmgren, T. Mauriala, C. Vedin, A. L. Ungell, L. Lazorova, P. Artursson, A. Urtti, and M. Yliperttula. 2010. Paracellular porosity and pore size of the human intestinal epithelium in tissue and cell culture models. Journal of Pharmaceutical Sciences 99 (4):2166–75. doi: 10.1002/jps.21961.
  • Liu, Q., M. Yang, B. Zhao, and F. Yang. 2020. Isolation of antioxidant peptides from yak casein hydrolysate. RSC Advances 10 (34):19844–51. doi: 10.1039/D0RA02644A.
  • Liu, X., D. Jiang, and D. G. Peterson. 2014. Identification of bitter peptides in whey protein hydrolysate. Journal of Agricultural and Food Chemistry 62 (25):5719–25. doi: 10.1021/jf4019728.
  • Liu, X., Z. Wang, F. Yin, Y. Liu, N. Qin, Y. Nakamura, F. Shahidi, C. Yu, D. Zhou, and B. Zhu. 2019. Zinc-chelating mechanism of sea cucumber (Stichopus japonicus)-derived synthetic peptides. Marine Drugs 17 (8):438–52. doi: 10.3390/md17080438.
  • Lowe, M., K. Fekete, and T. Decsi. 2009. Methods of assessment of zinc status in humans: A systematic review. The American Journal of Clinical Nutrition 89 (6):2040S–51S. doi: 10.3945/ajcn.2009.27230G.
  • Lu, D., M. Peng, M. Yu, B. Jiang, H. Wu, and J. Chen. 2021. Effect of enzymatic hydrolysis on the zinc binding capacity and in vitro gastrointestinal stability of peptides derived from pumpkin (Cucurbita pepo L.) seeds. Frontiers in Nutrition 8:1–14. doi: 10.3389/fnut.2021.647782.
  • Lule, V. K., S. Garg, S. D. Pophaly, and S. K. Tomar. 2015. Potential health benefits of lunasin: A multifaceted soy‐derived bioactive peptide. Journal of Food Science 80 (3):R485–R494. doi: 10.1111/1750-3841.12786.
  • Ma, G., Y. Li, Y. Jin, S. Du, F. J. Kok, and X. Yang. 2007. Assessment of intake inadequacy and food sources of zinc of people in China. Public Health Nutrition 10 (8):848–54. doi: 10.1017/S136898000744143X.
  • Maares, M., and H. Haase. 2020. A guide to human zinc absorption: General overview and recent advances of in vitro intestinal models. Nutrients 12 (3):762–43. doi: 10.3390/nu12030762.
  • Macknin, M. L., M. Piedmonte, C. Calendine, J. Janosky, and E. Wald. 1998. Zinc gluconate lozenges for treating the common cold in children: A randomized controlled trial. Jama 279 (24):1962–7. doi: 10.1001/jama.279.24.1962.
  • Maeno, M., Y. Nakamura, J. H. Mennear, and B. K. Bernard. 2005. Studies of the toxicological potential of tripeptides (L-Valyl-L-prolyl-L-proline and L-lsoleucyl-L-prolyl-L-proline): III. Single-and/or repeated-dose toxicity of tripeptides-containing lactobacillus helveticus-fermented milk powder and casein hydrolysate in rats. International Journal of Toxicology 24 (4_suppl):13–23. doi: 10.1080/10915810500259556.
  • Mala, T., B. Sadiq, and K. Anal. 2021. Comparative extraction of bromelain and bioactive peptides from pineapple byproducts by ultrasonic‐and microwave‐assisted extractions. Journal of Food Process Engineering 44 (6):e13709. doi: 10.1111/jfpe.13709.
  • Maret, W. 2017. Zinc in cellular regulation: The nature and significance of “zinc signals. International Journal of Molecular Sciences 18 (11):2285. doi: 10.3390/ijms18112285.
  • Matin, M. A., M. Monnai, and H. Otani. 2000. Isolation and characterization of a cytotoxic pentapeptide, κ-casecidin, from Bovine κ-casein digested with bovine trypsin. Nihon Chikusan Gakkaiho 71 (2):197–207. doi: 10.2508/chikusan.71.197.
  • Matoba, T., R. Hayashi, and T. Hata. 1970. Isolation of bitter peptides in tryptic hydrolyzates of casein and their chemical structures. Agricultural and Biological Chemistry 34 (8):1235–43. doi: 10.1271/bbb1961.34.1235.
  • Matsui, T., H. Okumura, and H. Yano. 2002. Absorption of zinc from dietary casein phosphopeptide complex with zinc in rats given a soybean protein-based diet. Journal of Nutritional Science and Vitaminology 48 (3):247–50. doi: 10.3177/jnsv.48.247.
  • Matsuura, K., J. H. Mennear, M. Maeno, and B. Bernard. 2005. Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-lsoleucyl-L-prolyl- L-proline): VII. Micronucleus test of tripeptides-containing casein hydrolysate and Lactobacillus helveticus-fermented milk powders in rats and mice. International Journal of Toxicology 24 (4_suppl):91–6. doi: 10.1080/10915810500259655.
  • Mazorra-Manzano, M. A., J. C. Ramírez-Suarez, and R. Y. Yada. 2018. Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition 58 (13):2147–63. doi: 10.1080/10408398.2017.1308312.
  • McCall, A., C. C. Huang, and C. A. Fierke. 2000. Function and mechanism of zinc metalloenzymes. The Journal of Nutrition 130 (5S Suppl):1437S–46S. doi: 10.1093/jn/130.5.1437S.
  • Miguel, M., A. Dávalos, M. A. Manso, G. de la Pena, M. A. Lasunción, and R. López‐Fandiño. 2008. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Molecular Nutrition & Food Research 52 (12):1507–13. doi: 10.1002/mnfr.200700503.
  • Miletta, M. C., A. Bieri, K. Kernland, M. H. Schöni, V. Petkovic, C. E. Flück, A. Eblé, and P. E. Mullis. 2013. Transient neonatal zinc deficiency caused by a heterozygous G87R mutation in the zinc transporter ZnT-2 (SLC30A2) gene in the mother highlighting the importance of Zn2+ for normal growth and development. International Journal of Endocrinology 2013:1–8. doi: 10.1155/2013/259189.
  • Miner-Williams, W. M., B. R. Stevens, and P. J. Moughan. 2014. Are intact peptides absorbed from the healthy gut in the adult human? Nutrition Research Reviews 27 (2):308–29. doi: 10.1017/S0954422414000225.
  • Mizuno, S., J. H. Mennear, K. Matsuura, and B. K. Bernard. 2005. Studies of the toxicological potential of tripeptides (L-Valyl-L-prolyl-L-proline and L-lsoleucyl-L-prolyl-L-proline): V. A 13-week toxicity study of tripeptides-containing casein hydrolysate in male and female rats. International Journal of Toxicology 24 (4_suppl):41–59. doi: 10.1080/10915810500259606.
  • Mustățea, G., E. L. Ungureanu, and E. Iorga. 2019. Protein acidic hydrolysis for amino acids analysis in food-progress over time: A short review. Journal of Hygienic Engineering and Design 1:131–2.
  • Nakamura, Y., I. Bando, J. H. Mennear, and B. K. Bernard. 2005. Studies of the toxicological potential of tripeptides (L-valyl-L-prolyl-L-proline and L-isoleucyl-L-prolyl- L-proline): IV. Assessment of the repeated-dose toxicological potential of synthesized L-valyl-L-prolyl-L-proline in male and female rats and dogs. International Journal of Toxicology 24 (4_suppl):25–39. doi: 10.1080/10915810500259580.
  • Newman, J., D. O’Riordan, J. C. Jacquier, and M. O’Sullivan. 2015. Masking of bitterness in dairy protein hydrolysates: Comparison of an electronic tongue and a trained sensory panel as means of directing the masking strategy. Lwt - Food Science and Technology 63 (1):751–7. doi: 10.1016/j.lwt.2015.03.019.
  • Nishiwaki, T., S. Yoshimizu, M. Furuta, and K. Hayashi. 2002. Debittering of enzymatic hydrolysates using an aminopeptidase from the edible Basidiomycete Grifola frondosa. Journal of Bioscience and Bioengineering 93 (1):60–3. doi: 10.1016/S1389-1723(02)80055-X.
  • Nistor, N., L. Ciontu, O. E. Frasinariu, V. V. Lupu, A. Ignat, and V. Streanga. 2016. Acrodermatitis enteropathica: A case report. Medicine 95 (20):e3553–4. doi: 10.1097/MD.0000000000003553.
  • Nosho, Y., K. Otagiri, I. Shinoda, and H. Okai. 1985. Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. II. 1) bitterness behavior of a tetrapeptide (Arg-Pro-Phe-Phe) and its derivatives. Agricultural and Biological Chemistry 49 (6):1829–37.
  • Ohanenye, I. C., C. U. Emenike, A. Mensi, S. Medina-Godoy, J. Jin, T. Ahmed, X. Sun, and C. C. Udenigwe. 2020. Food fortification technologies: Influence on iron, zinc and vitamin A bioavailability and potential implications on micronutrient deficiency in sub-Saharan Africa. Scientific African 2020:e00667.
  • Olmoss, A. 2012. Papain, a plant enzyme of biological importance: A review. American Journal of Biochemistry and Biotechnology 8 (2):99–104.
  • Otagiri, K., Y. Nosho, I. Shinoda, H. Fukui, and H. Okai. 1985. Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. I. Bitter taste of di-and tripeptides, and bitterness increase of the model peptides by extension of the peptide chain. Agricultural and Biological Chemistry 49 (4):1019–26.
  • Pappenheimer, J. R., and C. C. Michel. 2003. Role of villus microcirculation in intestinal absorption of glucose: Coupling of epithelial with endothelial transport. The Journal of Physiology 553 (Pt 2):561–74. doi: 10.1113/jphysiol.2003.043257.
  • Pérès, J. M., S. Bouhallab, C. Petit, F. Bureau, J. L. Maubois, P. Arhan, and D. Bouglé. 1998. Improvement of zinc intestinal absorption and reduction of zinc/iron interaction using metal bound to the caseinophosphopeptide 1-25 of β-casein. Reproduction Nutrition Development 38 (4):465–72. doi: 10.1051/rnd:19980410.
  • Perez Espitia, P. J., N. de Fátima Ferreira Soares, J. S. dos Reis Coimbra, N. J. de Andrade, R. Souza Cruz, and E. A. Alves Medeiros. 2012. Bioactive peptides: Synthesis, properties, and applications in the packaging and preservation of food. Comprehensive Reviews in Food Science and Food Safety 11 (2):187–204. doi: 10.1111/j.1541-4337.2011.00179.x.
  • Pescuma, M., E. M. Hébert, T. Haertlé, J.-M. Chobert, F. Mozzi, and G. Font de Valdez. 2015. Lactobacillus delbrueckii subsp. bulgaricus CRL 454 cleaves allergenic peptides of β-lactoglobulin. Food Chemistry 170:407–14. doi: 10.1016/j.foodchem.2014.08.086.
  • Poulin, Y., R. Bissonnette, C. Juneau, K. Cantin, R. Drouin, and P. E. Poubelle. 2006. XP-828l in the treatment of mild to moderate psoriasis: Randomized, double-blind, placebo-controlled study. Journal of Cutaneous Medicine and Surgery 10 (5):241–8. doi: 10.2310/7750.2006.00049.
  • Prasad, A. S. 2009. Zinc: Role in immunity, oxidative stress and chronic inflammation. Current Opinion in Clinical Nutrition and Metabolic Care 12 (6):646–52.
  • Prasad, A. S. 2012. Discovery of human zinc deficiency: 50 years later. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 26 (2–3):66–9. doi: 10.1016/j.jtemb.2012.04.004.
  • Qiao, M., M. Tu, Z. Wang, F. Mao, H. Chen, L. Qin, and M. Du. 2018. Identification and antithrombotic activity of peptides from blue mussel (Mytilus edulis) protein. International Journal of Molecular Sciences 19 (1):138–50. doi: 10.3390/ijms19010138.
  • Raksakulthai, R., and N. F. Haard. 2003. Exopeptidases and their application to reduce bitterness in food: A review. Critical Reviews in Food Science and Nutrition 43 (4):401–45. doi: 10.1080/10408690390826572.
  • Rao, P. S., R. Bajaj, and B. Mann. 2020. Impact of sequential enzymatic hydrolysis on antioxidant activity and peptide profile of casein hydrolysate. Journal of Food Science and Technology 57 (12):4562–75. doi: 10.1007/s13197-020-04495-2.
  • Razzaq, A., S. Shamsi, A. Ali, Q. Ali, M. Sajjad, A. Malik, and M. Ashraf. 2019. Microbial proteases applications. Frontiers in Bioengineering and Biotechnology 7:110. doi: 10.3389/fbioe.2019.00110.
  • Reinhold, J., A. Lahimgarzadeh, K. Nasr, and H. Hedayati. 1973. Effects of purified phytate and phytate-rich bread upon metabolism of zinc, calcium, phosphorus, and nitrogen in man. The Lancet 301 (7798):283–8. doi: 10.1016/S0140-6736(73)91538-9.
  • Rodriguez-Ramiro, I., A. Perfecto, and S. J. Fairweather-Tait. 2017. Dietary factors modulate iron uptake in Caco-2 Cells from an iron ingot used as a home fortificant to prevent iron deficiency. Nutrients 9 (9):1005– 13. doi: 10.3390/nu9091005.
  • Roozbeh, J., M. Sharifian, A. Ghanizadeh, A. Sahraian, M. M. Sagheb, S. Shabani, A. H. Jahromi, M. Kashfi, and R. Afshariani. 2011. Association of zinc deficiency and depression in the patients with end-stage renal disease on hemodialysis. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 21 (2):184–7. doi: 10.1053/j.jrn.2010.05.015.
  • Saidi, S., A. Deratani, M. P. Belleville, and R. B. Amar. 2014. Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Research International 65:453–61. doi: 10.1016/j.foodres.2014.04.026.
  • Salgueiro, M. J., M. Zubillaga, A. Lysionek, R. Caro, R. Weill, and J. Boccio. 2002. Fortification strategies to combat zinc and iron deficiency. Nutrition Reviews 60 (2):52–8. doi: 10.1301/00296640260085958.
  • Sanjukta, S., A. K. Rai, A. Muhammed, K. Jeyaram, and N. C. Talukdar. 2015. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. Journal of Functional Foods 14:650–8. doi: 10.1016/j.jff.2015.02.033.
  • Satake, M., M. Enjoh, Y. Nakamura, T. Takano, Y. Kawamura, S. Arai, and M. Shimizu. 2002. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Bioscience, Biotechnology, and Biochemistry 66 (2):378–84. doi: 10.1271/bbb.66.378.
  • Science, M., J. Johnstone, D. E. Roth, G. Guyatt, and M. Loeb. 2012. Zinc for the treatment of the common cold: A systematic review and meta-analysis of randomized controlled trials. CMAJ: Canadian Medical Association Journal = Journal de L’Association Medicale Canadienne 184 (10):E551–E561. doi: 10.1503/cmaj.111990.
  • Shah, M., and S. Mir. 2019. Bioactive molecules in food. 1st ed. Cham: Springer.
  • Shrimpton, R., R. Gross, I. Darnton-Hill, and M. Young. 2005. Zinc deficiency: What are the most appropriate interventions? BMJ (Clinical Research ed.) 330 (7487):347–9. doi: 10.1136/bmj.330.7487.347.
  • Simpson, R. J. 2006. Fragmentation of protein using trypsin. Cold Spring Harbor Protocols 2006 (28):pdb.prot4550–pdb.prot4550. doi: 10.1101/pdb.prot4550.
  • Siwek, M., D. Dudek, M. Schlegel-Zawadzka, A. Morawska, W. Piekoszewski, W. Opoka, A. Zieba, A. Pilc, P. Popik, and G. Nowak. 2010. Serum zinc level in depressed patients during zinc supplementation of imipramine treatment. Journal of Affective Disorders 126 (3):447–52. doi: 10.1016/j.jad.2010.04.024.
  • Smart, A. L., S. Gaisford, and A. W. Basit. 2014. Oral peptide and protein delivery: Intestinal obstacles and commercial prospects. Expert Opinion on Drug Delivery 11 (8):1323–35. doi: 10.1517/17425247.2014.917077.
  • So, J. E., S. H. Kang, and B. G. Kim. 1998. Lipase-catalyzed synthesis of peptides containing D-amino acid. Enzyme and Microbial Technology 23 (3–4):211–5. doi: 10.1016/S0141-0229(98)00051-9.
  • Stefanidou, M., C. Maravelias, A. Dona, and C. Spiliopoulou. 2006. Zinc: A multipurpose trace element. Archives of Toxicology 80 (1):1–9. doi: 10.1007/s00204-005-0009-5.
  • Stevenson, D. E., D. J. Ofman, K. R. Morgan, and R. A. Stanley. 1998. Protease-catalyzed condensation of peptides as a potential means to reduce the bitter taste of hydrophobic peptides found in protein hydrolysates. Enzyme and Microbial Technology 22 (2):100–10. doi: 10.1016/S0141-0229(97)00135-X.
  • Sun, R., X. Liu, Y. Yu, J. Miao, K. Leng, and H. Gao. 2021. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chemistry 340 (340):128056.
  • Sun, X., R. A. Sarteshnizi, R. T. Boachie, O. D. Okagu, R. O. Abioye, R. Pfeilsticker Neves, I. C. Ohanenye, and C. C. Udenigwe. 2020. Peptide–mineral complexes: Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods 9 (10):1402. doi: 10.3390/foods9101402.
  • Tadesse, S. A., and S. A. Emire. 2020. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 6 (8):e04765. doi: 10.1016/j.heliyon.2020.e04765.
  • Temussi, P. A. 2012. The good taste of peptides. Journal of Peptide Science: An Official Publication of the European Peptide Society 18 (2):73–82. doi: 10.1002/psc.1428.
  • Théolier, J., R. Hammami, P. Labelle, I. Fliss, and J. Jean. 2013. Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. Journal of Functional Foods 5 (2):706–14. doi: 10.1016/j.jff.2013.01.014.
  • Torres-Llanez, M. J., A. F. González-Córdova, A. Hernandez-Mendoza, H. S. Garcia, and B. Vallejo-Cordoba. 2011. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese. Journal of Dairy Science 94 (8):3794–800. doi: 10.3168/jds.2011-4237.
  • Udechukwu, M. C., A. Tsopmo, H. Mawhinney, R. He, P. C. Kienesberger, and C. C. Udenigwe. 2017. Inhibition of ADAM17/TACE activity by zinc-chelating rye secalin-derived tripeptides and analogues. RSC Advances 7 (42):26361–9. doi: 10.1039/C6RA26678A.
  • Udechukwu, M. C., B. Downey, and C. C. Udenigwe. 2018. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chemistry 240:1227–32. doi: 10.1016/j.foodchem.2017.08.063.
  • Udechukwu, M. C., S. A. Collins, and C. C. Udenigwe. 2016. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food & Function 7 (10):4137–44. doi: 10.1039/c6fo00706f.
  • Ulluwishewa, D., R. C. Anderson, W. C. McNabb, P. J. Moughan, J. M. Wells, and N. C. Roy. 2011. Regulation of tight junction permeability by intestinal bacteria and dietary components. The Journal of Nutrition 141 (5):769–76. doi: 10.3945/jn.110.135657.
  • Ulug, S. K., F. Jahandideh, and J. Wu. 2021. Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology 108 (202):27–39. doi: 10.1016/j.tifs.2020.12.002.
  • Usman, M., J. Patil, F. Manzoor, M. Bilal, S. Ahmed, M. A. Murtaza, H. Shah, N. Nawaz, S. Amjad, and M. Abrar. 2021. Dough rheology and the impact of zinc sulfate on the quality of cookies. Food Science and Technology 2021:1–8. doi: 10.1590/fst.34220.
  • Valberg, L. S., P. R. Flanagan, A. Kertesz, and D. C. Bondy. 1986. Zinc absorption in inflammatory bowel disease. Digestive Diseases and Sciences 31 (7):724–31. doi: 10.1007/BF01296450.
  • Valencia, P., M. Pinto, and S. Almonacid. 2014. Identification of the key mechanisms involved in the hydrolysis of fish protein by Alcalase. Process Biochemistry 49 (2):258–64. doi: 10.1016/j.procbio.2013.11.012.
  • Vegarud, G. E., T. Langsrud, and C. Svenning. 2000. Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. British Journal of Nutrition 84 (S1):91–8. doi: 10.1017/S0007114500002300.
  • Vig, B. S., T. R. Stouch, J. K. Timoszyk, Y. Quan, D. A. Wall, R. L. Smith, and T. N. Faria. 2006. Human PEPT1 pharmacophore distinguishes between dipeptide transport and binding. Journal of Medicinal Chemistry 49 (12):3636–44. doi: 10.1021/jm0511029.
  • Vij, R., S. Reddi, S. Kapila, and R. Kapila. 2016. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food Chemistry 190:681–8. doi: 10.1016/j.foodchem.2015.05.121.
  • Villadóniga, C., and A. M. B. Cantera. 2019. New ACE-inhibitory peptides derived from α-lactalbumin produced by hydrolysis with Bromelia antiacantha peptidases. Biocatalysis and Agricultural Biotechnology 20:101258. doi: 10.1016/j.bcab.2019.101258.
  • Wang, X.,H. Yu,R. Xing, andP. Li. 2017. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BioMed Research International 2017:9746720 doi:10.1155/2017/9746720. PMC: 28761878
  • Wang, C., B. Li, and J. Ao. 2012. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn²ω and LC-MS/MS . Food Chemistry 134 (2):1231–8. doi: 10.1016/j.foodchem.2012.02.204.
  • Wang, C., C. Wang, B. Li, and H. Li. 2014. Zn(II) chelating with peptides found in sesame protein hydrolysates: identification of the binding sites of complexes. Food Chemistry 165:594–602. doi: 10.1016/j.foodchem.2014.05.146.
  • Wang, D., K. Liu, P. Cui, Z. Bao, T. Wang, S. Lin, and N. Sun. 2020. Egg-white-derived antioxidant peptide as an efficient nanocarrier for zinc delivery through the gastrointestinal System. Journal of Agricultural and Food Chemistry 68 (7):2232–9. doi: 10.1021/acs.jafc.9b07770.
  • Wang, Q., F. Zhu, Y. Xin, J. Liu, L. Luo, and Z. Yin. 2011. Expression and purification of antimicrobial peptide buforin IIb in Escherichia coli. Biotechnology Letters 33 (11):2121–6. doi: 10.1007/s10529-011-0687-4.
  • Wang, R., S. He, Y. Xuan, and C. Cheng. 2020. Preparation and characterization of whey protein hydrolysate-Zn complexes. Journal of Food Measurement and Characterization 14 (1):254–61. doi: 10.1007/s11694-019-00287-1.
  • Wang, X., J. Zhou, P. S. Tong, and X. Y. Mao. 2011. Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes. Journal of Dairy Science 94 (6):2731–40. doi: 10.3168/jds.2010-3900.
  • Wessells, K., and K. H. Brown. 2012. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7 (11):e50568. doi: 10.1371/journal.pone.0050568.
  • Wiernicka, A., W. Jańczyk, M. Dądalski, Y. Avsar, H. Schmidt, and P. Socha. 2013. Gastrointestinal side effects in children with Wilson’s disease treated with zinc sulphate. World Journal of Gastroenterology 19 (27):4356–62. doi: 10.3748/wjg.v19.i27.4356.
  • World Health Organization. 2002. The world health report 2002: Reducing risks, promoting healthy life, Geneva, Switzerland: World Health Organization., 1–168.
  • Xie, N., J. Huang, B. Li, J. Cheng, Z. Wang, J. Yin, and X. Yan. 2015. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: Possible contribution of characteristic amino acid residues. Food Chemistry 173:210–7. doi: 10.1016/j.foodchem.2014.10.030.
  • Xu, F., J. Zhang, Z. Wang, Y. Yao, G. G. Atungulu, X. Ju, and L. Wang. 2018. Absorption and metabolism of peptide WDHHAPQLR derived from rapeseed protein and inhibition of HUVEC apoptosis under oxidative stress. Journal of Agricultural and Food Chemistry 66 (20):5178–89. doi: 10.1021/acs.jafc.8b01620.
  • Xu, F., L. Wang, X. Ju, J. Zhang, S. Yin, J. Shi, R. He, and Q. Yuan. 2017. Transepithelial transport of YWDHNNPQIR and its metabolic fate with cytoprotection against oxidative stress in human intestinal Caco-2 cells. Journal of Agricultural and Food Chemistry 65 (10):2056–65. doi: 10.1021/acs.jafc.6b04731.
  • Xu, Q., H. Fan, W. Yu, H. Hong, and J. Wu. 2017. Transport study of egg-derived an- tihypertensive peptides (LKP and IQW) using Caco-2 and HT29 coculture monolayers. Journal of Agricultural and Food Chemistry 65 (34):7406–14. doi: 10.1021/acs.jafc.7b02176.
  • Xu, Q., X. Yan, Y. Zhang, and J. Wu. 2019. Current understanding of transport and bioavailability of bioactive peptides derived from dairy proteins: A review. International Journal of Food Science & Technology 54 (6):1930–41. doi: 10.1111/ijfs.14055.
  • Yasuda, K., A. Kotaro, K. Keigo, M. Mochii, and Y. Nakamura. 2001. Effect of large high intake of tablets containing "lactotripeptides (VPP, IPP)" on blood pressure, pulse rate and clinical parameters in healthy volunteers. [In Japanese, English abstract.] Journal of Nutritional Food 4:63-72.
  • Yu, D., M. Q. Feng, J. Sun, X. L. Xu, and G. H. Zhou. 2020. Protein degradation and peptide formation with antioxidant activity in pork protein extracts inoculated with Lactobacillus plantarum and Staphylococcus simulans. Meat Science 160:107958. doi: 10.1016/j.meatsci.2019.107958.
  • Zhang, Z., F. Zhou, X. Liu, and M. Zhao. 2018. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chemistry (258):269–277. doi: 10.1016/j.foodchem.2018.03.030.
  • Zhao, L., S. Huang, X. Cai, J. Hong, and S. Wang. 2014. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. Journal of Functional Foods 10:46–53. doi: 10.1016/j.jff.2014.05.013.
  • Zhu, K. X., X. P. Wang, and X. N. Guo. 2015. Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. Journal of Functional Foods 12:23–32. doi: 10.1016/j.jff.2014.10.030.
  • Zhu, S., Y. Zheng, S. He, D. Su, A. Nag, Q. Zeng, and Y. Yuan. 2021. Novel Zn-binding peptide isolated from soy protein hydrolysates: Purification, structure, and digestion. Journal of Agricultural and Food Chemistry 69 (1):483–490. doi: 10.1021/acs.jafc.0c05792.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.