1,660
Views
8
CrossRef citations to date
0
Altmetric
Reviews

A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways

, , , , , & show all

References

  • Abbaspour, N., R. Hurrell, and R. Kelishadi. 2014. Review on iron and its importance for human health. Journal of Research in Medical Sciences 19 (2):164–74.
  • Ashmead, H. D. 1991. Comparative intestinal absorption and subsequent metabolism of metal amino acid chelates and inorganic metal salts. Biological Trace Element Research 445:306–19.
  • Banihashemi, S. A., M. Nikoo, Z. Ghasempour, and A. Ehsani. 2020. Bioactive peptides fractions from traditional Iranian Koopeh cheese; lactic fermentation products. Biocatalysis and Agricultural Biotechnology 29:101798. doi: 10.1016/j.bcab.2020.101798.
  • Bass, J. K., and G. M. Chan. 2006. Calcium nutrition and metabolism during infancy. Nutrition (Burbank, Los Angeles County, CA) 22 (10):1057–66. doi: 10.1016/j.nut.2006.05.014.
  • Bovell-Benjamin, A. C., F. E. Viteri, and L. H. Allen. 2000. Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. The American Journal of Clinical Nutrition 71 (6):1563–9. doi: 10.1093/ajcn/71.6.1563.
  • Buckley, S. T., F. Hubálek, and U. L. Rahbek. 2016. Chemically modified peptides and proteins - critical considerations for oral delivery . Tissue Barriers 4 (2):e1156805. doi: 10.1080/21688370.2016.1156805.
  • Caetano-Silva, M. E., A. Cilla, M. T. Bertoldo-Pacheco, F. M. Netto, and A. Alegría. 2018. Evaluation of in vitro iron bioavailability in free form and as whey peptide-iron complexes. Journal of Food Composition and Analysis 68:95–100. doi: 10.1016/j.jfca.2017.03.010.
  • Caetano-Silva, M. E., F. M. Netto, M. T. Bertoldo-Pacheco, A. Alegría, and A. Cilla. 2021. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Critical Reviews in Food Science and Nutrition 61 (9):1470–89. doi: 10.1080/10408398.2020.1761770.
  • Cai, X., J. Lin, and S. Wang. 2016. Novel peptide with specific calcium-binding capacity from schizochytrium sp. protein hydrolysates and calcium bioavailability in caco-2 cells. Marine Drugs 15 (1):3. doi: 10.3390/md15010003.
  • Charoenphun, N., B. Cheirsilp, N. Sirinupong, and W. Youravong. 2013. Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate. European Food Research and Technology 236 (1):57–63. doi: 10.1007/s00217-012-1860-2.
  • Chen, M., H. Ji, Z. Zhang, X. Zeng, W. Su, and S. Liu. 2019. A novel calcium-chelating peptide purified from Auxis thazard protien hydrolysate and its binding properties with calcium. Journal of Functional Foods 60:103447. doi: 10.1016/j.jff.2019.103447.
  • Chen, D., X. Mu, H. Huang, R. Nie, Z. Liu, and M. Zeng. 2014. Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. Journal of Functional Foods 6 (1):575–84. doi: 10.1016/j.jff.2013.12.001.
  • Choonara, B. F., Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. Du Toit, and V. Pillay. 2014. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnology Advances 32 (7):1269–82. doi: 10.1016/j.biotechadv.2014.07.006.
  • Costello, L. C., R. B. Franklin, M. A. Reynolds, and M. Chellaiah. 2012. The important role of osteoblasts and citrate production in bone formation: "osteoblast citration" as a new concept for an old relationship. The Open Bone Journal 4:27–34.
  • Cui, P., S. Lin, W. Han, P. Jiang, B. Zhu, and N. Sun. 2019. The formation mechanism of a sea cucumber ovum derived heptapeptide-calcium nanocomposite and its digestion/absorption behavior. Food & Function 10 (12):8240–9.
  • Cui, P., S. Lin, Z. Jin, B. Zhu, L. Song, and N. Sun. 2018. In vitro digestion profile and calcium absorption studies of a sea cucumber ovum derived heptapeptide-calcium complex. Food & Function 9 (9):4582–92.
  • Daengprok, W., W. Garnjanagoonchorn, O. Naivikul, P. Pornsinlpatip, K. Issigonis, and Y. Mine. 2003. Chicken eggshell matrix proteins enhance calcium transport in the human intestinal epithelial cells, Caco-2. Journal of Agricultural and Food Chemistry 51 (20):6056–61. doi: 10.1021/jf034261e.
  • de Castro, R. J. S., and H. H. Sato. 2015. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International (Ottawa, ON) 74:185–98. doi: 10.1016/j.foodres.2015.05.013.
  • de la Hoz, L., A. N. Ponezi, R. F. Milani, V. S. Nunes da Silva, A. Sonia de Souza, and M. T. Bertoldo-Pacheco. 2014. Iron-binding properties of sugar cane yeast peptides. Food Chemistry 142:166–9. doi: 10.1016/j.foodchem.2013.06.133.
  • Diaz de Barboza, G., S. Guizzardi, and N. Tolosa de Talamoni. 2015. Molecular aspects of intestinal calcium absorption. World Journal of Gastroenterology 21 (23):7142–54. doi: 10.3748/wjg.v21.i23.7142.
  • Ding, L., L. Wang, T. Zhang, Z. Yu, and J. Liu. 2018. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers. Food Research International 106:475–80. doi: 10.1016/j.foodres.2017.12.080.
  • Eckert, E., L. Lu, L. D. Unsworth, L. Chen, J. Xie, and R. Xu. 2016. Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. Journal of Functional Foods 25:291–301. doi: 10.1016/j.jff.2016.06.011.
  • Faller, P., C. Hureau, P. Dorlet, P. Hellwig, Y. Coppel, F. Collin, and B. Alies. 2012. Methods and techniques to study the bioinorganic chemistry of metal-peptide complexes linked to neurodegenerative diseases. Coordination Chemistry Reviews 256 (19–20):2381–96. doi: 10.1016/j.ccr.2012.03.015.
  • Fang, C. L., Z. Zhuo, S. L. Fang, M. Yue, and J. Feng. 2013. Iron sources on iron status and gene expression of iron related transporters in iron-deficient piglets. Animal Feed Science and Technology 182 (1–4):121–5. doi: 10.1016/j.anifeedsci.2013.03.005.
  • Ferraretto, A., C. Gravaghi, A. Fiorilli, and G. Tettamanti. 2003. Casein-derived bioactive phosphopeptides: Role of phosphorylation and primary structure in promoting calcium uptake by HT-29 tumor cells. FEBS Letters 551 (1–3):92–8. doi: 10.1016/S0014-5793(03)00741-5.
  • Ferraretto, A., A. Signorile, C. Gravaghi, A. Fiorilli, and G. Tettamanti. 2001. Casein phosphopeptides influence calcium uptake by cultured human intestinal HT-29 tumor cells. The Journal of Nutrition 131 (6):1655–61. doi: 10.1093/jn/131.6.1655.
  • Frazer, D., S. Wilkins, C. Vulpe, and G. Anderson. 2005. The role of duodenal cytochrome b in intestinal iron absorption remains unclear. Blood 106 (13):4413–4. doi: 10.1182/blood-2005-07-2923.
  • Fuqua, B. K., C. D. Vulpe, and G. J. Anderson. 2012. Intestinal iron absorption. Journal of Trace Elements in Medicine and Biology : organ of the Society for Minerals and Trace Elements (GMS) 26 (2–3):115–9. doi: 10.1016/j.jtemb.2012.03.015.
  • Gaberc-Porekar, V., and V. Menart. 2001. Perspectives of immobilized-metal affinity chromatography. Journal of Biochemical and Biophysical Methods 49 (1–3):335–60. doi: 10.1016/S0165-022X(01)00207-X.
  • Gao, R., Q. Yu, Y. Shen, Q. Chu, G. Chen, S. Fen, M. Yang, L. Yuan, D. J. McClements, and Q. Sun. 2021. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology 110:687–99. doi: 10.1016/j.tifs.2021.02.031.
  • Gibson, R. S., V. Raboy, and J. C. King. 2018. Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutrition Reviews 76 (11):793–804. doi: 10.1093/nutrit/nuy028.
  • Gilbert, E. R., E. A. Wong, and K. E. Webb. 2008. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. Journal of Animal Science 86 (9):2135–55. doi: 10.2527/jas.2007-0826.
  • Goss, S., J. Prushko, and R. Bogner. 2010. Factors affecting calcium precipitation during neutralisation in a simulated intestinal environment. Journal of Pharmaceutical Sciences 99 (10):4183–91. doi: 10.1002/jps.22131.
  • Guéguen, L., and A. Pointillart. 2000. The bioavailability of dietary calcium. Journal of the American College of Nutrition 19 (2 Suppl):119S–36S. doi: 10.1080/07315724.2000.10718083.
  • Guo, L., P. A. Harnedy, B. Li, H. Hou, Z. Zhang, X. Zhao, and R. J. Fitzgerald. 2014. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science & Technology 37 (2):92–105. doi: 10.1016/j.tifs.2014.02.007.
  • Guo, L., P. A. Harnedy, M. B. O’Keeffe, L. Zhang, B. Li, H. Hou, and R. J. FitzGerald. 2015a. Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry 173:536–42. doi: 10.1016/j.foodchem.2014.10.055.
  • Guo, H., Z. Hong, and R. Yi. 2015b. Core-Shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation. Journal of Food Science 80 (7):N1595–N1601. doi: 10.1111/1750-3841.12912.
  • Guo, L., H. Hu, B. Li, Z. Zhang, S. Wang, and Z. Xue. 2013. Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochemistry 48 (5–6):988–93. doi: 10.1016/j.procbio.2013.04.013.
  • Gupta, R. K., S. S. Gangoliya, and N. K. Singh. 2015. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology 52 (2):676–84. doi: 10.1007/s13197-013-0978-y.
  • Holt, C., P. A. Timmins, N. Errington, and J. Leaver. 1998. A core-shell model of calcium phosphate nanoclusters stabilized by beta-casein phosphopeptides, derived from sedimentation equilibrium and small-angle X-ray and neutron-scattering measurements. European Journal of Biochemistry 252 (1):73–8. doi: 10.1046/j.1432-1327.1998.2520073.x.
  • Hou, T., Y. Liu, D. Guo, B. Li, and H. He. 2017. Collagen peptides from crucian skin improve calcium bioavailability and structural characterization by HPLC-ESI-MS/MS. Journal of Agricultural and Food Chemistry 65 (40):8847–54. doi: 10.1021/acs.jafc.7b03059.
  • Hou, T., C. Wang, Z. Ma, W. Shi, L. Weiwei, and H. He. 2015. Desalted duck egg white peptides: Promotion of calcium uptake and structure characterization. Journal of Agricultural and Food Chemistry 63 (37):8170–6. doi: 10.1021/acs.jafc.5b03097.
  • Hou, H., S. Wang, X. Zhu, Q. Li, Y. Fan, D. Cheng, and B. Li. 2018. A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chemistry 243:389–95. doi: 10.1016/j.foodchem.2017.09.152.
  • Howell, S., A. J. Kenny, and A. J. Turner. 1992. A survey of membrane peptidases in two human colonic cell lines, Caco-2 and HT-29. Biochemical Journal 284 (2):595–601. doi: 10.1042/bj2840595.
  • Huang, G., L. Ren, and J. Jiang. 2011a. Purification of a histidine-containing peptide with calcium binding activity from shrimp processing byproducts hydrolysate. European Food Research and Technology 232 (2):281–7. doi: 10.1007/s00217-010-1388-2.
  • Huang, G., Z. Ren, and J. Jiang. 2011b. Separation of iron-binding peptides from shrimp processing by-products hydrolysates. Food and Bioprocess Technology 4 (8):1527–32. doi: 10.1007/s11947-010-0416-3.
  • Huang, C., C. Wu, J. Yang, Y. Li, and J. Kuo. 2015. Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan. Journal of Food and Drug Analysis 23 (4):671–8. doi: 10.1016/j.jfda.2014.06.009.
  • Huang, S., L. Zhao, X. Cai, S. Wang, Y. Huang, J. Hong, and P. Rao. 2015. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate. The Journal of Dairy Research 82 (1):29–35. doi: 10.1017/S0022029914000715.
  • Hurrell, R. F., M. B. Reddy, M. Juillerat, and J. D. Cook. 2006. Meat protein fractions enhance nonheme iron absorption in humans. The Journal of Nutrition 136 (11):2808–12. doi: 10.1093/jn/136.11.2808.
  • Jung, W. K., and S. K. Kim. 2007. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. European Food Research and Technology 224 (6):763–7. doi: 10.1007/s00217-006-0371-4.
  • Kawahara, M., Y. Kuroda, N. Arispe, and E. Rojas. 2000. Alzheimer’s beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. The Journal of Biological Chemistry 275 (19):14077–83. doi: 10.1074/jbc.275.19.14077.
  • Kellett, G. L. 2011. Alternative perspective on intestinal calcium absorption: Proposed complementary actions of Ca(v)1.3 and TRPV6. Nutrition Reviews 69 (7):347–70. doi: 10.1111/j.1753-4887.2011.00395.x.
  • Khare, E., N. Holten-Andersen, and M. J. Buehler. 2021. Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nature Reviews Materials 6 (5):421–36. doi: 10.1038/s41578-020-00270-z.
  • Krause, G., L. Winkler, C. Piehl, I. Blasig, J. Piontek, and S. L. Müller. 2009. Structure and function of extracellular claudin domains. Annals of the New York Academy of Sciences 1165 (1):34–43. doi: 10.1111/j.1749-6632.2009.04057.x.
  • Lee, Y. S., T. Noguchi, and H. Naito. 1980. Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. The British Journal of Nutrition 43 (3):457–67. doi: 10.1079/bjn19800113.
  • Liao, W., H. Chen, W. Jin, Z. Yang, Y. Cao, and J. Miao. 2020. Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal caco-2 cells. Journal of Agricultural and Food Chemistry 68 (7):2091–8. doi: 10.1021/acs.jafc.9b07602.
  • Liao, W., S. Liu, X. Liu, S. Duan, S. Xiao, Z. Yang, Y. Cao, and J. Miao. 2019. The purification, identification and bioactivity study of a novel calcium-binding peptide from casein hydrolysate. Food & Function 10 (12):7724–32.
  • Li, B., H. He, W. Shi, and T. Hou. 2019. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization. Journal of the Science of Food and Agriculture 99 (4):1834–41. doi: 10.1002/jsfa.9377.
  • Lin, Y., X. Cai, X. Wu, S. Lin, and S. Wang. 2020. Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake. Journal of Functional Foods 65:103717. doi: 10.1016/j.jff.2019.103717.
  • Liu, B., Y. Zhuang, and L. Sun. 2020. Identification and characterization of the peptides with calcium-binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates. Journal of Food Science 85 (1):114–22.
  • Luo, M., J. Xiao, S. Sun, F. Cui, G. Liu, W. Li, Y. Li, and Y. Cao. 2020. Deciphering calcium-binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation. Food & Function 11 (6):5284–92. doi: 10.1039/D0FO00844C.
  • Miao, J., W. Liao, Z. Pan, Q. Wang, S. Duan, S. Xiao, Z. Yang, and Y. Cao. 2019. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food & Function 10 (5):2372–81.
  • Morales, R., M. J. Martinez, and A. M. R. Pilosof. 2020. Iron-caseinglycomacropeptide complexes: Characterization and application in beverages. Food Research International (Ottawa, ON) 138 (Pt A):109772. doi: 10.1016/j.foodres.2020.109772.
  • Moriya, M., and M. C. Linder. 2006. Vesicular transport and apotransferrin in intestinal iron absorption, as shown in the Caco-2 cell model. American Journal of Physiology, Gastrointestinal and Liver Physiology 290 (2):G301–G309. doi: 10.1152/ajpgi.00029.2005.
  • Nara, M., H. Morii, and M. Tanokura. 2013. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Biochimica et Biophysica Acta 1828 (10):2319–27. doi: 10.1016/j.bbamem.2012.11.025.
  • Peng, Z., H. Hou, K. Zhang, and B. Li. 2017. Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats. Food Chemistry 221:373–8. doi: 10.1016/j.foodchem.2016.10.078.
  • Perego, S., S. Cosentino, A. Fiorilli, G. Tettamanti, and A. Ferraretto. 2012. Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium channels. The Journal of Nutritional Biochemistry 23 (7):808–16. doi: 10.1016/j.jnutbio.2011.04.004.
  • Perego, S., A. Zabeo, E. Marasco, P. Giussani, A. Fiorilli, G. Tettamanti, and A. Ferraretto. 2013. Casein phosphopeptides modulate calcium uptake and apoptosis in Caco2 cells through their interaction with the TRPV6 calcium channel. Journal of Functional Foods 5 (2):847–57. doi: 10.1016/j.jff.2013.01.032.
  • Pérez, A. V., G. Picotto, A. R. Carpentieri, M. A. Rivoira, M. E. Peralta López, and N. G. Tolosa de Talamoni. 2008. Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion 77 (1):22–34. doi: 10.1159/000116623.
  • Porath, J. 1990. Amino acid side chain interaction with chelate-liganded crosslinked dextran, agarose and TSK gel. A mini review of recent work. Journal of Molecular Recognition: JMR 3 (3):123–7.
  • Rouault, T. A. 2003. How mammals acquire and distribute iron needed for oxygen-based metabolism. PLoS Biology 1 (3):e79–85. doi: 10.1371/journal.pbio.0000079.
  • Samaranayaka, A. G. P., D. D. Kitts, and E. C. Y. Li-Chan. 2010. Antioxidative and angiotensin-i-converting enzyme inhibitory potential of a pacific hake (merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and caco-2 cell permeation. Journal of Agricultural and Food Chemistry 58 (3):1535–42. doi: 10.1021/jf9033199.
  • Sheriff, M. M., K. Zainab, H. G. Laminu, and A. Maisaratu. 2012. Hydrolysis of gelatinized maize, millet and sorghum starch by amylases of Aspergillus niger. Bioscience Research 9 (2):92–8.
  • Shubham, K., T. Anukiruthika, S. Dutta, A. V. Kashyap, J. A. Moses, and C. Anandharamakrishnan. 2020. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends in Food Science & Technology 99:58–75. doi: 10.1016/j.tifs.2020.02.021.
  • Storcksdieck, S., G. Bonsmann, and R. F. Hurrell. 2007. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. Journal of Food Science 72 (1):S019–S029. doi: 10.1111/j.1750-3841.2006.00229.x.
  • Straub, D. A. 2007. Calcium supplementation in clinical practice: A review of forms, doses, and indications. Nutrition in Clinical Practice: Official Publication of the American Society for Parenteral and Enteral Nutrition 22 (3):286–96. doi: 10.1177/0115426507022003286.
  • Sun, N., P. Cui, Z. Jin, H. Wu, Y. Wang, and S. Lin. 2017b. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chemistry 230:627–36. doi: 10.1016/j.foodchem.2017.03.077.
  • Sun, N., Z. Jin, D. Li, H. Yin, and S. Lin. 2017a. An exploration of the calcium-binding mode of egg white peptide, Asp-His-Thr-Lys-Glu, and in vitro calcium absorption studies of peptide-calcium complex. Journal of Agricultural and Food Chemistry 65 (44):9782–9. doi: 10.1021/acs.jafc.7b03705.
  • Sun, X., R. A. Sarteshnizi, R. T. Boachie, O. D. Okagu, R. O. Abioye, R. Pfeilsticker Neves, I. C. Ohanenye, and C. C. Udenigwe. 2020b. Peptide-mineral complexes: Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods 9 (10):1402. doi: 10.3390/foods9101402.
  • Sun, N., Y. Wang, Z. Bao, P. Cui, S. Wang, and S. Lin. 2020c. Calcium binding to herring egg phosphopeptides: Binding characteristics, conformational structure and intermolecular forces. Food Chemistry 310:125867. doi: 10.1016/j.foodchem.2019.125867.
  • Sun, N., T. Wang, D. Wang, P. Cui, S. Hu, P. Jiang, and S. Lin. 2020a. Antarctic krill derived nonapeptide as an effective iron-binding ligand for facilitating iron absorption via the small intestine. Journal of Agricultural and Food Chemistry 68 (40):11290–300. doi: 10.1021/acs.jafc.0c03223.
  • Sun, N., H. Wu, M. Du, Y. Tang, H. Liu, Y. Fu, and B. Zhu. 2016. Food protein-derived calcium chelating peptides: A review. Trends in Food Science & Technology 58:140–8. doi: 10.1016/j.tifs.2016.10.004.
  • Suzuki, Y., C. P. Landowski, and M. A. Hediger. 2008. Mechanisms and regulation of epithelial Ca2+ absorption in health and disease. Annual Review of Physiology 70 (1):257–71. doi: 10.1146/annurev.physiol.69.031905.161003.
  • Torres-Fuentes, C., M. Alaiz, and J. Vioque. 2012. Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chemistry 134 (3):1585–8. doi: 10.1016/j.foodchem.2012.03.112.
  • Udechukwu, M. C., S. A. Collins, and C. C. Udenigwe. 2016. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food & Function 7 (10):4137–44.
  • Vavrusova, M., and L. H. Skibsted. 2014. Calcium nutrition. Bioavailability and fortification. Lwt - Food Science and Technology 59 (2):1198–204. doi: 10.1016/j.lwt.2014.04.034.
  • Vo, T. D. L., K. T. Pham, L. T. Le, and T. T. H. Nguyen. 2018. Identification of a new calcium-binding peptide from enzymatic proteolysate of Acetes japonicus. Journal of Food Processing and Preservation 42 (12):e13837. doi: 10.1111/jfpp.13837.
  • Wang, L., Y. Ding, X. Zhang, Y. Li, R. Wang, X. Luo, Y. Li, J. Li, and Z. Chen. 2018. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination. Food Chemistry 239:416–26. doi: 10.1016/j.foodchem.2017.06.090.
  • Wang, X., A. Gao, Y. Chen, X. Zhang, S. Li, and Y. Chen. 2017. Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization. Food Chemistry 229:487–94. doi: 10.1016/j.foodchem.2017.02.121.
  • Wang, L., X. Guan, R. Tang, J. R. Hoyer, A. Wierzbicki, J. J. De Yoreo, and G. H. Nancollas. 2008. Phosphorylation of osteopontin is required for inhibition of calcium oxalate crystallization. The Journal of Physical Chemistry. B 112 (30):9151–7. doi: 10.1021/jp804282u.
  • Wang, X., Z. Zhang, H. Xu, X. Li, and X. Hao. 2020. Preparation of sheep bone collagen peptide-calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis. RSC Advances 10 (20):11624–33. doi: 10.1039/D0RA00425A.
  • Wikman-Larhed, A., and P. Artursson. 1995. Co-cultures of human intestinal goblet (HT29-H) and absorptive (Caco-2) cells for studies of drug and peptide absorption. European Journal of Pharmaceutical Sciences 3 (3):171–83. doi: 10.1016/0928-0987(95)00007-Z.
  • Wu, W., L. He, Y. Liang, L. Yue, W. Peng, G. Jin, and M. Ma. 2019. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chemistry 284:80–9. doi: 10.1016/j.foodchem.2019.01.103.
  • Wu, W., B. Li, H. Hou, H. Zhang, and X. Zhao. 2017. Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. Journal of Functional Foods 35:418–27. doi: 10.1016/j.jff.2017.06.013.
  • Wu, H., Z. Liu, Y. Zhao, and M. Zeng. 2012. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Research International 48 (2):435–41. doi: 10.1016/j.foodres.2012.04.013.
  • Xiao, J., X. Li, X. Min, and E. Sakaguchi. 2013. Mannitol improves absorption and retention of calcium and magnesium in growing rats. Nutrition (Burbank, Los Angeles County, Calif.) 29 (1):325–31. doi: 10.1016/j.nut.2012.06.010.
  • Zhang, P., Z. Bao, P. Jiang, S. Zhang, X. Zhang, S. Lin, and N. Sun. 2021e. Nanoliposomes for encapsulation and calcium delivery of egg white peptide-calcium complex. Journal of Food Science 86 (4):1418–31. doi: 10.1111/1750-3841.15677.
  • Zhang, Y., X. Ding, and M. Li. 2021b. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chemistry 349:129101. doi: 10.1016/j.foodchem.2021.129101.
  • Zhang, X., Q. Jia, M. Li, H. Liu, Q. Wang, Y. Wu, L. Niu, and Z. Liu. 2021a. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism. Food Research International (Ottawa, ON) 141:110169. doi: 10.1016/j.foodres.2021.110169.
  • Zhang, J., L. Liang, Z. Tian, L. Chen, and M. Subirade. 2012. Preparation and in vitro evaluation of calcium-induced soy protein isolate nanoparticles and their formation mechanism study. Food Chemistry 133 (2):390–9. doi: 10.1016/j.foodchem.2012.01.049.
  • Zhang, K., B. Li, Q. Chen, Z. Zhang, X. Zhao, and H. Hou. 2018b. Functional calcium binding peptides from pacific cod (gadus macrocephalus) bone: Calcium bioavailability enhancing activity and anti-osteoporosis effects in the ovariectomy-induced osteoporosis rat model. Nutrients 10 (9):1325. doi: 10.3390/nu10091325.
  • Zhang, K., J. Li, H. Hou, H. Zhang, and B. Li. 2019. Purification and characterization of a novel calcium-biding decapeptide from Pacific cod (Gadus Macrocephalus) bone: Molecular properties and calcium chelating modes. Journal of Functional Foods 52:670–9. doi: 10.1016/j.jff.2018.11.042.
  • Zhang, T., Y. Li, M. Miao, and B. Jiang. 2011. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chemistry 128 (1):28–33.
  • Zhang, L., Y. Lin, and S. Wang. 2018a. Purification of algal calcium-chelating peptide and its physical chemical properties. Journal of Aquatic Food Product Technology 27 (4):518–30. doi: 10.1080/10498850.2018.1449153.
  • Zhang, Y., R. Stockmann, K. Ng, and S. Ajlouni. 2021. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review. Comprehensive Reviews in Food Science and Food Safety 20 (1):652–85. doi: 10.1111/1541-4337.12669.
  • Zhang, Y., X. Tian, Y. Jiao, Q. Liu, R. Li, and W. Wang. 2021d. An out of box thinking: The changes of iron-porphyrin during meat processing and gastrointestinal tract and some methods for reducing its potential health hazard. Critical Reviews in Food Science and Nutrition:1–16. doi: 10.1080/10408398.2021.1963946.
  • Zhang, H., L. Zhao, Q. Shen, L. Qi, S. Jiang, Y. Guo, C. Zhang, and A. Richel. 2021c. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. LWT-Food Science and Technology 144:111264. doi: 10.1016/j.lwt.2021.111264.
  • Zhao, L., S. Huang, X. Cai, J. Hong, and S. Wang. 2014b. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. Journal of Functional Foods 10:46–53. doi: 10.1016/j.jff.2014.05.013.
  • Zhao, L., Q. Huang, S. Huang, J. Lin, S. Wang, Y. Huang, G. Hong, and P. Rao. 2014a. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode. Journal of Agricultural and Food Chemistry 62 (42):10274–82. doi: 10.1021/jf502412f.
  • Zhu, B., H. He, D. Guo, M. Zhao, and T. Hou. 2020. Two novel calcium delivery systems fabricated by casein phosphopeptides and chitosan oligosaccharides: Preparation, characterization, and bioactive studies. Food Hydrocolloids 102:105567. doi: 10.1016/j.foodhyd.2019.105567.
  • Zong, H., L. Peng, S. Zhang, Y. Lin, and F. Feng. 2012. Effects of molecular structure on the calcium-binding properties of phosphopeptides. European Food Research and Technology 235 (5):811–6. doi: 10.1007/s00217-012-1809-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.