506
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication?

, , , ORCID Icon, , , ORCID Icon & show all

References

  • Abbasi, A. M., X. Guo, X. Fu, L. Zhou, Y. Chen, Y. Zhu, H. Yan, and R. H. Liu. 2015. Comparative assessment of phenolic content and in vitro antioxidant capacity in the pulp and peel of mango cultivars. International Journal of Molecular Sciences 16 (6):13507. doi: 10.3390/ijms160613507.
  • Abdel-Mone, A., A. Hosni, E. S. Abdel-Rehe, and A. Ismail. 2020. Role of PPARγ/anti-inflammatory axis in the protective effect of ellagic acid against FSD/STZ-induced gestational diabetes in rats. Asian Journal of Biological Sciences 13 (2):228–36. doi: 10.3923/ajbs.2020.228.236.
  • Abdul-Ghani, M. A., and R. A. DeFronzo. 2010. Pathogenesis of insulin resistance in skeletal muscle. Journal of Biomedicine & Biotechnology 2010:476279. doi: 10.1155/2010/476279.
  • Abdulkhaleq, L. A., M. A. Assi, M. H. M. Noor, R. Abdullah, M. Z. Saad, and Y. H. Taufiq-Yap. 2017. Therapeutic uses of epicatechin in diabetes and cancer. Veterinary World 10 (8):869–72. doi: 10.14202/vetworld.2017.869-872.
  • Adebiyi, O. A., O. O. Adebiyi, and P. M. Owira. 2016. Naringin reduces hyperglycemia-induced cardiac fibrosis by relieving oxidative stress. PLoS One 11 (3):e0149890. doi: 10.1371/journal.pone.0149890.
  • Adisakwattana, S., P. Chantarasinlapin, H. Thammarat, and S. Yibchok-Anun. 2009. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. Journal of Enzyme Inhibition and Medicinal Chemistry 24 (5):1194–200. doi: 10.1080/14756360902779326.
  • Ahad, A., A. A. Ganai, M. Mujeeb, and W. A. Siddiqui. 2014. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chemico-Biological Interactions 219:64–75. doi: 10.1016/j.cbi.2014.05.011.
  • Ahangarpour, A., A. A. Oroojan, L. Khorsandi, M. Kouchak, and M. Badavi. 2018a. Antioxidant effect of myricitrin on hyperglycemia-induced oxidative stress in C2C12 cell. Cell Stress Chaperones 23 (4):773–81. doi: 10.1007/s12192-018-0888-z.
  • Ahangarpour, A., A. A. Oroojan, L. Khorsandi, M. Kouchak, and M. Badavi. 2018b. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxidative Medicine and Cellular Longevity 2018:7496936. doi: 10.1155/2018/7496936.
  • Aherne, S. A., and N. M. O’Brien. 2002. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 18 (1):75–81. doi: 10.1016/S0899-9007(01)00695-5.
  • Akiyama, H., K. Fujii, O. Yamasaki, T. Oono, and K. Iwatsuki. 2001. Antibacterial action of several tannins against Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 48 (4):487–91. doi: 10.1093/jac/48.4.487.
  • Akkarachiyasit, S., P. Charoenlertkul, S. Yibchok-Anun, and S. Adisakwattana. 2010. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. International Journal of Molecular Sciences 11 (9):3387–96. doi: 10.3390/ijms11093387.
  • Akkarachiyasit, S., S. Yibchok-Anun, S. Wacharasindhu, and S. Adisakwattana. 2011. In vitro inhibitory effects of cyandin-3-rutinoside on pancreatic α-amylase and its combined effect with acarbose. Molecules (Basel, Switzerland) 16 (3):2075–83. doi: 10.3390/molecules16032075.
  • Ali, M. Y., S. Zaib, M. Mizanur Rahman, S. Jannat, J. Iqbal, S. Kyu Park, and M. Seog Chang. 2020. Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating PI3K/Akt signaling pathway in insulin resistant C2C12 cells with anti-glycation capacities. Bioorganic Chemistry 102:104061.
  • Al-Dosari, D. I., M. M. Ahmed, S. S. Al-Rejaie, A. S. Alhomida, and M. S. Ola. 2017. Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients 9 (10):1161. doi: 10.3390/nu9101161.
  • Alkhalidy, H., W. Moore, Y. Wang, J. Luo, R. P. McMillan, W. Zhen, K. Zhou, and D. Liu. 2018. The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules 23 (9):2338. doi: 10.3390/molecules23092338.
  • Al-Oanzi, Z. H. 2019. Erectile dysfunction attenuation by naringenin in streptozotocin-induced diabetic rats. Journal of Food Biochemistry 43 (7):e12885.
  • Al-Sharea, A., A. J. Murphy, L. A. Huggins, Y. Hu, I. J. Goldberg, and P. R. Nagareddy. 2018. SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr-/- type 1 diabetic mice. Atherosclerosis 271:166–76. doi: 10.1016/j.atherosclerosis.2018.02.028.
  • ALTamimi, J. Z., M. N. BinMowyna, N. A. AlFaris, R. I. Alagal, A. F. El-Kott, and A. M. Al-Farga. 2021. Fisetin protects against streptozotocin-induced diabetic cardiomyopathy in rats by suppressing fatty acid oxidation and inhibiting protein kinase R. Saudi Pharmaceutical Journal: SPJ 29 (1):27–42. doi: 10.1016/j.jsps.2020.12.003.
  • Althunibat, O. Y., A. M. Al Hroob, M. H. Abukhalil, M. O. Germoush, M. Bin-Jumah, and A. M. Mahmoud. 2019. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sciences 221:83–92. doi: 10.1016/j.lfs.2019.02.017.
  • Alu’Datt, M. H., T. Rababah, M. N. Alhamad, M. A. Al-Mahasneh, K. Ereifej, G. Al-Karaki, M. Al-Duais, J. E. Andrade, C. C. Tranchant, S. Kubow, et al. 2017. Profiles of free and bound phenolics extracted from Citrus fruits and their roles in biological systems: Content, and antioxidant, anti-diabetic and anti-hypertensive properties. Food & Function 8 (9):3187–97. doi: 10.1039/c7fo00212b.
  • Alvarado, J. L., A. Leschot, Á. Olivera-Nappa, A. M. Salgado, H. Rioseco, C. Lyon, and P. Vigil. 2016. Delphinidin-rich maqui berry extract (Delphinol®) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. BioMed Research International 2016:9070537. doi: 10.1155/2016/9070537.
  • Aminzadeh, A., and H. Bashiri. 2020. Myricetin ameliorates high glucose-induced endothelial dysfunction in human umbilical vein endothelial cells. Cell Biochemistry and Function 38 (1):12–20. doi: 10.1002/cbf.3442.
  • An, X., Y. Zhang, Y. Cao, J. Chen, H. Qin, and L. Yang. 2020. Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients 12 (5):1516. doi: 10.3390/nu12051516.
  • Anhê, F. F., D. Roy, G. Pilon, S. Dudonné, S. Matamoros, T. V. Varin, C. Garofalo, Q. Moine, Y. Desjardins, E. Levy, et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64 (6):872–83. doi: 10.1136/gutjnl-2014-307142.
  • Annadurai, T., A. R. Muralidharan, T. Joseph, M. J. Hsu, P. A. Thomas, and P. Geraldine. 2012. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin-nicotinamide-induced experimental diabetic rats. Journal of Physiology and Biochemistry 68 (3):307–18. doi: 10.1007/s13105-011-0142-y.
  • Antika, L. D., E. J. Lee, Y. H. Kim, M. K. Kang, S. H. Park, D. Y. Kim, H. Oh, Y. J. Choi, and Y. H. Kang. 2017. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. The Journal of Nutritional Biochemistry 49:42–52. doi: 10.1016/j.jnutbio.2017.07.014.
  • Aquilante, C. L. 2010. Sulfonylurea pharmacogenomics in Type 2 diabetes: The influence of drug target and diabetes risk polymorphisms. Expert Review of Cardiovascular Therapy 8 (3):359–72. doi: 10.1586/erc.09.154.
  • Aswal, S., A. Kumar, A. Chauhan, R. B. Semwal, A. Kumar, and D. K. Semwal. 2020. A molecular approach on the protective effects of mangiferin against diabetes and diabetes-related complications. Current Diabetes Reviews 16 (7):690–8. doi: 10.2174/1573399815666191004112023.
  • Atkinson, F. S., K. Foster-Powell, and J. C. Brand-Miller. 2008. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31 (12):2281–3. doi: 10.2337/dc08-1239.
  • Badescu, M., O. Badulescu, L. Badescu, and M. Ciocoiu. 2015. Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharmaceutical Biology 53 (4):533–9. doi: 10.3109/13880209.2014.931441.
  • Baggio, L. L., and D. J. Drucker. 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132 (6):2131–57. doi: 10.1053/j.gastro.2007.03.054.
  • Bairagi, U., P. Mittal, J. Singh, and B. Mishra. 2018. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Development and Industrial Pharmacy 44 (11):1783–96. doi: 10.1080/03639045.2018.1496448.
  • Baker, R. G., M. S. Hayden, and S. Ghosh. 2011. NF-κB, inflammation, and metabolic disease. Cell Metabolism 13 (1):11–22. doi: 10.1016/j.cmet.2010.12.008.
  • Balaha, M., S. Kandeel, and A. Kabel. 2018. Phloretin either alone or in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 101:821–32. doi: 10.1016/j.biopha.2018.02.135.
  • Ballistreri, G., A. Continella, A. Gentile, M. Amenta, S. Fabroni, and P. Rapisarda. 2013. Fruit quality and bioactive compounds relevant to human health of sweet cherry (Prunus avium L.) cultivars grown in Italy. Food Chemistry 140 (4):630–8. doi: 10.1016/j.foodchem.2012.11.024.
  • Banihani, S. A., S. M. Makahleh, and Z. J. El-Akawi. 2020. Short-term effect of fresh pomegranate juice on serum cortisol and thyroxine in patients with type 2 diabetes. Current Molecular Medicine 20 (5):355–60. doi: 10.2174/1566524019666191129104153.
  • Bao, L., J. Li, D. Zha, L. Zhang, P. Gao, T. Yao, and X. Wu. 2018. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. International Immunopharmacology 54:245–53. doi: 10.1016/j.intimp.2017.11.021.
  • Barik, S. K., B. Dehury, W. R. Russell, K. M. Moar, M. Cruickshank, L. Scobbie, and N. Hoggard. 2020. Analysis of polyphenolic metabolites from in vitro gastrointestinal digested soft fruit extracts identify malvidin-3-glucoside as an inhibitor of PTP1B. Biochemical Pharmacology 178:114109. doi: 10.1016/j.bcp.2020.114109.
  • Baron, A. D. 1998. Postprandial hyperglycaemia and alpha-glucosidase inhibitors. Diabetes Research and Clinical Practice 40 Suppl:S51–5. doi: 10.1016/s0168-8227(98)00043-6.
  • Bazzano, L. A., T. Y. Li, K. J. Joshipura, and F. B. Hu. 2008. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 31 (7):1311–7. doi: 10.2337/dc08-0080.
  • Bellesia, A., E. Verzelloni, and D. Tagliazucchi. 2015. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions. International Journal of Food Sciences and Nutrition 66 (1):85–92. doi: 10.3109/09637486.2014.953455.
  • Bhakta, H. K., P. Paudel, H. Fujii, A. Sato, C. H. Park, T. Yokozawa, H. A. Jung, and J. S. Choi. 2017. Oligonol promotes glucose uptake by modulating the insulin signaling pathway in insulin-resistant HepG2 cells via inhibiting protein tyrosine phosphatase 1B. Archives of Pharmacal Research 40 (11):1314–27. doi: 10.1007/s12272-017-0970-6.
  • Biswas, N., P. Balac, S. K. Narlakanti, M. D. Enamul Haque, and M. D. Mehedi Hassan. 2013. Identification of phenolic compounds in processed cranberries by hplc method. J Nutr Food Sci 3 (1):1–6.
  • Bodmer, M., C. Meier, S. Krähenbühl, S. S. Jick, and C. R. Meier. 2008. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: A nested case-control analysis. Diabetes Care 31 (11):2086–91. doi: 10.2337/dc08-1171.
  • Bondonno, C. P., N. P. Bondonno, S. Shinde, A. Shafaei, M. C. Boyce, E. Swinny, S. R. Jacob, K. Lacey, R. J. Woodman, K. D. Croft, et al. 2020. Phenolic composition of 91 Australian apple varieties: Towards understanding their health attributes. Food & Function 11 (8):7115–25. doi: 10.1039/d0fo01130d.
  • Borges, G., J. I. Ottaviani, J. J. J. van der Hooft, H. Schroeter, and A. Crozier. 2018. Absorption, metabolism, distribution and excretion of (-)-epicatechin: A review of recent findings. Molecular Aspects of Medicine 61:18–30. doi: 10.1016/j.mam.2017.11.002.
  • Brat, P., S. Georgé, A. Bellamy, L. Du Chaffaut, A. Scalbert, L. Mennen, N. Arnault, and M. J. Amiot. 2006. Daily polyphenol intake in France from fruit and vegetables. The Journal of Nutrition 136 (9):2368–73. doi: 10.1093/jn/136.9.2368.
  • Brierley, G. V., H. Webber, E. Rasijeff, S. Grocott, K. Siddle, and R. K. Semple. 2020. Anti-insulin receptor antibodies improve hyperglycemia in a mouse model of human insulin receptoropathy. Diabetes 69 (11):2481–9. doi: 10.2337/db20-0345.
  • Budzynska, B., C. Faggio, M. Kruk-Slomka, D. Samec, S. F. Nabavi, A. Sureda, K. P. Devi, and S. M. Nabavi. 2019. Rutin as neuroprotective agent: From bench to bedside. Current Medicinal Chemistry 26 (27):5152–64. doi: 10.2174/0929867324666171003114154.
  • Bugger, H., and E. D. Abel. 2014. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57 (4):660–71. doi: 10.1007/s00125-014-3171-6.
  • Butkevičiūtė, A., M. Liaudanskas, D. Kviklys, D. Gelvonauskienė, and V. Janulis. 2020. The qualitative and quantitative compositions of phenolic compounds in fruits of lithuanian heirloom apple cultivars. Molecules 25 (22):5263. doi: 10.3390/molecules25225263.
  • Cai, M., C. Xie, H. Zhong, B. Tian, and K. Yang. 2021. Identification of anthocyanins and their fouling mechanisms during non-thermal nanofiltration of blueberry aqueous extracts. Membranes (Basel) 11 (3):200. doi: 10.3390/membranes11030200.
  • Cai, Y., Q. Luo, M. Sun, and H. Corke. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences 74 (17):2157–84. doi: 10.1016/j.lfs.2003.09.047.
  • Câmara, J. S., B. R. Albuquerque, J. Aguiar, R. C. G. Corrêa, J. L. Gonçalves, D. Granato, J. A. M. Pereira, L. Barros, and I. C. F. R. Ferreira. 2020. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 10 (1):37. doi: 10.3390/foods10010037.
  • Candela, M., E. Biagi, M. Soverini, C. Consolandi, S. Quercia, M. Severgnini, C. Peano, S. Turroni, S. Rampelli, P. Pozzilli, et al. 2016. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. The British Journal of Nutrition 116 (1):80–93. doi: 10.1017/S0007114516001045.
  • Cao, H., J. Ou, L. Chen, Y. Zhang, T. Szkudelski, D. Delmas, M. Daglia, and J. Xiao. 2019. Dietary polyphenols and type 2 diabetes: Human study and clinical trial. Critical Reviews in Food Science and Nutrition 59 (20):3371–9. doi: 10.1080/10408398.2018.1492900.
  • Cao, J., Q. Jiang, J. Lin, X. Li, C. Sun, and K. Chen. 2015. Physicochemical characterisation of four cherry species (Prunus spp.) grown in China. Food Chemistry 173:855–63. doi: 10.1016/j.foodchem.2014.10.094.
  • Chagas, V. T., R. M. R. S. Coelho, R. S. Gaspar, S. A. da Silva, M. Mastrogiovanni, C. J. Mendonça, M. N. S. Ribeiro, A. M. A. Paes, and A. Trostchansky. 2018. Protective effects of a polyphenol-rich extract from Syzygicini (L.) skeels leaf on oxidative stress-induced diabetic rats. Oxidative Medicine and Cellular Longevity 2018:5386079.
  • Chakravarthy, B. K., S. Gupta, and K. D. Gode. 1982. Antidiabetic effect of (-)-epicatechin. Lancet (London, England) 2 (8292):272–3. doi: 10.1016/S0140-6736(82)90355-5.
  • Chen, F., N. Zhang, X. Ma, T. Huang, Y. Shao, C. Wu, and Q. Wang. 2015. Naringin alleviates diabetic kidney disease through inhibiting oxidative stress and inflammatory reaction. PLoS One 10 (11):e0143868. doi: 10.1371/journal.pone.0143868.
  • Chen, L. Y., C. N. Huang, C. K. Liao, H. M. Chang, Y. H. Kuan, T. J. Tseng, K. J. Yen, K. L. Yang, and H. C. Lin. 2020. Effects of rutin on wound healing in hyperglycemic rats. Antioxidants (Basel) 9 (11):1122. doi: 10.3390/antiox9111122.
  • Chen, Y. J., L. Kong, Z. Z. Tang, Y. M. Zhang, Y. Liu, T. Y. Wang, and Y. W. Liu. 2019. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 111:1166–75. doi: 10.1016/j.biopha.2019.01.030.
  • Cho, N. H. 2016. Q&A: Five questions on the 2015 IDF Diabetes Atlas. Diabetes Research and Clinical Practice 115:157–9. doi: 10.1016/j.diabres.2016.04.048.
  • Choi, C. I. 2016. Sodium-glucose cotransporter 2 (SGLT2) inhibitors from natural products: Discovery of next-generation antihyperglycemic agents. Molecules 21 (9):1136. doi: 10.3390/molecules21091136.
  • Choi, J. S., H. K. Bhakta, H. Fujii, B. S. Min, C. H. Park, T. Yokozawa, and H. A. Jung. 2016. Inhibitory evaluation of oligonol on α-glucosidase, protein tyrosine phosphatase 1B, cholinesterase, and β-secretase 1 related to diabetes and Alzheimer’s disease. Archives of Pharmacal Research 39 (3):409–20. doi: 10.1007/s12272-015-0682-8.
  • Choi, K. H., M. H. Park, H. A. Lee, and J. S. Han. 2018. Cyanidin-3-rutinoside protects INS-1 pancreatic β cells against high glucose-induced glucotoxicity by apoptosis. Zeitschrift fur Naturforschung. C, Journal of Biosciences 73 (7–8):281–9. doi: 10.1515/znc-2017-0172.
  • Chong, M. F. F., R. Macdonald, and J. A. Lovegrove. 2010. Fruit polyphenols and CVD risk: A review of human intervention studies. British Journal of Nutrition 104 (S3):S28–S39. doi: 10.1017/S0007114510003922.
  • Chowdhury, S., S. Ghosh, A. K. Das, and P. C. Sil. 2019. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Frontiers in Pharmacology 10:27.
  • Chun, K. H., H. C. Jin, K. S. Kang, T. S. Chang, and G. S. Hwang. 2020. Poncirin inhibits osteoclast differentiation and bone loss through down-regulation of NFATc1 in vitro and in vivo. Biomolecules & Therapeutics 28 (4):337–43. doi: 10.4062/biomolther.2018.216.
  • Cohen, R., B. Schwartz, I. Peri, and E. Shimoni. 2011. Improving bioavailability and stability of genistein by complexation with high-amylose corn starch. Journal of Agricultural and Food Chemistry 59 (14):7932–8. doi: 10.1021/jf2013277.
  • Constantino, M. I., L. Molyneaux, F. Limacher-Gisler, A. Al-Saeed, C. Luo, T. Wu, S. M. Twigg, D. K. Yue, and J. Wong. 2013. Long-term complications and mortality in young-onset diabetes: Type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care 36 (12):3863–9. doi: 10.2337/dc12-2455.
  • Cordero-Herrera, I., X. Chen, S. Ramos, and S. Devaraj. 2017. (-)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. European Journal of Nutrition 56 (3):1369–73. doi: 10.1007/s00394-015-1136-2.
  • Cornelis, M. C., and F. B. Hu. 2012. Gene-environment interactions in the development of type 2 diabetes: Recent progress and continuing challenges. Annual Review of Nutrition 32:245–59. doi: 10.1146/annurev-nutr-071811-150648.
  • Cremonini, E., A. Bettaieb, F. G. Haj, C. G. Fraga, and P. I. Oteiza. 2016. (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Archives of Biochemistry and Biophysics 599:13–21. doi: 10.1016/j.abb.2016.03.006.
  • Cremonini, E., C. G. Fraga, and P. I. Oteiza. 2019. (-)-Epicatechin in the control of glucose homeostasis: Involvement of redox-regulated mechanisms. Free Radical Biology & Medicine 130:478–88. doi: 10.1016/j.freeradbiomed.2018.11.010.
  • Crespy, V., O. Aprikian, C. Morand, C. Besson, C. Manach, C. Demigné, and C. Rémésy. 2001. Bioavailability of phloretin and phloridzin in rats. The Journal of Nutrition 131 (12):3227–30. doi: 10.1093/jn/131.12.3227.
  • Dabelea, D., R. A. Bell, R. B. D’Agostino, G. Imperatore, J. M. Johansen, B. Linder, L. L. Liu, B. Loots, S. Marcovina, E. J. Mayer-Davis, et al. 2007. Incidence of diabetes in youth in the United States. Jama 297 (24):2716–24. doi: 10.1001/jama.297.24.2716.
  • Dai, T., J. Chen, D. J. McClements, T. Li, and C. Liu. 2019. Investigation the interaction between procyanidin dimer and α-glucosidase: Spectroscopic analyses and molecular docking simulation. International Journal of Biological Macromolecules 130:315–22. doi: 10.1016/j.ijbiomac.2019.02.105.
  • Dandona, P., H. Ghanim, P. Mohanty, and A. Chaudhuri. 2006. The metabolic syndrome: Linking oxidative stress and inflammation to obesity, type 2 diabetes, and the syndrome. Drug Development Research 67 (7):619–26. doi: 10.1002/ddr.20137.
  • D’Andrea, G. 2015. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 106:256–71. doi: 10.1016/j.fitote.2015.09.018.
  • Davatgaran-Taghipour, Y., S. Masoomzadeh, M. H. Farzaei, R. Bahramsoltani, Z. Karimi-Soureh, R. Rahimi, and M. Abdollahi. 2017. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. International Journal of Nanomedicine 12:2689–702. doi: 10.2147/IJN.S131973.
  • David, H. P., J. Murugesan, and T. Kavitha. 2015. Flavanone naringenin: An effective antihyperglycemic and antihyperlipidemic nutraceutical agent on high fat diet fed streptozotocin induced type 2 diabetic rats. Journal of Functional Foods 14:363–73.
  • De Vos, W. M., and M. Nieuwdorp. 2013. Genomics: A gut prediction. Nature 498 (7452):48–9. doi: 10.1038/nature12251.
  • Demir, Y., L. Durmaz, P. Taslimi, and İ. Gulçin. 2019. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnology and Applied Biochemistry 66 (5):781–6. doi: 10.1002/bab.1781.
  • Deng, N., B. Zheng, T. Li, and R. H. Liu. 2020. Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Horde vulgare L.) varieties. International Journal of Molecular Sciences 21 (4):1175. doi: 10.3390/ijms21041175.
  • Deshmukh, A. S. 2016. Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle. Hormone Molecular Biology and Clinical Investigation 26 (1):13–24. doi: 10.1515/hmbci-2015-0041.
  • Dhaliwal, J., N. Dhaliwal, A. Akhtar, A. Kuhad, and K. Chopra. 2020. Beneficial effects of ferulic acid alone and in combination with insulin in streptozotocin induced diabetic neuropathy in Sprague Dawley rats. Life Sciences 255:117856. doi: 10.1016/j.lfs.2020.117856.
  • Ding, S., H. Qiu, J. Huang, R. Chen, J. Zhang, B. Huang, X. Zou, O. Cheng, and Q. Jiang. 2019. Activation of 20-HETE/PPARs involved in reno-therapeutic effect of naringenin on diabetic nephropathy. Chemico-Biological Interactions 307:116–24. doi: 10.1016/j.cbi.2019.05.004.
  • Ding, X., T. Jian, Y. Wu, Y. Zuo, J. Li, H. Lv, L. Ma, B. Ren, L. Zhao, W. Li, et al. 2019. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 110:85–94. doi: 10.1016/j.biopha.2018.11.018.
  • Dokumacioglu, E., H. Iskender, T. M. Sen, I. Ince, A. Dokumacioglu, Y. Kanbay, E. Erbas, and S. Saral. 2018. The effects of hesperidin and quercetin on serum tumor necrosis factor-alpha and interleukin-6 levels in streptozotocin-induced diabetes model. Pharmacognosy Magazine 14 (54):167–73. doi: 10.4103/pm.pm_41_17.
  • Doostkam, A., H. Mirkhani, K. Iravani, S. Karbalay-Doust, and K. Zarei. 2021. Effect of rutin on diabetic auditory neuropathy in an experimental rat model. Clinical and Experimental Otorhinolaryngology 14 (3):259–67. doi: 10.21053/ceo.2019.02068.
  • Du, L., C. Li, X. Qian, Y. Chen, L. Wang, H. Yang, X. Li, Y. Li, X. Yin, and Q. Lu. 2019. Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the Hippo pathway. Pharmacological Research 146:104320. doi: 10.1016/j.phrs.2019.104320.
  • Dubé, J. J., F. Amati, M. Stefanovic-Racic, F. G. Toledo, S. E. Sauers, and B. H. Goodpaster. 2008. Exercise-induced alterations in intramyocellular lipids and insulin resistance: The athlete’s paradox revisited. American Journal of Physiology-Endocrinology and Metabolism 294 (5):E882–8. doi: 10.1152/ajpendo.00769.2007.
  • Dubey, R., S. H. Kulkarni, S. C. Dantu, R. Panigrahi, D. M. Sardesai, N. Malik, J. D. Acharya, J. Chugh, S. Sharma, and A. Kumar. 2020. Myricetin protects pancreatic β-cells from human islet amyloid polypeptide (hIAPP) induced cytotoxicity and restores islet function. Biological Chemistry 402 (2):179–94.
  • Ebrahimpour, S., A. Esmaeili, F. Dehghanian, and S. Beheshti. 2020. Effects of quercetin-conjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting microRNAs/NF-κB pathway. Scientific Reports 10 (1):15070. doi: 10.1038/s41598-020-71678-4.
  • Ebrahimpour, S., S. B. Shahidi, M. Abbasi, Z. Tavakoli, and A. Esmaeili. 2020. Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats. Scientific Reports 10 (1):15957. doi: 10.1038/s41598-020-71971-2.
  • Eddy, A. A., and E. G. Neilson. 2006. Chronic kidney disease progression. Journal of the American Society of Nephrology: JASN 17 (11):2964–6. doi: 10.1681/ASN.2006070704.
  • Edirisinghe, I., and B. Burton-Freeman. 2016. Anti-diabetic actions of berry polyphenols - Review on proposed mechanisms of action. Journal of Berry Research 6 (2):237–50.
  • Edith, P. M. M., M. Faadiel Essop, and M. O. O. Peter. 2019. Effects of naringenin on renal expression of organic cation transporter 1 and 2 proteins and metformin disposition in diabetic rats. Journal of Functional Foods 59:1–7. doi: 10.1016/j.jff.2019.05.021.
  • Ehrenkranz, J. R., N. G. Lewis, C. R. Kahn, and J. Roth. 2005. Phlorizin: A review. Diabetes/Metabolism Research and Reviews 21 (1):31–8. doi: 10.1002/dmrr.532.
  • El-Beih, N. M., G. Ramadan, E. A. El-Husseiny, and A. M. Hussein. 2019. Effects of pomegranate aril juice and its punicalagin on some key regulators of insulin resistance and oxidative liver injury in streptozotocin-nicotinamide type 2 diabetic rats. Molecular Biology Reports 46 (4):3701–11. doi: 10.1007/s11033-019-04813-8.
  • Elshazly, S. M., E. l Abd, D. M. Motteleb, and I. A. A. E. Ibrahim. 2018. Hesperidin protects against stress induced gastric ulcer through regulation of peroxisome proliferator activator receptor gamma in diabetic rats. Chemico-Biological Interactions 291:153–61. doi: 10.1016/j.cbi.2018.06.027.
  • Es-Safi, N. E., E. Meudec, C. Bouchut, H. Fulcrand, P. H. Ducrot, G. Herbette, and V. Cheynier. 2008. New compounds obtained by evolution and oxidation of malvidin 3-O-glucoside in ethanolic medium. Journal of Agricultural and Food Chemistry 56 (12):4584–91. doi: 10.1021/jf8001872.
  • Fan, J., H. Liu, J. Wang, J. Zeng, Y. Tan, Y. Wang, X. Yu, W. Li, P. Wang, Z. Yang, et al. 2021. Procyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2. Journal of Cellular and Molecular Medicine 25 (2):652–65. doi: 10.1111/jcmm.16111.
  • Feng, J., J. Luo, L. Deng, Y. Zhong, X. Wen, Y. Cai, and J. Li. 2019. Naringenin-induced HO-1 ameliorates high glucose or free fatty acids-associated apoptosis via PI3K and JNK/Nrf2 pathways in human umbilical vein endothelial cells. International Immunopharmacology 75:105769. doi: 10.1016/j.intimp.2019.105769.
  • Forslund, K., F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H. K. Pedersen, et al. 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 (7581):262–6. doi: 10.1038/nature15766.
  • Foster-Powell, K., S. H. Holt, and J. C. Brand-Miller. 2002. International table of glycemic index and glycemic load values: 2002. The American Journal of Clinical Nutrition 76 (1):5–56. doi: 10.1093/ajcn/76.1.5.
  • Fraga, C. G., K. D. Croft, D. O. Kennedy, and F. A. Tomás-Barberán. 2019. The effects of polyphenols and other bioactives on human health. Food & Function 10 (2):514–28. doi: 10.1039/c8fo01997e.
  • Fujii, H., B. Sun, H. Nishioka, A. Hirose, and O. I. Aruoma. 2007. Evaluation of the safety and toxicity of the oligomerized polyphenol Oligonol. Food and Chemical Toxicology 45 (3):378–87. doi: 10.1016/j.fct.2006.08.026.
  • Fujioka, K., F. Greenway, J. Sheard, and Y. Ying. 2006. The effects of grapefruit on weight and insulin resistance: Relationship to the metabolic syndrome. Journal of Medicinal Food 9 (1):49–54. doi: 10.1089/jmf.2006.9.49.
  • Gabay, C. 2006. Interleukin-6 and chronic inflammation. Arthritis Research & Therapy 8 Suppl 2 (2):S3. doi: 10.1186/ar1917.
  • Ganesan, D., A. Albert, E. Paul, K. Ananthapadmanabhan, R. Andiappan, and S. G. Sadasivam. 2020. Rutin ameliorates metabolic acidosis and fibrosis in alloxan induced diabetic nephropathy and cardiomyopathy in experimental rats. Molecular and Cellular Biochemistry 471 (1–2):41–50. doi: 10.1007/s11010-020-03758-y.
  • Ganogpichayagrai, A., C. Palanuvej, and N. Ruangrungsi. 2017. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves. Journal of Advanced Pharmaceutical Technology & Research 8 (1):19–24. doi: 10.4103/2231-4040.197371.
  • Gao, R., C. Zhu, H. Li, M. Yin, C. Pan, L. Huang, C. Kong, X. Wang, Y. Zhang, S. Qu, et al. 2018. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity (Silver Spring) 26 (2):351–61. doi: 10.1002/oby.22088.
  • Gao, W., C. Wang, L. Yu, T. Sheng, Z. Wu, X. Wang, D. Zhang, Y. Lin, and Y. Gong. 2019. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. BioMed Research International 2019:6769789. doi: 10.1155/2019/6769789.
  • García-Villalba, R., J. C. Espín, and F. A. Tomás-Barberán. 2016. Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid. Journal of Chromatography. A 1428:162–75. doi: 10.1016/j.chroma.2015.08.044.
  • Ge, C., M. Xu, Y. Qin, T. Gu, D. Lou, Q. Li, L. Hu, X. Nie, M. Wang, and J. Tan. 2019. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food & Function 10 (5):2970–85. doi: 10.1039/c8fo01653d.
  • Ghosh, S., S. Chowdhury, P. Sarkar, and P. C. Sil. 2018. Ameliorative role of ferulic acid against diabetes associated oxidative stress induced spleen damage. Food and Chemical Toxicology 118:272–86. doi: 10.1016/j.fct.2018.05.029.
  • Gómez-Maldonado, D., C. Lobato-Calleros, E. Aguirre-Mandujano, S. G. Leyva-Mir, L. Robles-Yerena, and E. J. Vernon-Carter. 2020. Antifungal activity of mango kernel polyphenols on mango fruit infected by anthracnose. LWT 126:109337. doi: 10.1016/j.lwt.2020.109337.
  • Gonçalves, A. C., C. Bento, B. M. Silva, and L. R. Silva. 2017. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Research International (Ottawa, Ont.) 95:91–100. doi: 10.1016/j.foodres.2017.02.023.
  • Gong, T., X. Yang, F. Bai, D. Li, T. Zhao, J. Zhang, L. Sun, and Y. Guo. 2020. Young apple polyphenols as natural α-glucosidase inhibitors: In vitro and in silico studies. Bioorganic Chemistry 96:103625. doi: 10.1016/j.bioorg.2020.103625.
  • Grutzmann Arcari, S., K. Arena, J. Kolling, P. Rocha, P. Dugo, L. Mondello, and F. Cacciola. 2020. Polyphenolic compounds with biological activity in guabiroba fruits (Campomanesia xanthocarpa Berg.) by comprehensive two-dimensional liquid chromatography. Electrophoresis 41 (20):1784–92. doi: 10.1002/elps.202000170.
  • Guimaraes, J. F., B. P. Muzio, C. M. Rosa, A. F. Nascimento, M. M. Sugizaki, A. A. Fernandes, A. C. Cicogna, C. R. Padovani, M. P. Okoshi, and K. Okoshi. 2015. Rutin administration attenuates myocardial dysfunction in diabetic rats. Cardiovascular Diabetology 14:90. doi: 10.1186/s12933-015-0255-7.
  • Gulçin, İ., P. Taslimi, A. Aygün, N. Sadeghian, E. Bastem, O. I. Kufrevioglu, F. Turkan, and F. Şen. 2018. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. International Journal of Biological Macromolecules 119:741–6. doi: 10.1016/j.ijbiomac.2018.08.001.
  • Guo, J., J. Chen, W. Ren, Y. Zhu, Q. Zhao, K. Zhang, D. Su, C. Qiu, W. Zhang, and K. Li. 2020. Citrus flavone tangeretin is a potential insulin sensitizer targeting hepatocytes through suppressing MEK-ERK1/2 pathway. Biochemical and Biophysical Research Communications 529 (2):277–82. doi: 10.1016/j.bbrc.2020.05.212.
  • Guo, X. F., B. Yang, J. Tang, J. J. Jiang, and D. Li. 2017. Apple and pear consumption and type 2 diabetes mellitus risk: A meta-analysis of prospective cohort studies. Food & Function 8 (3):927–34. doi: 10.1039/C6FO01378C.
  • Guo, X., Y. Shi, P. Du, J. Wang, Y. Han, B. Sun, and J. Feng. 2019. HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA. Life Sciences 239:117020. doi: 10.1016/j.lfs.2019.117020.
  • Guo, X., B. Yang, J. Tan, J. Jiang, and D. Li. 2016. Associations of dietary intakes of anthocyanins and berry fruits with risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective cohort studies. European Journal of Clinical Nutrition 70 (12):1360–7. doi: 10.1038/ejcn.2016.142.
  • Guo, Y., R. Guo, Y. Su, J. Fu, S. Wang, Y. Kong, C. Wu, J. Wang, C. Tan, C. Mo, et al. 2020. The PERK/eIF2α/ATF4/CHOP pathway plays a role in regulating monocrotaline-induced endoplasmic reticulum stress in rat liver. Research in Veterinary Science 130:237–9. doi: 10.1016/j.rvsc.2020.03.021.
  • Gupta, S. K., H. P. Sharma, U. Das, T. Velpandian, and R. Saklani. 2020. Effect of rutin on retinal VEGF, TNF-α, aldose reductase, and total antioxidant capacity in diabetic rats: Molecular mechanism and ocular pharmacokinetics. International Ophthalmology 40 (1):159–68. doi: 10.1007/s10792-019-01165-x.
  • Gurung, M., Z. Li, H. You, R. Rodrigues, D. B. Jump, A. Morgun, and N. Shulzhenko. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 51:102590. doi: 10.1016/j.ebiom.2019.11.051.
  • Han, H., Y. Li, J. Fang, G. Liu, J. Yin, T. Li, and Y. Yin. 2018. Gut microbiota and type 1 diabetes. International Journal of Molecular Sciences 19 (4):995. doi: 10.3390/ijms19040995.
  • Hanchang, W., A. Khamchan, N. Wongmanee, and C. Seedadee. 2019. Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model. Life Sciences 235:116858. doi: 10.1016/j.lfs.2019.116858.
  • Hasanein, P., A. Emamjomeh, N. Chenarani, and M. Bohlooli. 2020. Beneficial effects of rutin in diabetes-induced deficits in acquisition learning, retention memory and pain perception in rats. Nutritional Neuroscience 23 (7):563–74. doi: 10.1080/1028415X.2018.1533269.
  • Healy, G. N., K. Wijndaele, D. W. Dunstan, J. E. Shaw, J. Salmon, P. Z. Zimmet, and N. Owen. 2008. Objectively measured sedentary time, physical activity, and metabolic risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 31 (2):369–71. doi: 10.2337/dc07-1795.
  • Ho, G. T. T., T. K. Y. Nguyen, E. T. Kase, M. Tadesse, H. Barsett, and H. Wangensteen. 2017. Enhanced glucose uptake in human liver cells and inhibition of carbohydrate hydrolyzing enzymes by Nordic berry extracts. Molecules 22 (10):1806. doi: 10.3390/molecules22101806.
  • Hoggard, N., M. Cruickshank, K. M. Moar, C. Bestwick, J. J. Holst, W. Russell, and G. Horgan. 2013. A single supplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36% wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. Journal of Nutritional Science 2:1–9. doi: 10.1017/jns.2013.16.
  • Homayouni, F., F. Haidari, M. Hedayati, M. Zakerkish, and K. Ahmadi. 2018. Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized double-blind controlled clinical trial. Phytotherapy Research 32 (6):1073–9. doi: 10.1002/ptr.6046.
  • Homoki, J. R., A. Nemes, E. Fazekas, G. Gyémánt, P. Balogh, F. Gál, J. Al-Asri, J. Mortier, G. Wolber, L. Babinszky, et al. 2016. Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.). Food Chemistry 194:222–9. doi: 10.1016/j.foodchem.2015.07.130.
  • Hou, J., D. Zheng, G. Fung, H. Deng, L. Chen, J. Liang, Y. Jiang, and Y. Hu. 2016. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Canadian Journal of Physiology and Pharmacology 94 (3):332–40. doi: 10.1139/cjpp-2015-0073.
  • Hsu, C. C., M. Lin, J. T. Cheng, and M. Wu. 2017. Diosmin, a citrus nutrient, activates imidazoline receptors to alleviate blood glucose and lipids in type 1-like diabetic rats. Nutrients 9 (7):684. doi: 10.3390/nu9070684.
  • Hu, T., J. J. Shi, J. Fang, Q. Wang, Y. B. Chen, and S. J. Zhang. 2020. Quercetin ameliorates diabetic encephalopathy through SIRT1/ER stress pathway in db/db mice. Aging 12 (8):7015–29. doi: 10.18632/aging.103059.
  • Hu, Y. H., J. Liu, H. Li, T. Wei, Y. W. Li, and Y. W. Guo. 2020. Chemical constituents from citrus changshan-huyou and their anti-inflammatory activities. Chemistry & Biodiversity 17 (11):e2000503. doi: 10.1002/cbdv.202000503.
  • Huang, F., R. Zhao, M. Xia, and G. X. Shen. 2020. Impact of cyanidin-3-glucoside on gut microbiota and relationship with metabolism and inflammation in high fat-high sucrose diet-induced insulin resistant mice. Microorganisms 8 (8):1238. doi: 10.3390/microorganisms8081238.
  • Huang, R., Z. Shi, L. Chen, Y. Zhang, J. Li, and Y. An. 2017. Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice. European Journal of Pharmacology 814:151–60. doi: 10.1016/j.ejphar.2017.08.023.
  • Huang, W., Z. Yan, D. Li, Y. Ma, J. Zhou, and Z. Sui. 2018. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Medicine and Cellular Longevity 2018:1862462.
  • Huang, X. R., A. C. Chung, X. J. Wang, K. N. Lai, and H. Y. Lan. 2008. Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease. American Journal of Physiology-Renal Physiology 295 (1):F118–27. doi: 10.1152/ajprenal.00021.2008.
  • Huynh, T., H. Wang, and B. Luan. 2020. Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2’s main protease. Physical Chemistry Chemical Physics: PCCP 22 (43):25335–43. doi: 10.1039/d0cp03867a.
  • Ibrahim, M. Y., N. M. Hashim, A. A. Mariod, S. Mohan, M. A. Abdulla, S. I. Abdelwahab, and I. A. Arbab. 2016. α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arabian Journal of Chemistry 9 (3):317–29. doi: 10.1016/j.arabjc.2014.02.011.
  • Ibrahim, S. R. M., G. A. Mohamed, M. T. A. Khayat, S. Ahmed, and H. Abo-Haded. 2019. α-Amylase inhibition of xanthones from Garcinia mangostana pericarps and their possible use for the treatment of diabetes with molecular docking studies. Journal of Food Biochemistry 43 (5):e12844. doi: 10.1111/jfbc.12844.
  • Iglesias-Carres, L., A. Mas-Capdevila, F. I. Bravo, G. Aragonès, B. Muguerza, and A. Arola-Arnal. 2019. Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS One 14 (1):e0211267. doi: 10.1371/journal.pone.0211267.
  • Inzucchi, S. E., B. Zinman, C. Wanner, R. Ferrari, D. Fitchett, S. Hantel, R. M. Espadero, H. J. Woerle, U. C. Broedl, and O. E. Johansen. 2015. SGLT-2 inhibitors and cardiovascular risk: Proposed pathways and review of ongoing outcome trials. Diabetes & Vascular Disease Research 12 (2):90–100. doi: 10.1177/1479164114559852.
  • Isaka, Y. 2018. Targeting TGF-β signaling in kidney fibrosis. International Journal of Molecular Sciences 19 (9):2532. doi: 10.3390/ijms19092532.
  • Jandari, S., E. Hatami, R. Ziaei, A. Ghavami, and A. M. Yamchi. 2020. The effect of pomegranate (Punica granatum) supplementation on metabolic status in patients with type 2 diabetes: A systematic review and meta-analysis. Complementary Therapies in Medicine 52:102478. doi: 10.1016/j.ctim.2020.102478.
  • Jayaraman, R., Subramani, S. Sheik, Abdullah, S. H. Udaiyar. and M. 2018. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 97:98–106. doi: 10.1016/j.biopha.2017.10.102.
  • Jeon, Y. D., S. H. Kang, K. H. Moon, J. H. Lee, D. G. Kim, W. Kim, J. S. Kim, B. Y. Ahn, and J. S. Jin. 2018. The effect of aronia berry on type 1 diabetes in vivo and in vitro. Journal of Medicinal Food 21 (3):244–53. doi: 10.1089/jmf.2017.3939.
  • Jia, S., Y. Hu, W. Zhang, X. Zhao, Y. Chen, C. Sun, X. Li, and K. Chen. 2015. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice. Food & Function 6 (3):878–86. doi: 10.1039/c4fo00993b.
  • Jia, Y., Y. Ma, G. Cheng, Y. Zhang, and S. Cai. 2019. Comparative study of dietary flavonoids with different structures as α-glucosidase inhibitors and insulin sensitizers. Journal of Agricultural and Food Chemistry 67 (37):10521–33. doi: 10.1021/acs.jafc.9b04943.
  • Jiang, C., Y. Chen, X. Ye, L. Wang, J. Shao, H. Jing, C. Jiang, H. Wang, and C. Ma. 2021. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch. International Journal of Biological Macromolecules 172:503–14. doi: 10.1016/j.ijbiomac.2021.01.070.
  • Jin, D., B. Zhang, Q. Li, J. Tu, and B. Zhou. 2020. Effect of punicalagin on multiple targets in streptozotocin/high-fat diet-induced diabetic mice. Food & Function 11 (12):10617–34. doi: 10.1039/d0fo01275k.
  • Jin, S., C. Chang, L. Zhang, Y. Liu, X. Huang, and Z. Chen. 2015. Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice. PLoS One 10 (4):e0120842. doi: 10.1371/journal.pone.0120842.
  • Johnston, K. L., M. N. Clifford, and L. M. Morgan. 2002. Possible role for apple juice phenolic compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. Journal of the Science of Food and Agriculture 82 (15):1800–5. doi: 10.1002/jsfa.1264.
  • Jurgoński, A., J. Juśkiewicz, and Z. Zduńczyk. 2013. An anthocyanin-rich extract from Kamchatka honeysuckle increases enzymatic activity within the gut and ameliorates abnormal lipid and glucose metabolism in rats. Nutrition (Burbank, Los Angeles County, Calif.) 29 (6):898–902. doi: 10.1016/j.nut.2012.11.006.
  • Justino, A. B., F. R. B. D. Moura, R. R. Franco, and F. S. Espindola. 2020. α-Glucosidase and non-enzymatic glycation inhibitory potential of eugenia dysenterica fruit pulp extracts. Food Bioscience 35:100573. doi: 10.1016/j.fbio.2020.100573.
  • Kaeswurm, J. A. H., B. Claasen, M. P. Fischer, and M. Buchweitz. 2019. Interaction of structurally diverse phenolic compounds with porcine pancreatic α-amylase. Journal of Agricultural and Food Chemistry 67 (40):11108–18. doi: 10.1021/acs.jafc.9b04798.
  • Kahn, S. E., S. M. Haffner, M. A. Heise, W. H. Herman, R. R. Holman, N. P. Jones, B. G. Kravitz, J. M. Lachin, M. C. O’Neill, B. Zinman, et al. 2006. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. New England Journal of Medicine 355 (23):2427–43. doi: 10.1056/NEJMoa066224.
  • Kang, I., T. Buckner, N. F. Shay, L. Gu, and S. Chung. 2016. Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms. Advances in Nutrition (Bethesda, Md.) 7 (5):961–72. doi: 10.3945/an.116.012575.
  • Karim, N., A. Rahman, L. Chanudom, M. Thongsom, and J. Tangpong. 2019. Mangosteen vinegar rind from garcinia mangostana prevents high-fat diet and streptozotocin-induced type II diabetes nephropathy and apoptosis. Journal of Food Science 84 (5):1208–15. doi: 10.1111/1750-3841.14511.
  • Karunakaran, U., S. Elumalai, J. S. Moon, J. H. Jeon, N. D. Kim, K. G. Park, K. C. Won, J. Leem, and I. K. Lee. 2019. Myricetin protects against high glucose-induced β-cell apoptosis by attenuating endoplasmic reticulum stress via inactivation of cyclin-dependent kinase 5. Diabetes & Metabolism Journal 43 (2):192–205. doi: 10.4093/dmj.2018.0052.
  • Karunakaran, U., J. E. Lee, S. Elumalai, J. S. Moon, and K. C. Won. 2019. Myricetin prevents thapsigargin-induced CDK5-P66Shc signalosome mediated pancreatic β-cell dysfunction. Free Radical Biology & Medicine 141:59–66. doi: 10.1016/j.freeradbiomed.2019.05.038.
  • Kenny, H. C., and E. D. Abel. 2019. Heart failure in type 2 diabetes mellitus. Circulation Research 124 (1):121–41. doi: 10.1161/CIRCRESAHA.118.311371.
  • Kerimi, A., H. Nyambe-Silavwe, J. S. Gauer, F. A. Tomás-Barberán, and G. Williamson. 2017. Pomegranate juice, but not an extract, confers a lower glycemic response on a high-glycemic index food: Randomized, crossover, controlled trials in healthy subjects. The American Journal of Clinical Nutrition 106 (6):1384–93. doi: 10.3945/ajcn.117.161968.
  • Keshtkar, S., M. Kaviani, Z. Jabbarpour, B. Geramizadeh, E. Motevaseli, S. Nikeghbalian, A. Shamsaeefar, N. Motazedian, I. H. Al-Abdullah, M. H. Ghahremani, et al. 2019. Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis. Scientific Reports 9 (1):11701. doi: 10.1038/s41598-019-48262-6.
  • Khalifa, I., R. Sobhy, A. Nawaz, W. Xiaoou, Z. Li, and X. Zou. 2020. Cyanidin 3-rutinoside defibrillated bovine serum albumin under the glycation-promoting conditions: A study with multispectral, microstructural, and computational analysis. International Journal of Biological Macromolecules 162:1195–203. doi: 10.1016/j.ijbiomac.2020.06.243.
  • Khan, N., D. N. Syed, N. Ahmad, and H. Mukhtar. 2013. Fisetin: A dietary antioxidant for health promotion. Antioxidants & Redox Signaling 19 (2):151–62. doi: 10.1089/ars.2012.4901.
  • Kim, D. S., and S. B. Lim. 2020. Semi-continuous subcritical water extraction of flavonoids from citrus unshiu peel: Their antioxidant and enzyme inhibitory activities. Antioxidants (Basel) 9 (5):360. doi: 10.3390/antiox9050360.
  • Kim, D. W., D. H. Jung, J. Sung, I. S. Min, and S. J. Lee. 2021. Tart cherry extract containing chlorogenic acid, quercetin, and kaempferol inhibits the mitochondrial apoptotic cell death elicited by airborne PM10 in human epidermal keratinocytes. Antioxidants (Basel) 10 (3):443. doi: 10.3390/antiox10030443.
  • Kim, D. Y., S. R. Kim, and U. J. Jung. 2020. Myricitrin ameliorates hyperglycemia, glucose intolerance, hepatic steatosis, and inflammation in high-fat diet/streptozotocin-induced diabetic mice. International Journal of Molecular Sciences 21 (5):1870. doi: 10.3390/ijms21051870.
  • Kim, H. M., Y. M. Kim, J. H. Huh, E. S. Lee, M. H. Kwon, B. R. Lee, H. J. Ko, and C. H. Chung. 2017. α-Mangostin ameliorates hepatic steatosis and insulin resistance by inhibition C-C chemokine receptor 2. PLoS One 12 (6):e0179204. doi: 10.1371/journal.pone.0179204.
  • Kim, M. J., J. H. Hwang, H. J. Ko, H. B. Na, and J. H. Kim. 2015. Lemon detox diet reduced body fat, insulin resistance, and serum hs-CRP level without hematological changes in overweight Korean women. Nutrition Research (New York, N.Y.) 35 (5):409–20. doi: 10.1016/j.nutres.2015.04.001.
  • Kishimoto, M. 2013. Teneligliptin: A DPP-4 inhibitor for the treatment of type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 6:187–95. doi: 10.2147/DMSO.S35682.
  • Kita, T., E. Yoshioka, H. Satoh, Y. Saijo, M. Kawaharada, E. Okada, and R. Kishi. 2012. Short sleep duration and poor sleep quality increase the risk of diabetes in Japanese workers with no family history of diabetes. Diabetes Care 35 (2):313–8. doi: 10.2337/dc11-1455.
  • Kitamura, T., C. R. Kahn, and D. Accili. 2003. Insulin receptor knockout mice. Annual Review of Physiology 65:313–32. doi: 10.1146/annurev.physiol.65.092101.142540.
  • Knekt, P., J. Kumpulainen, R. Järvinen, H. Rissanen, M. Heliövaara, A. Reunanen, T. Hakulinen, and A. Aromaa. 2002. Flavonoid intake and risk of chronic diseases. The American Journal of Clinical Nutrition 76 (3):560–8. doi: 10.1093/ajcn/76.3.560.
  • Kopan, C., T. Tucker, M. Alexander, M. R. Mohammadi, E. J. Pone, and J. R. T. Lakey. 2018. Approaches in immunotherapy, regenerative medicine, and bioengineering for type 1 diabetes. Frontiers in Immunology 9:1354. doi: 10.3389/fimmu.2018.01354.
  • Kumar, M., V. Dahiya, E. R. Kasala, L. N. Bodduluru, and M. Lahkar. 2017. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 89:1207–15. doi: 10.1016/j.biopha.2017.03.008.
  • Kumar, N., and V. Pruthi. 2014. Potential applications of ferulic acid from natural sources. Biotechnology Reports (Amsterdam, Netherlands) 4:86–93. doi: 10.1016/j.btre.2014.09.002.
  • Kumar, S., K. Sinha, R. Sharma, R. Purohit, and Y. Padwad. 2019. Phloretin and phloridzin improve insulin sensitivity and enhance glucose uptake by subverting PPARγ/Cdk5 interaction in differentiated adipocytes. Experimental Cell Research 383 (1):111480. doi: 10.1016/j.yexcr.2019.06.025.
  • Kwak, S., S. K. Ku, and J. S. Bae. 2014. Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation Research 63 (9):779–87. doi: 10.1007/s00011-014-0750-4.
  • KμMar, P., Puranik, S. V. S. B. Nandini. and B. N. 2017. Evaluation of alpha-mangostin, isolated and purified from the crude extract of Garcinia mangostana for the anti-diabetic, anti-inflammatory and antioxidant activity. Journal of Pharmacy and Pharmacology Research 8 (2):75–95.
  • Landete, J. M. 2011. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Research International 44 (5):1150–60. doi: 10.1016/j.foodres.2011.04.027.
  • Lee, D., Y. M. Kim, K. Jung, Y. W. Chin, and K. S. Kang. 2018. Alpha-mangostin improves insulin secretion and protects INS-1 cells from streptozotocin-induced damage. International Journal of Molecular Sciences 19 (5):1484. doi: 10.3390/ijms19051484.
  • Lee, J. S., Y. R. Kim, I. G. Song, S. J. Ha, Y. E. Kim, N. I. Baek, and E. K. Hong. 2015. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. International Journal of Molecular Medicine 35 (2):405–12. doi: 10.3892/ijmm.2014.2013.
  • León, D., E. Uribe, A. Zambrano, and M. Salas. 2017. Implications of resveratrol on glucose uptake and metabolism. Molecules 22 (3):398. doi: 10.3390/molecules22030398.
  • Les, F., J. M. Arbonés-Mainar, M. S. Valero, and V. López. 2018. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of Ethnopharmacology 220:67–74. doi: 10.1016/j.jep.2018.03.029.
  • Li, C. Y., L. X. Wang, S. S. Dong, Y. Hong, X. H. Zhou, W. W. Zheng, and C. Zheng. 2018. Phlorizin exerts direct protective effects on palmitic acid (PA)-induced endothelial dysfunction by activating the PI3K/AKT/eNOS signaling pathway and increasing the levels of nitric oxide (NO). Medical Science Monitor Basic Research 24:1–9. doi: 10.12659/msmbr.907775.
  • Li, C., B. Yang, Z. Xu, E. Boivin, M. Black, W. Huang, B. Xu, P. Wu, B. Zhang, X. Li, et al. 2017. Protective effect of cyanidin-3-O-glucoside on neonatal porcine islets. The Journal of Endocrinology 235 (3):237–49. doi: 10.1530/JOE-17-0141.
  • Li, D., L. Sun, Y. Yang, Z. Wang, X. Yang, T. Zhao, T. Gong, L. Zou, and Y. Guo. 2019. Young apple polyphenols postpone starch digestion in vitro and in vivo. Journal of Functional Foods 56:127–35. doi: 10.1016/j.jff.2019.03.009.
  • Li, D., T. Zhao, J. Meng, Y. Jing, F. Jia, and P. He. 2015. Procyanidin B2 inhibits high glucose-induced epithelial-mesenchymal transition in HK-2 human renal proximal tubular epithelial cells. Molecular Medicine Reports 12 (6):8148–54.
  • Li, G., Y. Xu, X. Sheng, H. Liu, J. Guo, J. Wang, Q. Zhong, H. Jiang, C. Zheng, M. Tan, et al. 2017. Naringin protects against high glucose-induced human endothelial cell injury via antioxidation and CX3CL1 downregulation. Cellular Physiology and Biochemistry 42 (6):2540–51. doi: 10.1159/000480215.
  • Li, S., Y. Zhang, Y. Sun, G. Zhang, J. Bai, J. Guo, X. Su, H. Du, X. Cao, J. Yang, et al. 2019. Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutrition & Diabetes 9 (1):28. doi: 10.1038/s41387-019-0095-8.
  • Li, W., S. Chen, G. Zhou, H. Li, L. Zhong, and S. Liu. 2018. Potential role of cyanidin 3-glucoside (C3G) in diabetic cardiomyopathy in diabetic rats: An in vivo approach. Saudi Journal of Biological Sciences 25 (3):500–6. doi: 10.1016/j.sjbs.2016.11.007.
  • Li, W., X. Liang, Z. Zeng, K. Yu, S. Zhan, Q. Su, Y. Yan, H. Mansai, W. Qiao, Q. Yang, et al. 2016. Simvastatin inhibits glucose uptake activity and GLUT4 translocation through suppression of the IR/IRS-1/Akt signaling in C2C12 myotubes. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 83:194–200. doi: 10.1016/j.biopha.2016.06.029.
  • Liang, N., and D. D. Kitts. 2015. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8 (1):16. doi: 10.3390/nu8010016.
  • Liang, W., D. Zhang, J. Kang, X. Meng, J. Yang, L. Yang, N. Xue, Q. Gao, S. Han, and X. Gou. 2018. Protective effects of rutin on liver injury in type 2 diabetic db/db mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 107:721–8. doi: 10.1016/j.biopha.2018.08.046.
  • Liao, H. H., J. X. Zhu, H. Feng, J. Ni, N. Zhang, S. Chen, H. J. Liu, Z. Yang, W. Deng, and Q. Z. Tang. 2017. Myricetin Possesses Potential Protective Effects on Diabetic Cardiomyopathy through Inhibiting IκBα/NFκB and Enhancing Nrf2/HO-1. Oxidative Medicine and Cellular Longevity 2017:8370593.
  • Lim, Y. J., J. H. Kim, J. H. Pan, J. K. Kim, T. S. Park, Y. J. Kim, J. H. Lee, and J. H. Kim. 2018. Naringin protects pancreatic β-cells against oxidative stress-induced apoptosis by inhibiting both intrinsic and extrinsic pathways in insulin-deficient diabetic mice. Molecular Nutrition & Food Research 62 (5):e00810.
  • Lima, A. C. D., C. Cecatti, M. P. Fidélix, M. A. T. Adorno, I. K. Sakamoto, T. B. Cesar, and K. Sivieri. 2019. Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: Controlled clinical trials. Journal of Medicinal Food 22 (2):202–10. doi: 10.1089/jmf.2018.0080.
  • Lippert, K., L. Kedenko, L. Antonielli, I. Kedenko, C. Gemeier, M. Leitner, A. Kautzky-Willer, B. Paulweber, and E. Hackl. 2017. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Beneficial Microbes 8 (4):545–56. doi: 10.3920/BM2016.0184.
  • Liu, D., J. Deng, S. Joshi, P. Liu, C. Zhang, Y. Yu, R. Zhang, D. Fan, H. Yang, and D. H. D’Souza. 2018. Monomeric catechin and dimeric procyanidin B2 against human norovirus surrogates and their physicochemical interactions. Food Microbiology 76:346–53. doi: 10.1016/j.fm.2018.06.009.
  • Liu, H. W., Y. J. Chen, Y. C. Chang, and S. J. Chang. 2017. Oligonol, a low-molecular weight polyphenol derived from lychee, alleviates muscle loss in diabetes by suppressing atrogin-1 and MuRF1. Nutrients 9 (9):1040. doi: 10.3390/nu9091040.
  • Liu, T., W. Duan, P. Nizigiyimana, L. Gao, Z. Liao, B. Xu, L. Liu, and M. Lei. 2018. Alpha-mangostin attenuates diabetic nephropathy in association with suppression of acid sphingomyelianse and endoplasmic reticulum stress. Biochemical and Biophysical Research Communications 496 (2):394–400. doi: 10.1016/j.bbrc.2018.01.040.
  • Liu, W. Y., S. S. Liou, T. Y. Hong, and I. M. Liu. 2017. Protective effects of hesperidin (Citrus flavonone) on high glucose induced oxidative stress and apoptosis in a cellular model for diabetic retinopathy. Nutrients 9 (12):1312. doi: 10.3390/nu9121312.
  • Liu, W., H. Ma, L. Frost, T. Yuan, J. A. Dain, and N. P. Seeram. 2014. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food & Function 5 (11):2996–3004. doi: 10.1039/c4fo00538d.
  • Liu, Y. W., X. Zhu, L. Zhang, Q. Lu, J. Y. Wang, F. Zhang, H. Guo, J. L. Yin, and X. X. Yin. 2013. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. European Journal of Pharmacology 721 (1–3):355–64. doi: 10.1016/j.ejphar.2013.08.029.
  • Liu, Y., L. Zhang, L. Dong, Q. Song, P. Guo, Y. Wang, Z. Chen, and M. Zhang. 2020. Hesperetin improves diabetic coronary arterial vasomotor responsiveness by upregulating myocyte voltage-gated K + channels. Experimental and Therapeutic Medicine 20 (1):486–94. doi: 10.3892/etm.2020.8670.
  • Liu, Y., X. Zhang, L. Zhan, C. Xu, L. Sun, H. Jiang, C. Sun, and X. Li. 2020. LC-Q-TOF-MS characterization of polyphenols from white bayberry fruit and its antidiabetic effect in KK-Ay mice. ACS Omega 5 (28):17839–49. doi: 10.1021/acsomega.0c02759.
  • Lo Piparo, E., H. Scheib, N. Frei, G. Williamson, M. Grigorov, and C. J. Chou. 2008. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human alpha-amylase. Journal of Medicinal Chemistry 51 (12):3555–61. doi: 10.1021/jm800115x.
  • Londzin, P., S. Siudak, U. Cegieła, M. Pytlik, A. Janas, A. Waligóra, and J. Folwarczna. 2018. Phloridzin, an apple polyphenol, exerted unfavorable effects on bone and muscle in an experimental model of type 2 diabetes in rats. Nutrients 10 (11):1701. doi: 10.3390/nu10111701.
  • Lopez-Castejon, G., and D. Brough. 2011. Understanding the mechanism of IL-1β secretion. Cytokine & Growth Factor Reviews 22 (4):189–95. doi: 10.1016/j.cytogfr.2011.10.001.
  • Losada-Echeberría, M., M. Herranz-López, V. Micol, and E. Barrajón-Catalán. 2017. Polyphenols as promising drugs against main breast cancer signatures. Antioxidants (Basel) 6 (4):88. doi: 10.3390/antiox6040088.
  • Luo, C., H. Yang, C. Tang, G. Yao, L. Kong, H. He, and Y. Zhou. 2015. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats. International Immunopharmacology 28 (1):744–50. doi: 10.1016/j.intimp.2015.07.018.
  • Luo, F., Q. Lv, Y. Zhao, G. Hu, G. Huang, J. Zhang, C. Sun, X. Li, and K. Chen. 2012. Quantification and purification of mangiferin from Chinese Mango (Mangifera indica L.) cultivars and its protective effect on human umbilical vein endothelial cells under H(2)O(2)-induced stress. International Journal of Molecular Sciences 13 (9):11260–74. doi: 10.3390/ijms130911260.
  • Luo, Y., Z. Fang, Y. Ling, and W. Luo. 2019. LncRNA-H19 acts as a ceRNA to regulate HE4 expression by sponging miR-140 in human umbilical vein endothelial cells under hyperglycemia with or without α-Mangostin. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 118:109256. doi: 10.1016/j.biopha.2019.109256.
  • Luo, Y., Q. Zhuan, J. Li, X. Du, Z. Huang, Y. Hou, and X. Fu. 2020. Procyanidin B2 improves oocyte maturation and subsequent development in type 1 diabetic mice by promoting mitochondrial function. Reproductive Sciences (Thousand Oaks, Calif.) 27 (12):2211–22. doi: 10.1007/s43032-020-00241-3.
  • Lynch, S. V., and O. Pedersen. 2016. The human intestinal microbiome in health and disease. The New England Journal of Medicine 375 (24):2369–79. doi: 10.1056/NEJMra1600266.
  • Maldonado-Celis, M. E., E. M. Yahia, R. Bedoya, P. Landázuri, N. Loango, J. Aguillón, B. Restrepo, and J. C. Guerrero Ospina. 2019. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science 10:1073. doi: 10.3389/fpls.2019.01073.
  • Manzano, M., M. D. Giron, J. D. Vilchez, N. Sevillano, N. El-Azem, R. Rueda, R. Salto, and J. M. Lopez-Pedrosa. 2016. Apple polyphenol extract improves insulin sensitivity in vitro and in vivo in animal models of insulin resistance. Nutrition & Metabolism 13 (1):32. doi: 10.1186/s12986-016-0088-8.
  • Martinez-Gonzalez, A. I., Á. G. Díaz-Sánchez, L. A. de la Rosa, I. Bustos-Jaimes, and E. Alvarez-Parrilla. 2019. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 206:437–47. doi: 10.1016/j.saa.2018.08.057.
  • Martini, S., A. Conte, and D. Tagliazucchi. 2017. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Research International (Ottawa, Ont.) 97:15–26. doi: 10.1016/j.foodres.2017.03.030.
  • Mas-Capdevila, A., J. Teichenne, C. Domenech-Coca, A. Caimari, J. M. Del Bas, X. Escoté, and A. Crescenti. 2020. Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability. Nutrients 12 (5):1488. doi: 10.3390/nu12051488.
  • Masumoto, S., Y. Akimoto, H. Oike, and M. Kobori. 2009. Dietary phloridzin reduces blood glucose levels and reverses Sglt1 expression in the small intestine in streptozotocin-induced diabetic mice. Journal of Agricultural and Food Chemistry 57 (11):4651–6. doi: 10.1021/jf9008197.
  • Mofo, M., E. P. Essop, M. F. Owira. and P. M. O. 2020. Citrus fruit-derived flavonoid naringenin and the expression of hepatic organic cation transporter 1 protein in diabetic rats treated with metformin. Basic & Clinical Pharmacology & Toxicology 127 (3):211–20. doi: 10.1111/bcpt.13407.
  • McDougall, G. J. 2017. Phenolic-enriched foods: Sources and processing for enhanced health benefits. The Proceedings of the Nutrition Society 76 (2):163–71. doi: 10.1017/S0029665116000835.
  • Mei, X., X. Zhang, Z. Wang, Z. Gao, G. Liu, H. Hu, L. Zou, and X. Li. 2016. Insulin sensitivity-enhancing activity of phlorizin is associated with lipopolysaccharide decrease and gut microbiota changes in obese and type 2 diabetes (db/db) mice. Journal of Agricultural and Food Chemistry 64 (40):7502–11. doi: 10.1021/acs.jafc.6b03474.
  • Meng, Y., A. Su, S. Yuan, H. Zhao, S. Tan, C. Hu, H. Deng, and Y. Guo. 2016. Evaluation of total flavonoids, myricetin, and quercetin from Hovenia dulcis Thunb. as inhibitors of α-amylase and α-glucosidase. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (4):444–9. doi: 10.1007/s11130-016-0581-2.
  • Meyer, K. A., L. H. Kushi, D. R. Jacobs, Jr, J. Slavin, T. A. Sellers, and A. R. Folsom. 2000. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. The American Journal of Clinical Nutrition 71 (4):921–30. doi: 10.1093/ajcn/71.4.921.
  • Miao, M., and L. Xiang. 2020. Pharmacological action and potential targets of chlorogenic acid. Advances in Pharmacology (San Diego, Calif.) 87:71–88. doi: 10.1016/bs.apha.2019.12.002.
  • Min, Q., X. Cai, W. Sun, F. Gao, Z. Li, Q. Zhang, L. S. Wan, H. Li, and J. Chen. 2017. Identification of mangiferin as a potential Glucokinase activator by structure-based virtual ligand screening. Scientific Reports 7:44681. doi: 10.1038/srep44681.
  • Mittal, R., A. Kumar, D. P. Singh, M. Bishnoi, and T. C. Nag. 2018. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: Targeting Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology 26 (3):755–68. doi: 10.1007/s10787-017-0413-5.
  • Miyata, Y., T. Nagase, Y. Katsura, H. Takahashi, H. Natsugari, T. Oshitari, and H. Kosano. 2017. In vitro studies on nobiletin isolated from citrus plants and the bioactive metabolites, inhibitory action against gelatinase enzymatic activity and the molecular mechanisms in human retinal Müller cell line. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 93:70–80. doi: 10.1016/j.biopha.2017.06.017.
  • Mo, F., B. Lv, T. An, J. Miao, J. Liu, J. Zhang, Z. Zhang, M. Ma, X. Yang, D. Zhao, et al. 2019. Protective mechanism of punicalagin against endoplasmic reticulum stress in the liver of mice with type 2 diabetes mellitus. Journal of Functional Foods 56:57–64. doi: 10.1016/j.jff.2019.03.006.
  • Moreno, J. A., C. Gomez-Guerrero, S. Mas, A. B. Sanz, O. Lorenzo, M. Ruiz-Ortega, L. Opazo, S. Mezzano, and J. Egido. 2018. Targeting inflammation in diabetic nephropathy: A tale of hope. Expert Opinion on Investigational Drugs 27 (11):917–30. doi: 10.1080/13543784.2018.1538352.
  • Moreno-Ulloa, A., N. Nájera-García, M. Hernández, I. Ramírez-Sánchez, P. R. Taub, Y. Su, E. Beltrán-Partida, G. Ceballos, S. Dugar, G. Schreiner, et al. 2018. A pilot study on clinical pharmacokinetics and preclinical pharmacodynamics of (+)-epicatechin on cardiometabolic endpoints. Food & Function 9 (1):307–19. doi: 10.1039/c7fo01028a.
  • Muñoz-Garach, A., C. Diaz-Perdigones, and F. J. Tinahones. 2016. Gut microbiota and type 2 diabetes mellitus. Endocrinologia y nutricion: organo de la Sociedad Espanola de Endocrinologia y Nutricion 63 (10):560–8. doi: 10.1016/j.endonu.2016.07.008.
  • Murugan, A. C., M. R. Karim, M. B. M. Yusoff, S. H. Tan, M. F. B. F. Asras, and S. S. Rashid. 2015. New insights into seaweed polyphenols on glucose homeostasis. Pharmaceutical Biology 53 (8):1087–97. doi: 10.3109/13880209.2014.959615.
  • Murugesan, N., K. Woodard, R. Ramaraju, F. L. Greenway, A. A. Coulter, and C. J. Rebello. 2020. Naringenin increases insulin sensitivity and metabolic rate: A case study. Journal of Medicinal Food 23 (3):343–8. doi: 10.1089/jmf.2019.0216.
  • Murunga, A. N., D. O. Miruka, C. Driver, F. S. Nkomo, S. Z. Cobongela, and P. M. Owira. 2016. Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model. PLoS One 11 (4):e0153241. doi: 10.1371/journal.pone.0153241.
  • Nagata, T., M. Suzuki, M. Fukazawa, K. Honda, M. Yamane, A. Yoshida, H. Azabu, H. Kitamura, N. Toyota, Y. Suzuki, et al. 2014. Competitive inhibition of SGLT2 by tofogliflozin or phlorizin induces urinary glucose excretion through extending splay in cynomolgus monkeys. American Journal of Physiology. Renal Physiology 306 (12):F1520–33. doi: 10.1152/ajprenal.00076.2014.
  • Najafian, M., M. Z. Jahromi, M. J. Nowroznejhad, P. Khajeaian, M. M. Kargar, M. Sadeghi, and A. Arasteh. 2012. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Molecular Biology Reports 39 (5):5299–306. doi: 10.1007/s11033-011-1328-7.
  • Nankar, R., P. K. Prabhakar, and M. Doble. 2017. Hybrid drug combination: Combination of ferulic acid and metformin as anti-diabetic therapy. Phytomedicine 37:10–3. doi: 10.1016/j.phymed.2017.10.015.
  • Nauck, M. A., and J. J. Meier. 2016. The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions. The Lancet. Diabetes & Endocrinology 4 (6):525–36. doi: 10.1016/S2213-8587(15)00482-9.
  • Nauck, M. A., E. Homberger, E. G. Siegel, R. C. Allen, R. P. Eaton, R. Ebert, and W. Creutzfeldt. 1986. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. The Journal of Clinical Endocrinology and Metabolism 63 (2):492–8. doi: 10.1210/jcem-63-2-492.
  • Naveed, M., V. Hejazi, M. Abbas, A. A. Kamboh, G. J. Khan, M. Shumzaid, F. Ahmad, D. Babazadeh, X. FangFang, F. Modarresi-Ghazani, et al. 2018. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 97:67–74. doi: 10.1016/j.biopha.2017.10.064.
  • Nemes, A., J. R. Homoki, R. Kiss, C. Hegedűs, D. Kovács, B. Peitl, F. Gál, L. Stündl, Z. Szilvássy, and J. Remenyik. 2019. Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutrients 11 (9):1966.
  • Nguyen-Ngo, C., C. Salomon, S. Quak, A. Lai, J. C. Willcox, and M. Lappas. 2020. Nobiletin exerts anti-diabetic and anti-inflammatory effects in an in vitro human model and in vivo murine model of gestational diabetes. Clinical Science (London, England: 1979) 134 (6):571–92. doi: 10.1042/CS20191099.
  • Nguyen-Ngo, C., J. C. Willcox, and M. Lappas. 2019. Anti-diabetic, anti-inflammatory, and anti-oxidant effects of naringenin in an in vitro human model and an in vivo murine model of gestational diabetes mellitus. Molecular Nutrition & Food Research 63 (19):e1900224. doi: 10.1002/mnfr.201900224.
  • Nguyen-Ngo, C., J. C. Willcox, and M. Lappas. 2020. Anti-inflammatory effects of phenolic acids punicalagin and curcumin in human placenta and adipose tissue. Placenta 100:1–12. doi: 10.1016/j.placenta.2020.08.002.
  • Nickavar, B., and G. Amin. 2010. Bioassay-guided separation of an alpha-amylase inhibitor anthocyanin from Vaccinium arctostaphylos berries. Zeitschrift Fur Naturforschung. C, Journal of Biosciences 65 (9-10):567–70. doi: 10.1515/znc-2010-9-1006.
  • Nie, X., W. Tang, Z. Zhang, C. Yang, L. Qian, X. Xie, E. Qiang, J. Zhao, W. Zhao, L. Xiao, et al. 2020. Procyanidin B2 mitigates endothelial endoplasmic reticulum stress through a PPARδ-Dependent mechanism. Redox Biology 37:101728. doi: 10.1016/j.redox.2020.101728.
  • Niederberger, K. E., D. R. Tennant, and P. Bellion. 2020. Dietary intake of phloridzin from natural occurrence in foods. The British Journal of Nutrition 123 (8):942–50. doi: 10.1017/S0007114520000033.
  • Noh, J. S., H. Y. Kim, C. H. Park, H. Fujii, and T. Yokozawa. 2010. Hypolipidaemic and antioxidative effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice. The British Journal of Nutrition 104 (8):1120–8. doi: 10.1017/S0007114510001819.
  • Noratto, G. D., N. N. Lage, B. P. Chew, S. U. Mertens-Talcott, S. T. Talcott, and M. L. Pedrosa. 2018. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chemistry 266:405–14. doi: 10.1016/j.foodchem.2018.06.020.
  • Norton, G. R., G. Candy, and A. J. Woodiwiss. 1996. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin-induced diabetes mellitus in rats. Circulation 93 (10):1905–12. doi: 10.1161/01.CIR.93.10.1905.
  • Oboh, G., A. O. Ademosun, P. O. Ayeni, O. S. Omojokun, and F. Bello. 2015. Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comparative Clinical Pathology 24 (5):1103–10. doi: 10.1007/s00580-014-2040-5.
  • Ola, M. S., M. M. Ahmed, R. Ahmad, H. M. Abuohashish, S. S. Al-Rejaie, and A. S. Alhomida. 2015. Neuroprotective effects of rutin in streptozotocin-induced diabetic rat retina. Journal of Molecular Neuroscience 56 (2):440–8. doi: 10.1007/s12031-015-0561-2.
  • Omidi, M., A. Ahangarpour, L. Khorsandi, and F. Ramezani-AliAkbari. 2020. The antidiabetic and hepatoprotective effects of myricitrin on aged mice with D-galactose. Gastroenterology and Hepatology from Bed to Bench 13 (3):247–53.
  • Oroojan, A. A., A. Ahangarpour, B. Paknejad, P. Zareian, Z. Hami, and S. R. Abtahi. 2021. Effects of myricitrin and solid lipid nanoparticle-containing myricitrin on reproductive system disorders induced by diabetes in male mouse. The World Journal of Men’s Health 39 (1):147–57. doi: 10.5534/wjmh.190010.
  • Osorio, H., R. Bautista, A. Rios, M. Franco, A. Arellano, H. Vargas-Robles, E. Romo, and B. Escalante. 2010. Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats. Journal of Nephrology 23 (5):541–6.
  • Ovalle-Magallanes, B., D. Eugenio-Pérez, and J. Pedraza-Chaverri. 2017. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food and Chemical Toxicology 109 (Pt 1):102–22. doi: 10.1016/j.fct.2017.08.021.
  • Oyenihi, O. R., A. B. Oyenihi, A. A. Adeyanju, and O. O. Oguntibeju. 2016. Antidiabetic effects of resveratrol: The way forward in its clinical utility. Journal of Diabetes Research 2016:1–14. doi: 10.1155/2016/9737483.
  • Öztürk, E., A. K. K. Arslan, M. B. Yerer, and A. Bishayee. 2017. Resveratrol and diabetes: A critical review of clinical studies. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 95:230–4. doi: 10.1016/j.biopha.2017.08.070.
  • Padayatty, S. J., A. Katz, Y. Wang, P. Eck, O. Kwon, J. H. Lee, S. Chen, C. Corpe, A. Dutta, S. K. Dutta, et al. 2003. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. Journal of the American College of Nutrition 22 (1):18–35. doi: 10.1080/07315724.2003.10719272.
  • Panayotova-Heiermann, M., D. D. Loo, and E. M. Wright. 1995. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. The Journal of Biological Chemistry 270 (45):27099–105. doi: 10.1074/jbc.270.45.27099.
  • Panwar, R., N. Raghuwanshi, A. K. Srivastava, A. K. Sharma, and V. Pruthi. 2018. In-vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Materials Science & Engineering. C, Materials for Biological Applications 92:381–92. doi: 10.1016/j.msec.2018.06.055.
  • Pari, L., and R. Chandramohan. 2017. Modulatory effects of naringin on hepatic key enzymes of carbohydrate metabolism in high-fat diet/low-dose streptozotocin-induced diabetes in rats. General Physiology and Biophysics 36 (3):343–52. doi: 10.4149/gpb_2016055.
  • Park, C. H., J. Y. Lee, M. Y. Kim, S. H. Shin, S. S. Roh, J. S. Choi, H. Y. Chung, Y. O. Song, Y. S. Shin, and T. Yokozawa. 2016. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, protects the pancreas from apoptosis and proliferation via oxidative stress in streptozotocin-induced diabetic rats. Food & Function 7 (7):3056–63. doi: 10.1039/c6fo00088f.
  • Park, C. H., J. S. Noh, H. Fujii, S. S. Roh, Y. O. Song, J. S. Choi, H. Y. Chung, and T. Yokozawa. 2015. Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, attenuates gluco-lipotoxicity-mediated renal disorder in type 2 diabetic db/db mice. Drug Discoveries & Therapeutics 9 (1):13–22. doi: 10.5582/ddt.2015.01003.
  • Park, C. H., K. H. Park, S. G. Hong, J. S. Lee, J. H. Baek, G. I. Lee, J. W. Heo, and T. Yokozawa. 2018. Oligonol, a low-molecular-weight polyphenol derived from lychee peel, attenuates diabetes-induced pancreatic damage by inhibiting inflammatory responses via oxidative stress-dependent mitogen-activated protein kinase/nuclear factor-kappa B signaling. Phytotherapy Research: PTR 32 (12):2541–50. doi: 10.1002/ptr.6194.
  • Parkar, N. A., L. K. Bhatt, and V. Addepalli. 2016. Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats. Food & Function 7 (7):3121–9. doi: 10.1039/c6fo00294c.
  • Patel, T. P., K. Rawal, A. K. Bagchi, G. Akolkar, N. Bernardes, D. D. S. Dias, S. Gupta, and P. K. Singal. 2016. Insulin resistance: An additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Failure Reviews 21 (1):11–23. doi: 10.1007/s10741-015-9515-6.
  • Pedersen, C., E. Gallagher, F. Horton, R. J. Ellis, U. Z. Ijaz, H. Wu, E. Jaiyeola, O. Diribe, T. Duparc, P. D. Cani, et al. 2016. Host-microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. The British Journal of Nutrition 116 (11):1869–77. doi: 10.1017/S0007114516004086.
  • Peng, B. J., Q. Zhu, Y. L. Zhong, S. H. Xu, and Z. Wang. 2015. Chlorogenic acid maintains glucose homeostasis through modulating the expression of SGLT-1, GLUT-2, and PLG in different intestinal segments of sprague-dawley rats fed a high-fat diet. Biomedical and Environmental Sciences: BES 28 (12):894–903. doi: 10.3967/bes2015.123.
  • Peng, J., Q. Li, K. Li, L. Zhu, X. Lin, X. Lin, Q. Shen, G. Li, and X. Xie. 2017. Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of Akt signaling and SIRT1. Journal of Diabetes Research 2017:3417306. doi: 10.1155/2017/3417306.
  • Peng, P., J. Jin, G. Zou, Y. Sui, Y. Han, D. Zhao, and L. Liu. 2021. Hesperidin prevents hyperglycemia in diabetic rats by activating the insulin receptor pathway. Experimental and Therapeutic Medicine 21 (1):53. doi: 10.3892/etm.2020.9485.
  • Pereira, A. C., M. S. Arruda, E. A. Da Silva, M. N. Da Silva, V. S. Lemos, and S. F. Cortes. 2012. Inhibition of α-glucosidase and hypoglycemic effect of stilbenes from the Amazonian plant Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo (Leguminosae). Planta Medica 78 (1):36–8. doi: 10.1055/s-0031-1280199.
  • Pérez-Morales, R. E., M. D. Del Pino, J. M. Valdivielso, A. Ortiz, C. Mora-Fernández, and J. F. Navarro-González. 2019. Inflammation in Diabetic Kidney Disease. Nephron 143 (1):12–6. doi: 10.1159/000493278.
  • Plovier, H., A. Everard, C. Druart, C. Depommier, M. Van Hul, L. Geurts, J. Chilloux, N. Ottman, T. Duparc, L. Lichtenstein, et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine 23 (1):107–13. doi: 10.1038/nm.4236.
  • Polce, S. A., C. Burke, L. M. França, B. Kramer, A. M. de Andrade Paes, and M. A. Carrillo-Sepulveda. 2018. Ellagic acid alleviates hepatic oxidative stress and insulin resistance in diabetic female rats. Nutrients 10 (5):531. doi: 10.3390/nu10050531.
  • Polewski, M. A., D. Esquivel-Alvarado, N. S. Wedde, C. G. Kruger, and J. D. Reed. 2020. Isolation and characterization of blueberry polyphenolic components and their effects on gut barrier dysfunction. Journal of Agricultural and Food Chemistry 68 (10):2940–7. doi: 10.1021/acs.jafc.9b01689.
  • Prasath, G. S., and S. P. Subramanian. 2011. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. European Journal of Pharmacology 668 (3):492–6. doi: 10.1016/j.ejphar.2011.07.021.
  • Prasath, G. S., and S. P. Subramanian. 2013. Fisetin, a tetra hydroxy flavone recuperates antioxidant status and protects hepatocellular ultrastructure from hyperglycemia mediated oxidative stress in streptozotocin induced experimental diabetes in rats. Food and Chemical Toxicology 59:249–55. doi: 10.1016/j.fct.2013.05.062.
  • Prasath, G. S., S. I. Pillai, and S. P. Subramanian. 2014. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. European Journal of Pharmacology 740:248–54. doi: 10.1016/j.ejphar.2014.06.065.
  • Prpa, E. J., C. P. Corpe, B. Atkinson, B. Blackstone, E. S. Leftley, P. Parekh, M. Philo, P. A. Kroon, and W. L. Hall. 2020. Apple polyphenol-rich drinks dose-dependently decrease early-phase postprandial glucose concentrations following a high-carbohydrate meal: A randomized controlled trial in healthy adults and in vitro studies. The Journal of Nutritional Biochemistry 85:108466. doi: 10.1016/j.jnutbio.2020.108466.
  • Puel, C., A. Quintin, J. Mathey, C. Obled, M. J. Davicco, P. Lebecque, S. Kati-Coulibaly, M. N. Horcajada, and V. Coxam. 2005. Prevention of bone loss by phloridzin, an apple polyphenol, in ovariectomized rats under inflammation conditions. Calcified Tissue International 77 (5):311–8. doi: 10.1007/s00223-005-0060-5.
  • Qi, L., M. C. Cornelis, C. Zhang, R. M. Van Dam, and F. B. Hu. 2009. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. The American Journal of Clinical Nutrition 89 (5):1453–8. doi: 10.3945/ajcn.2008.27249.
  • Qi, Z., Y. Xu, Z. Liang, S. Li, J. Wang, Y. Wei, and B. Dong. 2015. Naringin ameliorates cognitive deficits via oxidative stress, proinflammatory factors and the PPARγ signaling pathway in a type 2 diabetic rat model. Molecular Medicine Reports 12 (5):7093–101. doi: 10.3892/mmr.2015.4232.
  • Qin, L., M. Zang, Y. Xu, R. Zhao, Y. Wang, Y. Mi, and Y. Mei. 2021. Chlorogenic acid alleviates hyperglycemia-induced cardiac fibrosis through activation of the NO/cGMP/PKG pathway in cardiac fibroblasts. Molecular Nutrition & Food Research 65 (2):e2000810. doi: 10.1002/mnfr.202000810.
  • Qin, Y., Q. Zhai, Y. Li, M. Cao, Y. Xu, K. Zhao, and T. Wang. 2018. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 103:1223–30. doi: 10.1016/j.biopha.2018.04.137.
  • Raghu, G., C. Akileshwari, V. S. Reddy, and G. B. Reddy. 2017. Attenuation of diabetic retinopathy in rats by ellagic acid through inhibition of AGE formation. Journal of Food Science and Technology 54 (8):2411–21. doi: 10.1007/s13197-017-2683-8.
  • Rajappa, R., D. Sireesh, M. B. Salai, K. M. Ramkumar, S. Sarvajayakesavulu, and S. V. Madhunapantula. 2018. Treatment with naringenin elevates the activity of transcription factor Nrf2 to protect pancreatic β-cells from streptozotocin-induced diabetes in vitro and in vivo. Frontiers in Pharmacology 9:1562. doi: 10.3389/fphar.2018.01562.
  • Rasines-Perea, Z., and P.-L. Teissedre. 2017. Grape Polyphenols’ Effects in Human Cardiovascular Diseases and Diabetes. Molecules (Basel, Switzerland) 22 (1). doi: 10.3390/molecules22010068.
  • Ratwita, W., E. Y. I. Sukandar, K. Adnyana, and N. F. Kurniati. 2019. Alpha mangostin and xanthone activity on fasting blood glucose, insulin and langerhans islet of langerhans in alloxan induced diabetic mice. Pharmacognosy Journal 11 (1):64–8. doi: 10.5530/pj.2019.1.12.
  • Ratwita, W., E. Y. I. Sukandar, N. F. Kurniati, and K. Adnyana. 2018. Alpha mangostin and xanthone from mangosteen (Garcinia mangostana L.) role on insulin tolerance and PPAR-γ in preclinical model diabetes mellitus. Journal of Pharmacy and Nutrition Sciences 8 (3):83–90. doi: 10.6000/1927-5951.2018.08.03.1.
  • Rehman, K., I. I. Khan, M. S. H. Akash, K. Jabeen, and K. Haider. 2020. Naringenin downregulates inflammation-mediated nitric oxide overproduction and potentiates endogenous antioxidant status during hyperglycemia. Journal of Food Biochemistry 7:e13422.
  • Ren, C., W. Xiong, and B. Li. 2019. Binding interaction between β-conglycinin/glycinin and cyanidin-3-O-glucoside in acidic media assessed by multi-spectroscopic and thermodynamic techniques. International Journal of Biological Macromolecules 137:366–73. doi: 10.1016/j.ijbiomac.2019.07.004.
  • Richter, E. A., and M. Hargreaves. 2013. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews 93 (3):993–1017. doi: 10.1152/physrev.00038.2012.
  • Rieg, T., and V. Vallon. 2018. Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61 (10):2079–86. doi: 10.1007/s00125-018-4654-7.
  • Rivoira, M., V. Rodríguez, G. Picotto, R. Battaglino, and N. Tolosa de Talamoni. 2018. Naringin prevents bone loss in a rat model of type 1 diabetes mellitus. Archives of Biochemistry and Biophysics 637:56–63. doi: 10.1016/j.abb.2017.12.001.
  • Rodríguez, V., L. Plavnik, and N. Tolosa de Talamoni. 2018. Naringin attenuates liver damage in streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 105:95–102. doi: 10.1016/j.biopha.2018.05.120.
  • Rodríguez-Roque, M. J., B. de Ancos, C. Sánchez-Moreno, M. P. Cano, P. Elez-Martínez, and O. Martín-Belloso. 2015. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods 14:33–43. doi: 10.1016/j.jff.2015.01.020.
  • Rojo, L. E., D. Ribnicky, S. Logendra, A. Poulev, P. Rojas-Silva, P. Kuhn, R. Dorn, M. H. Grace, M. A. Lila, and I. Raskin. 2012. In vitro and in vivo anti-diabetic effects of anthocyanins from Maqui Berry (Aristotelia chilensis). Food Chemistry 131 (2):387–96. doi: 10.1016/j.foodchem.2011.08.066.
  • Rosenwasser, R. F., S. Sultan, D. Sutton, R. Choksi, and B. J. Epstein. 2013. SGLT-2 inhibitors and their potential in the treatment of diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 6:453.
  • Roy, S., S. K. Metya, N. Rahaman, S. Sannigrahi, and F. Ahmed. 2014. Ferulic acid in the treatment of post-diabetes testicular damage: Relevance to the down regulation of apoptosis correlates with antioxidant status via modulation of TGF-β1, IL-1β and Akt signalling. Cell Biochemistry and Function 2014 Jan32 (1):115–24. doi: 10.1002/cbf.2983.
  • Rozentsvit, A., K. Vinokur, S. Samuel, Y. Li, A. M. Gerdes, and M. A. Carrillo-Sepulveda. 2017. Ellagic acid reduces high glucose-induced vascular oxidative stress through ERK1/2/NOX4 signaling pathway. Cellular Physiology and Biochemistry 44 (3):1174–87. doi: 10.1159/000485448.
  • Sahnoun, M., S. Trabelsi, and S. Bejar. 2017. Citrus flavonoids collectively dominate the α-amylase and α-glucosidase inhibitions. Biologia 72 (7):764–73. doi: 10.1515/biolog-2017-0091.
  • Sakurai, T., H. Nishioka, H. Fujii, N. Nakano, T. Kizaki, Z. Radak, T. Izawa, S. Haga, and H. Ohno. 2008. Antioxidative effects of a new lychee fruit-derived polyphenol mixture, oligonol, converted into a low-molecular form in adipocytes. Bioscience, Biotechnology, and Biochemistry 72 (2):463–76. doi: 10.1271/bbb.70567.
  • Salamon, D., A. Sroka-Oleksiak, P. Kapusta, M. Szopa, S. Mrozińska, A. H. Ludwig-Słomczyńska, P. P. Wołkow, M. Bulanda, T. Klupa, M. T. Małecki, et al. 2018. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next‑generation sequencing of the 16S rRNA gene fragment. Polish Archives of Internal Medicine 128 (6):336–43. doi: 10.20452/pamw.4246.
  • Saleh, S., N. El-Maraghy, E. Reda, and W. Barakat. 2014. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: Role of adiponectin and TNF-α. Anais da Academia Brasileira de Ciencias 86 (4):1935–48. doi: 10.1590/0001-3765201420140212.
  • Salin Raj, P., S. U. S. Swapna, and K. G. Raghu. 2019. High glucose induced calcium overload via impairment of SERCA/PLN pathway and mitochondrial dysfunction leads to oxidative stress in H9c2 cells and amelioration with ferulic acid. Fundamental & Clinical Pharmacology 33 (4):412–25. doi: 10.1111/fcp.12452.
  • Samie, A., R. Sedaghat, T. Baluchnejadmojarad, and M. Roghani. 2018. Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sciences 210:132–9. doi: 10.1016/j.lfs.2018.08.074.
  • Sandireddy, R., V. G. Yerra, P. Komirishetti, A. Areti, and A. Kumar. 2016. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cellular and Molecular Neurobiology 36 (6):883–92. doi: 10.1007/s10571-015-0272-9.
  • Sandoval, V., A. Femenias, Ú. Martínez-Garza, H. Sanz-Lamora, J. M. Castagnini, P. Quifer-Rada, R. M. Lamuela-Raventós, P. F. Marrero, D. Haro, and J. Relat. 2019. Lyophilized maqui (Aristotelia chilensis) berry induces browning in the subcutaneous white adipose tissue and ameliorates the insulin resistance in high fat diet-induced obese mice. Antioxidants (Basel) 8 (9):360. doi: 10.3390/antiox8090360.
  • Sarkar, P., A. Bhowmick, M. C. Kalita, and S. Banu. 2019. Effects of resveratrol and mangiferin on PPARγ and FALDH gene expressions in adipose tissue of streptozotocin-nicotinamide-induced diabetes in rats. Journal of Dietary Supplements 16 (6):659–75. doi: 10.1080/19390211.2018.1472714.
  • Schauberger, G., U. C. Brinck, G. Guldner, R. Spaethe, L. Niklas, and H. Otto. 1978. Exchange of carbohydrates according to their effect on blood glucose. Diabetes 26:415.
  • Schlienger, J. L. 2013. Complications du diabète de type 2 [Type 2 diabetes complications]. La Presse Médicale 42 (5):839–48. doi: 10.1016/j.lpm.2013.02.313.
  • Sha, H., H. Zeng, J. Zhao, and H. Jin. 2019. Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. European Journal of Pharmacology 859:172522. doi: 10.1016/j.ejphar.2019.172522.
  • Sharma, D., T. R. Kumar, and K. Kalia. 2020. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine 76:153235. doi: 10.1016/j.phymed.2020.153235.
  • Sheikh, Y., M. B. Chanu, G. Mondal, P. Manna, A. Chattoraj, D. Chandra Deka, N. Chandra Talukdar, and J. Chandra Borah. 2019. Procyanidin A2, an anti-diabetic condensed tannin extracted from Wendlandia glabrata, reduces elevated G-6-Pase and mRNA levels in diabetic mice and increases glucose uptake in CC1 hepatocytes and C1C12 myoblast cells†. RSC Advances 9 (30):17211–9. doi: 10.1039/C9RA02397F.
  • Shen, B., X. Shangguan, Z. Yin, S. Wu, Q. Zhang, W. Peng, J. Li, L. Zhang, and J. Chen. 2021. Inhibitory effect of fisetin on α-glucosidase activity: Kinetic and molecular docking studies. Molecules 26 (17):5306. doi: 10.3390/molecules26175306.
  • Shen, L., B. A. You, H. Q. Gao, B. Y. Li, F. Yu, and F. Pei. 2012. Effects of phlorizin on vascular complications in diabetes db/db mice. Chinese Medical Journal 125 (20):3692–6.
  • Shen, X., L. Wang, N. Zhou, S. Gai, X. Liu, and S. Zhang. 2020. Beneficial effects of combination therapy of phloretin and metformin in streptozotocin-induced diabetic rats and improved insulin sensitivity in vitro. Food & Function 11 (1):392–403. doi: 10.1039/c9fo01326a.
  • Shi, Z. L., Y. D. Liu, Y. Y. Yuan, D. Song, M. F. Qi, X. J. Yang, P. Wang, X. Y. Li, J. H. Shang, and Z. X. Yang. 2017. In vitro and in vivo effects of norathyriol and mangiferin on α-glucosidase. Biochemistry Research International 2017:1–7. doi: 10.1155/2017/1206015.
  • Shi, Z., X. Hu, B. Yuan, X. Pan, H. E. Meyer, and G. Holmboe-Ottesen. 2006. Association between serum ferritin, hemoglobin, iron intake, and diabetes in adults in Jiangsu, China. Diabetes Care 29 (8):1878–83. doi: 10.2337/dc06-0327.
  • Shin, S. K., S. J. Cho, U. J. Jung, R. Ryu, and M. S. Choi. 2016. Phlorizin supplementation attenuates obesity, inflammation, and hyperglycemia in diet-induced obese mice fed a high-fat diet. Nutrients 8 (2):92. doi: 10.3390/nu8020092.
  • Singh, A. K., H. K. Rana, V. Singh, T. Chand Yadav, P. Varadwaj, and A. K. Pandey. 2021. Evaluation of antidiabetic activity of dietary phenolic compound chlorogenic acid in streptozotocin induced diabetic rats: Molecular docking, molecular dynamics, in silico toxicity, in vitro and in vivo studies. Computers in Biology and Medicine 134:104462. doi: 10.1016/j.compbiomed.2021.104462.
  • Singh, P., S. Bansal, A. Kuhad, A. Kumar, and K. Chopra. 2020. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food & Function 11 (5):4548–60. doi: 10.1039/c9fo00881k.
  • Snyder, S. M., B. Zhao, T. Luo, C. Kaiser, G. Cavender, J. Hamilton-Reeves, D. K. Sullivan, and N. F. Shay. 2016. Consumption of quercetin and quercetin-containing apple and cherry extracts affects blood glucose concentration, hepatic metabolism, and gene expression patterns in obese C57BL/6J high fat-fed mice. The Journal of Nutrition 146 (5):1001–7. doi: 10.3945/jn.115.228817.
  • Soetikno, V., A. Murwantara, P. Andini, F. Charlie, G. Lazarus, M. Louisa, and W. Arozal. 2020. Alpha-mangostin improves cardiac hypertrophy and fibrosis and associated biochemical parameters in high-fat/high-glucose diet and low-dose streptozotocin injection-induced type 2 diabetic rats. Journal of Experimental Pharmacology 12:27–38. doi: 10.2147/JEP.S233111.
  • Song, Y., W. Liu, K. Tang, J. Zang, D. Li, and H. Gao. 2020. Mangiferin alleviates renal interstitial fibrosis in streptozotocin-induced diabetic mice through regulating the PTEN/PI3K/Akt signaling pathway. Journal of Diabetes Research 2020:9481720. doi: 10.1155/2020/9481720.
  • Song, Y., J. E. Manson, J. E. Buring, H. D. Sesso, and S. Liu. 2005. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: A prospective study and cross-sectional analysis. Journal of the American College of Nutrition 24 (5):376–84. doi: 10.1080/07315724.2005.10719488.
  • Song, Y., M. S. Wu, G. Tao, M. W. Lu, J. Lin, and J. Q. Huang. 2020. Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Research International (Ottawa, Ont.) 137:109410. doi: 10.1016/j.foodres.2020.109410.
  • Sorrenti, V., V. Consoli, S. Grosso, M. Raffaele, M. Amenta, G. Ballistreri, S. Fabroni, P. Rapisarda, and L. Vanella. 2021. Bioactive compounds from lemon (Citrus limon) extract overcome TNF-α-induced insulin resistance in cultured adipocytes. Molecules 26 (15):4411. doi: 10.3390/molecules26154411.
  • Spínola, V., E. J. Llorent-Martínez, and P. C. Castilho. 2019. Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications. Food Research International (Ottawa, Ont.) 116:1229–38. doi: 10.1016/j.foodres.2018.10.010.
  • Starke, A., S. Grundy, J. D. McGarry, and R. H. Unger. 1985. Correction of hyperglycemia with phloridzin restores the glucagon response to glucose in insulin-deficient dogs: Implications for human diabetes. Proceedings of the National Academy of Sciences of the United States of America 82 (5):1544–6. doi: 10.1073/pnas.82.5.1544.
  • Suchal, K., S. Malik, S. I. Khan, R. K. Malhotra, S. N. Goyal, J. Bhatia, S. Kumari, S. Ojha, and D. S. Arya. 2017. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: Role of AGE-RAGE/MAPK pathways. Scientific Reports 7:42027. doi: 10.1038/srep42027.
  • Sun, C., H. Huang, C. Xu, X. Li, and K. Chen. 2013. Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): A review. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (2):97–106. doi: 10.1007/s11130-013-0349-x.
  • Sun, C., Y. Liu, L. Zhan, G. R. Rayat, and K. Chen. 2020. Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science & Technology. doi: 10.1016/j.tifs.2020.07.024.
  • Sun, C., L. Wang, J. Sun, Z. Wang, and Z. Tang. 2020. Hypoglycemic and hypolipidemic effects of rutin on hyperglycemic rats. Journal of Traditional Chinese Medical Sciences 40 (4):640–5.
  • Sun, C., C. Zhao, E. C. Guven, P. Paoli, J. Simal-Gandara, K. M. Ramkumar, S. Wang, F. Buleu, A. Pah, V. Turi, et al. 2020. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers 1 (1):18–44. doi: 10.1002/fft2.15.
  • Sun, H., D. Wang, X. Song, Y. Zhang, W. Ding, X. Peng, X. Zhang, Y. Li, Y. Ma, R. Wang, et al. 2017. Natural prenylchalconaringenins and prenylnaringenins as antidiabetic agents: α-Glucosidase and α-amylase inhibition and in vivo antihyperglycemic and antihyperlipidemic effects. Journal of Agricultural and Food Chemistry 65 (8):1574–81. doi: 10.1021/acs.jafc.6b05445.
  • Sun, L., C. Xie, G. Wang, Y. Wu, Q. Wu, X. Wang, J. Liu, Y. Deng, J. Xia, B. Chen, et al. 2018. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine 24 (12):1919–29. doi: 10.1038/s41591-018-0222-4.
  • Sundaram, R., E. Nandhakumar, and H. Haseena Banu. 2019. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicology Mechanisms and Methods 29 (9):644–53. doi: 10.1080/15376516.2019.1646370.
  • Sundaram, R., P. Shanthi, and P. Sachdanandam. 2014. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats. Phytomedicine 21 (6):793–9. doi: 10.1016/j.phymed.2014.01.007.
  • Syed, A. A., M. I. Reza, M. Shafiq, S. Kumariya, P. Singh, A. Husain, K. Hanif, and J. R. Gayen. 2020. Naringin ameliorates type 2 diabetes mellitus-induced steatohepatitis by inhibiting RAGE/NF-κB mediated mitochondrial apoptosis. Life Sciences 257:118118. doi: 10.1016/j.lfs.2020.118118.
  • Tadera, K., Y. Minami, K. Takamatsu, and T. Matsuoka. 2006. Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. Journal of Nutritional Science and Vitaminology 52 (2):149–53. doi: 10.3177/jnsv.52.149.
  • Takii, M., Y. K. Kaneko, K. Akiyama, Y. Aoyagi, Y. Tara, T. Asakawa, M. Inai, T. Kan, K. Nemoto, and T. Ishikawa. 2017. Insulinotropic and anti-apoptotic effects of nobiletin in ins-1d β-cells. Journal of Functional Foods 30:8–15. doi: 10.1016/j.jff.2016.12.037.
  • Tan, S., J. Tang, W. Shi, Z. Wang, Y. Xiang, T. Deng, X. Gao, W. Li, and S. Shi. 2020. Effects of three drying methods on polyphenol composition and antioxidant activities of Litchi chinensis Sonn. Food Science and Biotechnology 29 (3):351–8. doi: 10.1007/s10068-019-00674-w.
  • Tan, Y., Z. Zhang, C. Zheng, K. A. Wintergerst, B. B. Keller, and L. Cai. 2020. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: Preclinical and clinical evidence. Nature Reviews. Cardiology 17 (9):585–607. doi: 10.1038/s41569-020-0339-2.
  • Tanaka, F., F. Hayakawa, and M. Tatsuki. 2020. Flavor and texture characteristics of ‘fuji’ and related apple (Malus domestica L.) cultivars, focusing on the rich watercore. Molecules 25 (5):1114. doi: 10.3390/molecules25051114.
  • Tang, L., Y. Wu, M. Tian, C. D. Sjöström, U. Johansson, X. R. Peng, D. M. Smith, and Y. Huang. 2017. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism 313 (5):E563–76. doi: 10.1152/ajpendo.00086.2017.
  • Tani, T., S. Nishikawa, M. Kato, and T. Tsuda. 2017. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1 secretion. Food Science & Nutrition 5 (4):929–33. doi: 10.1002/fsn3.478.
  • Tanveer, A., K. Akram, U. Farooq, Z. Hayat, and A. Shafi. 2017. Management of diabetic complications through fruit flavonoids as a natural remedy. Critical Reviews in Food Science and Nutrition 57 (7):1411–22. doi: 10.1080/10408398.2014.1000482.
  • Thilavech, T., S. Ngamukote, D. Belobrajdic, M. Abeywardena, and S. Adisakwattana. 2016. Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species. BMC Complementary and Alternative Medicine 16:138. doi: 10.1186/s12906-016-1133-x.
  • Tian, J. L., X. Si, Y. H. Wang, E. S. Gong, X. Xie, Y. Zhang, B. Li, and C. Shu. 2021. Bioactive flavonoids from Rubus corchorifolius inhibit α-glucosidase and α-amylase to improve postprandial hyperglycemia. Food Chemistry 341 (Pt 1):128149. doi: 10.1016/j.foodchem.2020.128149.
  • Tian, L., H. Ning, W. Shao, Z. Song, Y. Badakhshi, W. Ling, B. B. Yang, P. L. Brubaker, and T. Jin. 2020. Dietary cyanidin-3-glucoside attenuates high-fat-diet-induced body-weight gain and impairment of glucose tolerance in mice via effects on the hepatic hormone FGF21. The Journal of Nutrition 150 (8):2101–11. doi: 10.1093/jn/nxaa140.
  • Tian, R., W. Yang, Q. Xue, L. Gao, J. Huo, D. Ren, and X. Chen. 2016. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. European Journal of Pharmacology 771:84–92. doi: 10.1016/j.ejphar.2015.12.021.
  • Törrönen, R., M. Kolehmainen, E. Sarkkinen, H. Mykkänen, and L. Niskanen. 2012. Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. The American Journal of Clinical Nutrition 96 (3):527–33. doi: 10.3945/ajcn.112.042184.
  • Shandiz, T., H. Razavi, B. M. Hosseinzadeh. and H. 2017. Review of Garcinia mangostana and its xanthones in metabolic syndrome and related complications. Phytotherapy Research 31 (8):1173–82. doi: 10.1002/ptr.5862.
  • Tousian, H., B. M. Razavi, and H. Hosseinzadeh. 2020. Alpha-mangostin decreased cellular senescence in human umbilical vein endothelial cells. Daru 28 (1):45–55. doi: 10.1007/s40199-019-00305-z.
  • Tseng, Y. T., H. T. Hsu, T. Y. Lee, W. H. Chang, and Y. C. Lo. 2019. Naringenin, a dietary flavanone, enhances insulin-like growth factor 1 receptor-mediated antioxidant defense and attenuates methylglyoxal-induced neurite damage and apoptotic death. Nutritional Neuroscience 22:1–11.
  • Tundis, R., M. Bonesi, V. Sicari, T. M. Pellicanò, M. C. Tenuta, M. Leporini, F. Menichini, and M. R. Loizzo. 2016. Poncirus trifoliata (L.) raf.: Chemical composition, antioxidant properties and hypoglycaemic activity via the inhibition of α-amylase and α-glucosidase enzymes. Journal of Functional Foods 25:477–85. doi: 10.1016/j.jff.2016.06.034.
  • Tuomi, T., N. Santoro, S. Caprio, M. Cai, J. Weng, and L. Groop. 2014. The many faces of diabetes: A disease with increasing heterogeneity. The Lancet 383 (9922):1084–94. doi: 10.1016/S0140-6736(13)62219-9.
  • Usha, T., A. K. Goyal, D. Narzary, L. Prakash, G. Wadhwa, D. Babu, D. Shanmugarajan, and S. K. Middha. 2018. Identification of bioactive glucose-lowering compounds of methanolic extract of Hodgsonia heteroclita fruit pulp. Frontiers in Bioscience (Landmark Edition) 23:875–88. doi: 10.2741/4622.
  • Van Dam, R. M., E. B. Rimm, W. C. Willett, M. J. Stampfer, and F. B. Hu. 2002. Dietary patterns and risk for type 2 diabetes mellitus in US men. Annals of Internal Medicine 136 (3):201–9. doi: 10.7326/0003-4819-136-3-200202050-00008.
  • Wada, J., and H. Makino. 2013. Inflammation and the pathogenesis of diabetic nephropathy. Clinical Science (London, England: 1979) 124 (3):139–52. doi: 10.1042/CS20120198.
  • Wahlqvist, M. L. 2001. Nutrition and diabetes in the Asia-Pacific region with reference to cardiovascular disease. Asia Pacific Journal of Clinical Nutrition 10 (2):90–6. doi: 10.1111/j.1440-6047.2001.00228.x.
  • Wang, H., Y. J. Du, and H. C. Song. 2010. α-glucosidase and α-amylase inhibitory activities of guava leaves. Food Chemistry 123 (1):6–13. doi: 10.1016/j.foodchem.2010.03.088.
  • Wang, H., X. Sun, N. Zhang, Z. Ji, Z. Ma, Q. Fu, R. Qu, and S. Ma. 2017. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiology & Behavior 182:93–100. doi: 10.1016/j.physbeh.2017.10.001.
  • Wang, R., Z. Qiu, G. Wang, Q. Hu, N. Shi, Z. Zhang, Y. Wu, and C. Zhou. 2020. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. European Journal of Pharmacology 882:173266. doi: 10.1016/j.ejphar.2020.173266.
  • Wang, S. W., H. Sheng, Y. F. Bai, Y. Y. Weng, X. Y. Fan, L. J. Lou, and F. Zhang. 2020. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice. Nutrition & Diabetes 10 (1):27. doi: 10.1038/s41387-020-00130-3.
  • Wang, S. W., W. Wang, H. Sheng, Y. F. Bai, Y. Y. Weng, X. Y. Fan, F. Zheng, X. T. Zhu, Z. C. Xu, and F. Zhang. 2020. Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway. International Immunopharmacology 89 (Pt B):107036. doi: 10.1016/j.intimp.2020.107036.
  • Wang, S., Y. Huang, G. Luo, X. Yang, and W. Huang. 2021. Cyanidin-3-O-glucoside attenuates high glucose-induced podocytes dysfunction by inhibiting apoptosis and promoting autophagy via activation of SIRT1/AMPK pathway. Canadian Journal of Physiology and Pharmacology 99 (6):589–98.
  • Wang, S., Y. Li, D. Huang, S. Chen, Y. Xia, and S. Zhu. 2021. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chemistry 372:131334. doi: 10.1016/j.foodchem.2021.131334.
  • Wang, S., N. Moustaid-Moussa, L. Chen, H. Mo, A. Shastri, R. Su, P. Bapat, I. Kwun, and C. L. Shen. 2014. Novel insights of dietary polyphenols and obesity. The Journal of Nutritional Biochemistry 25 (1):1–18. doi: 10.1016/j.jnutbio.2013.09.001.
  • Wang, X., X. Zhao, T. Feng, G. Jin, and Z. Li. 2016. Rutin prevents high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the ROS/Rhoa/ROCK signaling pathway. Planta Medica 82 (14):1252–7. doi: 10.1055/s-0042-110859.
  • Wang, Y. B., Z. M. Ge, W. Q. Kang, Z. X. Lian, J. Yao, and C. Y. Zhou. 2015. Rutin alleviates diabetic cardiomyopathy in a rat model of type 2 diabetes. Experimental and Therapeutic Medicine 9 (2):451–5. doi: 10.3892/etm.2014.2090.
  • Wang, Y., L. Wang, G. Xu, and D. Wei. 2019. Hesperidin exerts the gestational diabetes mellitus via ages-rage signalling pathway. International Journal of Pharmacology 15 (5):604–15. doi: 10.3923/ijp.2019.604.615.
  • Wang, Y., C. Yang, N. A. H. Elsheikh, C. Li, F. Yang, G. Wang, and L. Li. 2019. HO-1 reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress. Aging 11 (15):5535–47. doi: 10.18632/aging.102136.
  • Wang, Z., Z. Gao, A. Wang, L. Jia, X. Zhang, M. Fang, K. Yi, Q. Li, and H. Hu. 2019. Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase II metabolism. Food & Function 10 (3):1582–94. doi: 10.1039/c8fo02242a.
  • Watanabe, M., E. Gangitano, D. Francomano, E. Addessi, R. Toscano, D. Costantini, D. Tuccinardi, S. Mariani, S. Basciani, G. Spera, et al. 2018. Mangosteen extract shows a potent insulin sensitizing effect in obese female patients: A prospective randomized controlled pilot study. Nutrients 10 (5):586. doi: 10.3390/nu10050586.
  • Weng, C., Y. Li, D. Xu, Y. Shi, and H. Tang. 2005. Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. The Journal of Biological Chemistry 280 (11):10491–500. doi: 10.1074/jbc.M412819200.
  • Wu, H., E. Esteve, V. Tremaroli, M. T. Khan, R. Caesar, L. Mannerås-Holm, M. Ståhlman, L. M. Olsson, M. Serino, M. Planas-Fèlix, et al. 2017. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine 23 (7):850–8. doi: 10.1038/nm.4345.
  • Wu, Z., X. Zheng, M. Gong, and Y. Li. 2016. Myricetin, a potent natural agent for treatment of diabetic skin damage by modulating TIMP/MMPs balance and oxidative stress. Oncotarget 7 (44):71754–60. doi: 10.18632/oncotarget.12330.
  • Xia, N., W. Wan, S. Zhu, and Q. Liu. 2020. Synthesis of hydrophobic propionyl neohesperidin ester using an immobilied enzyme and description of its anti-proliferative and pro-apoptotic effects on MCF-7 human breast cancer cells. Frontiers in Bioengineering and Biotechnology 8:1025. doi: 10.3389/fbioe.2020.01025.
  • Xia, Y., H. Feng, Z. W. Li, K. X. Tang, H. Q. Gao, W. L. Wang, X. P. Cui, and X. L. Li. 2020. Low-dose phloretin alleviates diabetic atherosclerosis through endothelial KLF2 restoration. Bioscience, Biotechnology, and Biochemistry 84 (4):815–23. doi: 10.1080/09168451.2019.1699396.
  • Xiao, T., Z. Guo, X. Bi, and Y. Zhao. 2017. Polyphenolic profile as well as anti-oxidant and anti-diabetes effects of extracts from freeze-dried black raspberries. Journal of Functional Foods 31:179–87. doi: 10.1016/j.jff.2017.01.038.
  • Xiao, T., Z. Guo, B. Sun, and Y. Zhao. 2017. Identification of anthocyanins from four kinds of berries and their inhibition activity to α-glycosidase and protein tyrosine phosphatase 1B by HPLC-FT-ICR MS/MS. Journal of Agricultural and Food Chemistry 65 (30):6211–21. doi: 10.1021/acs.jafc.7b02550.
  • Xie, J., W. Song, X. Liang, Q. Zhang, Y. Shi, W. Liu, and X. Shi. 2020. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 127:110147. doi: 10.1016/j.biopha.2020.110147.
  • Xiong, R., X. L. Wang, J. M. Wu, Y. Tang, W. Q. Qiu, X. Shen, J. F. Teng, R. Pan, Y. Zhao, L. Yu, et al. 2020. Polyphenols isolated from lychee seed inhibit Alzheimer’s disease-associated Tau through improving insulin resistance via the IRS-1/PI3K/Akt/GSK-3β pathway. Journal of Ethnopharmacology 251:112548. doi: 10.1016/j.jep.2020.112548.
  • Xulu, S., and P. M. Oroma Owira. 2012. Naringin ameliorates atherogenic dyslipidemia but not hyperglycemia in rats with type 1 diabetes. Journal of Cardiovascular Pharmacology 59 (2):133–41.
  • Yamanishi, R., E. Yoshigai, T. Okuyama, M. Mori, H. Murase, T. Machida, T. Okumura, and M. Nishizawa. 2014. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 9 (4):e93818. doi: 10.1371/journal.pone.0093818.
  • Yan, F., G. Dai, and X. Zheng. 2016. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. The Journal of Nutritional Biochemistry 36:68–80. doi: 10.1016/j.jnutbio.2016.07.004.
  • Yan, Y., X. Zhou, K. Guo, F. Zhou, and H. Yang. 2020. Use of chlorogenic acid against diabetes mellitus and its complications. Journal of Immunology Research 2020:9680508. doi: 10.1155/2020/9680508.
  • Yang, L. X., F. Y. Chen, H. L. Yu, P. Y. Liu, X. Y. Bao, S. N. Xia, Y. Gu, Y. Xu, and X. Cao. 2020. Poncirin suppresses lipopolysaccharide (LPS)-induced microglial inflammation and ameliorates brain ischemic injury in experimental stroke in mice. Annals of Translational Medicine 8 (21):1344. doi: 10.21037/atm-20-3470.
  • Yang, Z. J., H. R. Wang, Y. I. Wang, Z. H. Zhai, L. W. Wang, L. Li, C. Zhang, and L. Tang. 2019. Myricetin attenuated diabetes-associated kidney injuries and dysfunction via regulating nuclear factor (erythroid derived 2)-like 2 and nuclear factor-κB signaling. Frontiers in Pharmacology 10:647. doi: 10.3389/fphar.2019.00647.
  • Yao, Z., Y. Gu, Q. Zhang, L. Liu, G. Meng, H. Wu, Y. Xia, X. Bao, H. Shi, S. Sun, et al. 2019. Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in Chinese adults. European Journal of Nutrition 58 (2):819–30. doi: 10.1007/s00394-018-1713-2.
  • Yao, Z., C. Li, Y. Gu, Q. Zhang, L. Liu, G. Meng, H. Wu, X. Bao, S. Zhang, S. Sun, et al. 2019. Dietary myricetin intake is inversely associated with the prevalence of type 2 diabetes mellitus in a Chinese population. Nutrition Research 68:82–91. doi: 10.1016/j.nutres.2019.06.004.
  • Ye, J. 2013. Mechanisms of insulin resistance in obesity. Frontiers of Medicine 7 (1):14–24. doi: 10.1007/s11684-013-0262-6.
  • Yeong, K. Y., K. Y. Khaw, Y. Takahashi, Y. Itoh, V. Murugaiyah, and T. Suzuki. 2020. Discovery of gamma-mangostin from Garcinia mangostana as a potent and selective natural SIRT2 inhibitor. Bioorganic Chemistry 94:103403. doi: 10.1016/j.bioorg.2019.103403.
  • Ying, X., X. Chen, T. Wang, W. Zheng, L. Chen, and Y. Xu. 2020. Possible osteoprotective effects of myricetin in STZ induced diabetic osteoporosis in rats. European Journal of Pharmacology 866:172805. doi: 10.1016/j.ejphar.2019.172805.
  • Ying, Y., C. Jiang, M. Zhang, J. Jin, S. Ge, and X. Wang. 2019. Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model. Aging 11 (9):2822–35. doi: 10.18632/aging.101954.
  • Ying, Y., J. Jin, L. Ye, P. Sun, H. Wang, and X. Wang. 2018. Phloretin prevents diabetic cardiomyopathy by dissociating Keap1/Nrf2 complex and inhibiting oxidative stress. Front Endocrinol (Lausanne) 9:774.
  • You, Q., Z. Wu, B. Wu, C. Liu, R. Huang, L. Yang, R. Guo, K. Wu, and J. Chen. 2016. Naringin protects cardiomyocytes against hyperglycemia-induced injuries in vitro and in vivo. The Journal of Endocrinology 230 (2):197–214. doi: 10.1530/JOE-16-0004.
  • Yuan, Q., and L. Zhao. 2017. The mulberry (Morus alba L.) fruit—A review of characteristic components and health benefits. Journal of Agricultural and Food Chemistry 65 (48):10383–94. doi: 10.1021/acs.jafc.7b03614.
  • Zaidun, N. H., Z. C. T. Sahema, A. A. Mardiana, R. L. Santhana, A. A. Latiff, and S. B. Syed Ahmad Fuad. 2019. Effects of naringenin on vascular changes in prolonged hyperglycaemia in fructose-STZ diabetic rat model. Drug Discoveries & Therapeutics 13 (4):212–21. doi: 10.5582/ddt.2019.01034.
  • Zhang, B., Y. Chen, Q. Shen, G. Liu, J. Ye, G. Sun, and X. Sun. 2016. Myricitrin attenuates high glucose-induced apoptosis through activating Akt-Nrf2 signaling in H9c2 cardiomyocytes. Molecules 21 (7):880. doi: 10.3390/molecules21070880.
  • Zhang, F., J. Feng, J. Zhang, X. Kang, and D. Qian. 2020. Quercetin modulates AMPK/SIRT1/NF-κB signaling to inhibit inflammatory/oxidative stress responses in diabetic high fat diet-induced atherosclerosis in the rat carotid artery. Experimental and Therapeutic Medicine 20 (6):280. doi: 10.3892/etm.2020.9410.
  • Zhang, J., H. Qiu, J. Huang, S. Ding, B. Huang, Q. Wu, and Q. Jiang. 2018. Naringenin exhibits the protective effect on cardiac hypertrophy via EETs-PPARs activation in streptozocin-induced diabetic mice. Biochemical and Biophysical Research Communications 502 (1):55–61. doi: 10.1016/j.bbrc.2018.05.119.
  • Zhang, N., Z. Yang, S. Z. Xiang, Y. G. Jin, W. Y. Wei, Z. Y. Bian, W. Deng, and Q. Z. Tang. 2016. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: Induced diabetic cardiomyopathy. Molecular and Cellular Biochemistry 417 (1–2):87–96. doi: 10.1007/s11010-016-2716-z.
  • Zhang, Q., X. Kong, H. Yuan, H. Guan, Y. Li, and Y. Niu. 2019. Mangiferin improved palmitate-induced-insulin resistance by promoting free fatty acid metabolism in HepG2 and C2C12 cells via PPARα: Mangiferin improved insulin resistance. Journal of Diabetes Research 2019:2052675. doi: 10.1155/2019/2052675.
  • Zhang, S., R. Xue, Y. Geng, H. Wang, and W. Li. 2020. Fisetin prevents HT22 cells from high glucose-induced neurotoxicity via PI3K/Akt/CREB signaling pathway. Frontiers in Neuroscience 14:241.
  • Zhang, X. Y., J. Chen, K. Yi, L. Peng, J. Xie, X. Gou, T. Peng, and L. Tang. 2020. Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity. Gut Microbes 12 (1):1842990–18. doi: 10.1080/19490976.2020.1842990.
  • Zhang, Y., Y. Cao, J. Chen, H. Qin, and L. Yang. 2019. A new possible mechanism by which punicalagin protects against liver injury induced by type 2 diabetes mellitus: Upregulation of autophagy via the Akt/FoxO3a signaling pathway. Journal of Agricultural and Food Chemistry 67 (50):13948–59. doi: 10.1021/acs.jafc.9b05910.
  • Zhang, Y., B. Wang, F. Guo, Z. Li, and G. Qin. 2018. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 105:766–72. doi: 10.1016/j.biopha.2018.06.036.
  • Zhao, C., C. Zhao, and H. Zhao. 2020. Defective insulin receptor signaling in patients with gestational diabetes is related to dysregulated miR-140 which can be improved by naringenin. The International Journal of Biochemistry & Cell Biology 128:105824. doi: 10.1016/j.biocel.2020.105824.
  • Zhao, J., J. Gao, and H. Li. 2020. Ferulic acid confers protection on islet β cells and placental tissues of rats with gestational diabetes mellitus. Cellular and Molecular Biology (Noisy-le-Grand, France) 66 (1):37–41. doi: 10.14715/cmb/2019.66.1.6.
  • Zhao, L., J. Sun, S. Shi, X. Qin, K. Zhang, and J. Xu. 2020. Kaempferol protects retinal ganglion ceils from high-glucose-induced injury by regulating vasohibin-1. Neuroscience Letters 716:134633. doi: 10.1016/j.neulet.2019.134633.
  • Zhao, R., K. Le, W. Li, S. Ren, M. H. Moghadasian, T. Beta, and G. X. Shen. 2014. Effects of Saskatoon berry powder on monocyte adhesion to vascular wall of leptin receptor-deficient diabetic mice. The Journal of Nutritional Biochemistry 25 (8):851–7. doi: 10.1016/j.jnutbio.2014.03.016.
  • Zhao, R., X. Xie, K. Le, W. Li, M. H. Moghadasian, T. Beta, and G. X. Shen. 2015. Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: Protective effect of Saskatoon berry powder and cyanidin glycans. The Journal of Nutritional Biochemistry 26 (11):1248–53. doi: 10.1016/j.jnutbio.2015.05.015.
  • Zhao, X., X. L. Li, X. Liu, C. Wang, D. S. Zhou, Q. Ma, W. H. Zhou, and Z. Y. Hu. 2015. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors. Pharmacological Research 102:286–97. doi: 10.1016/j.phrs.2015.10.007.
  • Zheng, S., S. Deng, Y. Huang, M. Huang, P. Zhao, X. Ma, Y. Wen, Q. Wang, and X. Yang. 2018. Anti-diabetic activity of a polyphenol-rich extract from Phellinus igniarius in KK-Ay mice with spontaneous type 2 diabetes mellitus. Food & Function 9 (1):614–23. doi: 10.1039/c7fo01460k.
  • Zheng, Y., J. Tian, W. Yang, S. Chen, D. Liu, H. Fang, H. Zhang, and X. Ye. 2020. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry 317:126346. doi: 10.1016/j.foodchem.2020.126346.
  • Zhong, J., E. A. Reece, and P. Yang. 2015. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects. Biochemical and Biophysical Research Communications 467 (2):179–84. doi: 10.1016/j.bbrc.2015.10.024.
  • Zhou, B., Q. Li, J. Wang, P. Chen, and S. Jiang. 2019. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling. Food and Chemical Toxicology 123:16–27. doi: 10.1016/j.fct.2018.10.036.
  • Zhu, X., H. Liu, Y. Liu, Y. Chen, Y. Liu, and X. Yin. 2020. The antidepressant-like effects of hesperidin in streptozotocin-induced diabetic rats by activating Nrf2/ARE/glyoxalase 1 pathway. Frontiers in Pharmacology 11:1325. doi: 10.3389/fphar.2020.01325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.