990
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Feasibility of atmospheric cold plasma for the elimination of food hazards: Recent advances and future trends

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abdul-Malek, Z., U. Roobab, M. A. Munir, A. Naderipour, M. I. Qureshi, A. E. Bekhit, Z. W. Liu, and R. M. Aadil. 2021. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science & Technology 111:43–54. doi: 10.1016/j.tifs.2021.02.041.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 9 (2):137. doi: 10.3390/foods9020137.
  • Ali, M., J. H. Cheng, and D. W. Sun. 2021a. Effect of plasma activated water and buffer solution on fungicide degradation from tomato (Solanum lycopersicum) fruit. Food Chemistry 350:129195. doi: 10.1016/j.foodchem.2021.129195.
  • Ali, M., J. H. Cheng, and D. W. Sun. 2021b. Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science & Technology 56 (1):69–75. doi: 10.1111/ijfs.14600.
  • Alshannaq, A., and J. H. Yu. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health 14 (6):632. doi: 10.3390/ijerph14060632.
  • Alves Filho, E. G., L. M. A. Silva, F. Oiram Filho, S. Rodrigues, F. A. N. Fernandes, M. I. Gallão, C. P. Mattison, and E. S. de Brito. 2019. Cold plasma processing effect on cashew nuts composition and allergenicity. Food Research International (Ottawa, Ont.) 125:108621. doi: 10.1016/j.foodres.2019.108621.
  • Bai, Y. H., J. R. Chen, H. Mu, C. H. Zhang, and B. P. Li. 2009. Reduction of dichlorvos and omethoate residues by O2 plasma treatment. Journal of Agricultural and Food Chemistry 57 (14):6238–45. doi: 10.1021/jf900995d.
  • Bhilwadikar, T., S. Pounraj, S. Manivannan, N. K. Rastogi, and P. S. Negi. 2019. Decontamination of microorganisms and pesticides from fresh fruits and vegetables: A comprehensive review from common household processes to modern techniques. Comprehensive Reviews in Food Science and Food Safety 18 (4):1003–38. doi: 10.1111/1541-4337.12453.
  • Bourke, P., D. Ziuzina, D. Boehm, P. J. Cullen, and K. Keener. 2018. The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology 36 (6):615–26. doi: 10.1016/j.tibtech.2017.11.001.
  • Cong, L. X., M. M. Huang, J. H. Zhang, and W. J. Yan. 2021. Effect of dielectric barrier discharge plasma on the degradation of malathion and chlorpyrifos on lettuce. Journal of the Science of Food and Agriculture 101 (2):424–32. doi: 10.1002/jsfa.10651.
  • Costa, J., S. L. Bavaro, S. Benedé, A. Diaz-Perales, C. Bueno-Diaz, E. Gelencser, J. Klueber, C. Larré, D. Lozano-Ojalvo, R. Lupi, et al. 2020. Are physicochemical properties shaping the allergenic potency of plant allergens? Clinical Reviews in Allergy & Immunology. Advance online publication. doi: 10.1007/s12016-020-08810-9.
  • Costa, J., C. Villa, K. Verhoeckx, T. Cirkovic Velickovic, D. Schrama, P. Roncada, P. M. Rodrigues, C. Piras, L. Martín-Pedraza,·L. Monaci, et al. 2021. Are physicochemical properties shaping the allergenic potency of animal allergens? Clinical Reviews in Allergy & Immunology. Advance online publication. doi: 10.1007/s12016-020-08826-1.
  • Devi, Y., R. Thirumdas, C. Sarangapani, R. R. Deshmukh, and U. S. Annapure. 2017. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control 77:187–91. doi: 10.1016/j.foodcont.2017.02.019.
  • Dinakar, C. 2012. Anaphylaxis in children: current understanding and key issues in diagnosis and treatment. Current Allergy and Asthma Reports 12 (6):641–9. doi:10.1007/s11882-012-0284-1. PMID: 22815131
  • Dorraki, N., V. Mahdavi, H. Ghomi, and A. Ghasempour. 2016. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma. Biointerphases 11 (4):041007. doi: 10.1116/1.4971382.
  • Durek, J., O. Schlüter, A. Roscher, P. Durek, and A. Fröhling. 2018. Inhibition or Stimulation of ochratoxin a synthesis on inoculated barley triggered by diffuse coplanar surface barrier discharge plasma. Frontiers in Microbiology 9:2782. doi: 10.3389/fmicb.2018.02782.
  • Ekezie, F. G. C., J. H. Cheng, and D. W. Sun. 2018. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends in Food Science & Technology 74:12–25. doi: 10.1016/j.tifs.2018.01.007.
  • Ekezie, F. G. C., D. W. Sun, and J. H. Cheng. 2019. Altering the IgE binding capacity of king prawn (Litopenaeus Vannamei) tropomyosin through conformational changes induced by cold argon-plasma jet. Food Chemistry 300:125143. doi: 10.1016/j.foodchem.2019.125143.
  • Feizollahi, E., B. Iqdiam, T. Vasanthan, M. S. Thilakarathna, and M. S. Roopesh. 2020. Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Applied Sciences 10 (10):3530. doi: 10.3390/app10103530.
  • Feizollahi, E., R. S. Mirmahdi, A. Zoghi, R. T. Zijlstra, M. S. Roopesh, and T. Vasanthan. 2021. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products. Food Research International (Ottawa, ON) 143:110284. doi: 10.1016/j.foodres.2021.110284.
  • Feng, X. X., X. Ma, H. X. Liu, J. Z. Xie, C. He, and R. Fan. 2019. Argon plasma effects on maize: Pesticide degradation and quality changes. Journal of the Science of Food and Agriculture 99 (12):5491–8. doi: 10.1002/jsfa.9810.
  • Gavahian, M., and P. J. Cullen. 2020. Cold plasma as an emerging technique for mycotoxin-free food: Efficacy, mechanisms, and trends. Food Reviews International 36 (2):193–214. doi: 10.1080/87559129.2019.1630638.
  • Gonçalves, B. L., C. F. S. C. Coppa, D. V. de Neeff, C. H. Corassin, and C. A. F. Oliveira. 2019. Mycotoxins in fruits and fruit-based products: Occurrence and methods for decontamination. Toxin Reviews 38 (4):263–72. doi: 10.1080/15569543.2018.1457056.
  • Hajnal, E. J., M. Vukić, L. Pezo, D. Orčić, N. Puač, N. Škoro, A. Milidrag, and D. S. Simović. 2019. Effect of atmospheric cold plasma treatments on reduction of alternaria toxins content in wheat flour. Toxins 11 (12):704. doi: 10.3390/toxins11120704.
  • He, J., N. M. Evans, H. Z. Liu, Y. Zhu, T. Zhou, and S. Q. Shao. 2021. UV treatment for degradation of chemical contaminants in food: A review. Comprehensive Reviews in Food Science and Food Safety 20 (2):1857–86. doi: 10.1111/1541-4337.12698.
  • Heo, N. S., M. K. Lee, G. W. Kim, S. J. Lee, J. Y. Park, and T. J. Park. 2014. Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments. Journal of Bioscience and Bioengineering 117 (1):81–5. doi: 10.1016/j.jbiosc.2013.06.007.
  • Hojnik, N., U. Cvelbar, G. Tavčar-Kalcher, J. L. Walsh, and I. Križaj. 2017. Mycotoxin Decontamination of food: Cold atmospheric pressure plasma versus “classic” decontamination. Toxins 9 (5):151. doi: 10.3390/toxins9050151.
  • Hojnik, N., M. Modic, J. L. Walsh, D. Žigon, U. Javornik, J. Plavec, B. Žegura, M. Filipič, and U. Cvelbar. 2021a. Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. Journal of Hazardous Materials 403:123593. doi: 10.1016/j.jhazmat.2020.123593.
  • Hojnik, N., M. Modic, D. Žigon, J. Kovač, A. Jurov, A. Dickenson, Walsh, J. L. and U. Cvelbar. 2021b. Cold atmospheric pressure plasma-assisted removal of aflatoxin B1 from contaminated corn kernels. Plasma Processes and Polymers 18 (1):2000163. doi: 10.1002/ppap.202000163.
  • Hu, Y. M., Y. H. Bai, X. J. Li, and J. R. Chen. 2013b. Application of dielectric barrier discharge plasma for degradation and pathways of dimethoate in aqueous solution. Separation and Purification Technology 120:191–7. doi: 10.1016/j.seppur.2013.10.005.
  • Hu, Y. M., Y. H. Bai, H. Yu, C. H. Zhang, and J. R. Chen. 2013a. Degradation of selected organophosphate pesticides in wastewater by dielectric barrier discharge plasma. Bulletin of Environmental Contamination and Toxicology 91 (3):314–9. doi: 10.1007/s00128-013-1048-x.
  • Iqdiam, B. M., E. Feizollahi, M. F. Arif, B. Jeganathan, T. Vasanthan, M. S. Thilakarathna, and M. S. Roopesh. 2021. Reduction of T-2 and HT-2 mycotoxins by atmospheric cold plasma and its impact on quality changes and germination of wheat grains. Journal of Food Science 86 (4):1354–71. doi: 10.1111/1750-3841.15658.
  • Iqdiam, B. M., O. Manal, A. Z. Boz, S. M. Marshall, R. Goodrich‐Schneider, C. A. Sims, M. R. Marshall, A. J. MacIntosh, and B. A. Welt. 2020. Effects of atmospheric pressure plasma jet treatment on aflatoxin level, physiochemical quality, and sensory attributes of peanuts. Journal of Food Processing and Preservation 44 (1):e14305. doi: 10.1111/jfpp.14305.
  • Iweala, O. I., S. K. Choudhary, and S. P. Commins. 2018. Food allergy. Current Gastroenterology Reports 20 (5):17. doi: 10.1007/s11894-018-0624-y.
  • Ji, C. G., F. Svensson, A. Zoufir, and A. Bender. 2018. eMolTox: Prediction of molecular toxicity with confidence. Bioinformatics (Oxford, England) 34 (14):2508–9. doi: 10.1093/bioinformatics/bty135.
  • Jose, J., and L. Philip. 2019. Degradation of chlorobenzene in aqueous solution by pulsed power plasma: Mechanism and effect of operational parameters. Journal of Environmental Chemical Engineering 7 (6):103476. doi: 10.1016/j.jece.2019.103476.
  • Kiš, M., S. Milošević, A. Vulić, Z. Herceg, T. Vukušić, and J. Pleadin. 2020. Efficacy of low pressure DBD plasma in the reduction of T-2 and HT-2 toxin in oat flour. Food Chemistry 316:126372. doi: 10.1016/j.foodchem.2020.126372.
  • Koszucka, A., and A. Nowak. 2019. Thermal processing food-related toxicants: A review. Critical Reviews in Food Science and Nutrition 59 (22):3579–96. doi: 10.1080/10408398.2018.1500440.
  • Langmuir, I. 1928. Oscillations in ionized gases. Proceedings of the National Academy of Sciences of the United States of America 14 (8):627–37. doi: 10.1073/pnas.14.8.627.
  • Laroussi, M., X. Lu, and M. Keidar. 2017. The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine featured. Journal of Applied Physics 122 (2):020901. doi: 10.1063/1.4993710.
  • Li, J. G., Q. S. Xiang, X. F. Liu, T. Ding, X. S. Zhang, Y. F. Zhai, and Y. H. Bai. 2017. Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma. Food Chemistry 232:515–22. doi: 10.1016/j.foodchem.2017.03.167.
  • Liu, J., L. Y. Bai, Y. F. Duan, S. L. Zhao, T. F. Huang, Z. K. Luo, and M. Hua. 2020. Continuous generation of HgCl2 by DBD nonthermal plasma. Part I: Influences of the DBD reactor structure and operational parameters. Industrial & Engineering Chemistry Research 59 (30):13396–405. doi: 10.1021/acs.iecr.0c02466.
  • Liu, Z.W., L.J. Liu, Y.X. Zhou, Y.C. Tan, J.H. Cheng, A. E.D. Bekhit, M. Inam-Ur-Raheem, and R. M. Aadil. 2021b. Dielectric-barrier discharge (DBD) plasma treatment reduces IgG binding capacity of β-lactoglobulin by inducing structural changes. Food Chemistry 358:129821. doi: 10.1016/j.foodchem.2021.129821.
  • Liu, Z. W., D. B. Niu, Y. X. Zhou, J. H. Cheng, A. E. Bekhit, and R. M. Aadil. 2021a. Oxidation induced by dielectric-barrier discharge (DBD) plasma treatment reduces soybean agglutinin activity. Food Chemistry 340:128198. doi: 10.1016/j.foodchem.2020.128198.
  • Liu, C. Q., and S. K. Sathe. 2018. Food allergen epitope mapping. Journal of Agricultural and Food Chemistry 66 (28):7238–48. doi: 10.1021/acs.jafc.8b01967.
  • Lu, P., D. Boehm, P. Bourke, and P. J. Cullen. 2017. Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Processes and Polymers 14 (8):1600207. doi: 10.1002/ppap.201600207.
  • Massima Mouele, E. S., J. O. Tijani, M. Masikini, O. O. Fatoba, C. P. Eze, C. T. Onwordi, M. T. Zar Myint, H. H. Kyaw, J. Al-Sabahi, M. Al-Abri, et al. 2020. Spectroscopic measurements of dissolved O3, H2O2 and OH radicals in double cylindrical dielectric barrier discharge technology: Treatment of methylene blue dye simulated wastewater. Plasma 3 (2):59–91. doi: 10.3390/plasma3020007.
  • Mayr, A., G. Klambauer, T. Unterthiner, and S. Hochreiter. 2016. DeepTox: Toxicity prediction using deep learning. Frontiers in Environmental Science 3:80. doi: 10.3389/fenvs.2015.00080.
  • Meinlschmidt, P., E. Ueberham, J. Lehmann, K. Reineke, O. Schlüter, U. Schweiggert-Weisz, and P. Eisner. 2016. The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science & Emerging Technologies 38 (Part B):374–83. doi: 10.1016/j.ifset.2016.06.007.
  • Misra, N. N., S. K. Pankaj, T. Walsh, F. O’Regan, P. Bourke, and P. J. Cullen. 2014. In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of Hazardous Materials 271:33–40. doi: 10.1016/j.jhazmat.2014.02.005.
  • Mitrović, T., S. Lazović, B. Nastasijević, I. A. Pašti, V. Vasić, and T. Lazarević-Pašti. 2019. Non-thermal plasma needle as an effective tool in dimethoate removal from water. Journal of Environmental Management 246:63–70. doi: 10.1016/j.jenvman.2019.05.143.
  • Mousavi, S. M., S. Imani, D. Dorranian, K. Larijani, and M. Shojaee. 2016. Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products. Journal of Plant Protection Research 57 (1):25–35. doi: 10.1111/jfs.12532.
  • Moutiq, R., S. K. Pankaj, Z. F. Wan, A. Mendonca, K. Keener, and N. N. Misra. 2020. Atmospheric pressure cold plasma as a potential technology to degrade carbamate residues in water. Plasma Chemistry and Plasma Processing 40 (5):1291–309. doi: 10.1007/s11090-020-10093-z.
  • Napartovich, A. P. 2001. Overview of atmospheric pressure discharges producing nonthermal plasma. Plasmas and Polymers 6 (1/2):1–14. doi: 10.1023/A:1011313322430.
  • Nehra, V., A. Kumar, and H. K. Dwivedi. 2008. Atmospheric non-thermal plasma sources. International Journal of Engineering 2 (1):53–68.
  • Ng, S. W., P. Lu, A. Rulikowska, D. Boehm, G. O’Neill, and P. Bourke. 2021. The effect of atmospheric cold plasma treatment on the antigenic properties of bovine milk casein and whey proteins. Food Chemistry 342:128283. doi: 10.1016/j.foodchem.2020.128283.
  • Nicolopoulou-Stamati, P., S. Maipas, C. Kotampasi, P. Stamatis, and L. Hens. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health 4:148. doi: 10.3389/fpubh.2016.00148.
  • Nikmaram, N., and K. A. Rosentrater. 2019. Overview of some recent advances in improving water and energy efficiencies in food processing factories. Frontiers in Nutrition 6:20. doi: 10.3389/fnut.2019.00020.
  • Nishimwe, K., I. Agbemafle, M. B. Reddy, K. Keener, and D. E. Maier. 2021. Cytotoxicity assessment of aflatoxin B1 after high voltage atmospheric cold plasma treatment. Toxicon 194:17–22. doi: 10.1016/j.toxicon.2021.02.008.
  • Nooji, J. K. 2011. Reduction of wheat allergen potency by pulsed ultraviolet light, high hydrostatic pressure. and non-thermal plasma MS thesis., University of Florida, 106.
  • Ouf, S. A., A. H. Basher, and A. A. H. Mohamed. 2015. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. Journal of the Science of Food and Agriculture 95 (15):3204–10. doi: 10.1002/jsfa.7060.
  • Ozkan, A., T. Dufour, A. Bogaerts, and F. Reniers. 2016. How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD? Plasma Sources Science and Technology 25 (4):045016. doi: 10.1088/0963-0252/25/4/045016.
  • Pankaj, S. K., Z. Wan, and K. M. Keener. 2018. Effects of cold plasma on food quality: A review. Foods 7 (1):4. doi: 10.3390/foods7010004.
  • Patil, S., T. Moiseev, N. N. Misra, P. J. Cullen, J. P. Mosnier, K. M. Keener, and P. Bourke. 2014. Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package. The Journal of Hospital Infection 88 (3):162–9. doi: 10.1016/j.jhin.2014.08.009.
  • Patil, B. S., Q. Wang, V. Hessel, and J. Lang. 2015. Plasma N2-fixation: 1900–2014. Catalysis Today 256 (Part 1):49–66. doi: 10.1016/j.cattod.2015.05.005.
  • Phan, K. T. K., H. T. Phan, D. Boonyawan, P. Intipunya, C. S. Brennan, J. M. Regenstein, and Y. Phimolsiripol. 2018. Non-thermal plasma for elimination of pesticide residues in mango. Innovative Food Science & Emerging Technologies 48:164–71. doi: 10.1016/j.ifset.2018.06.009.
  • Pretty, J., and Z. P. Bharucha. 2015. Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6 (1):152–82. doi: 10.3390/insects6010152.
  • Puligundla, P., T. Lee, and C. Mok. 2020. Effect of corona discharge plasma jet treatment on the degradation of aflatoxin B1 on glass slides and in spiked food commodities. LWT-Food Science and Technology 124:108333. doi: 10.1016/j.lwt.2019.108333.
  • Ranjitha Gracy, T. K., V. Gupta, and R. Mahendran. 2019a. Influence of low-pressure nonthermal dielectric barrier discharge plasma on chlorpyrifos reduction in tomatoes. Journal of Food Process Engineering 42 (6):1–16. doi: 10.1111/jfpe.13242.
  • Ranjitha Gracy, T. K., V. Gupta, and R. Mahendran. 2019b. Effect of plasma activated water (PAW) on chlorpyrifos reduction in tomatoes. International Journal of Chemical Studies 7 (3):5000–6.
  • Ranjitha Gracy, T. K., P. S. Sharanyakanth, and R. Mahendran. 2020. Non-thermal technologies: Solution for hazardous pesticides reduction in fruits and vegetables. Critical Reviews in Food Science and Nutrition. Advance online publication. doi: 10.1080/10408398.2020.1847029.
  • Rather, I. A., W. Y. Koh, W. K. Paek, and J. Lim. 2017. The sources of chemical contaminants in food and their health implications. Frontiers in Pharmacology 8:830. doi: 10.3389/fphar.2017.00830.
  • Rezaei, F., P. Vanraes, A. Nikiforov, R. Morent, and N. D. Geyter. 2019. Applications of plasma-liquid systems: A review. Materials 12 (17):2751. doi: 10.3390/ma12172751.
  • Roychaudhuri, R., G. Sarath, M. Zeece, and J. Markwell. 2004. Stability of the allergenic soybean Kunitz trypsin inhibitor. Biochimica et Biophysica Acta 1699 (1–2):207–12. doi: 10.1016/j.bbapap.2004.02.014.
  • Sadhu, S., R. Thirumdas, R. R. Deshmukh, and U. S. Annapure. 2017. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiate). LWT-Food Science and Technology 78:97–104. doi: 10.1016/j.lwt.2016.12.026.
  • Sakudo, A., Y. Toyokawa, T. Misawa, and Y. Imanishi. 2017. Degradation and detoxification of aflatoxin B1 using nitrogen gas plasma generated by a static induction thyristor as a pulsed power supply. Food Control 73:619–26. doi: 10.1016/j.foodcont.2016.09.014.
  • Salari, M., G. R. Rakhshandehroo, and M. R. Nikoo. 2018. Multi-objective optimization of ciprofloxacin antibiotic removal from an aqueous phase with grey Taguchi method. Journal of Water and Health 16 (4):530–41. doi: 10.2166/wh.2018.247.
  • Samtiya, M., R. E. Aluko, and T. Dhewa. 2020. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Production, Processing and Nutrition 2 (1):6. doi: 10.1186/s43014-020-0020-5.
  • Sarangapani, C., Y. Dixit, V. Milosavljevic, P. Bourke, C. Sullivan, and P. J. Cullen. 2017b. Optimization of atmospheric air plasma for degradation of organic dyes in wastewater. Water Science and Technology 75 (1):207–19. doi: 10.2166/wst.2016.471.
  • Sarangapani, C., N. N. Misra, V. Milosavljevic, P. Bourke, F. O’Regan, and P. J. Cullen. 2016. Engineering pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering 9:225–32. doi: 10.1016/j.jwpe.2016.01.003.
  • Sarangapani, C., G. O’Toole, P. J. Cullen, and P. Bourke. 2017a. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies 44:235–41. doi: 10.1016/j.ifset.2017.02.012.
  • Sarangapani, C., L. Scally, M. Gulan, and P. J. Cullen. 2020. Dissipation of pesticide residues on grapes and strawberries using plasma-activated water. Food and Bioprocess Technology 13 (10):1728–41. doi: 10.1007/s11947-020-02515-9.
  • Sawangrat, C., K. Leksakul, D. Bonyawan, T. Anantana, and S. Jomjunyong. 2019. Decontamination of pesticide residues on tangerine fruit using non-thermal plasma technology. IOP Conference Series: Earth and Environmental Science 347:012048. doi: 10.1088/1755-1315/347/1/012048.
  • Sen, Y., B. Onal-Ulusoy, and M. Mutlu. 2019. Detoxification of hazelnuts by different cold plasmas and gamma irradiation treatments. Innovative Food Science & Emerging Technologies 54:252–9. doi: 10.1016/j.ifset.2019.05.002.
  • Shi, H., B. Cooper, R. L. Stroshine, K. E. Ileleji, and K. M. Keener. 2017a. Structures of degradation products and degradation pathways of aflatoxin B1 by high-voltage atmospheric cold plasma (HVACP) treatment. Journal of Agricultural and Food Chemistry 65 (30):6222–30. doi: 10.1021/acs.jafc.7b01604.
  • Shi, H., K.E. Ileleji, R. L. Stroshine, K. M. Keener, and J. L. Jensen. 2017b. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology 10 (6):1042–52. doi: 10.1007/s11947-017-1873-8.
  • Shi, X. M., J. R. Liu, G. M. Xu, Y. M. Wu, L. G. Gao, X. Y. Li, Y. Yang, and G. J. Zhang. 2018. Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach. Plasma Science and Technology 20 (4):044004. doi: 10.1088/2058-6272/aa9b78.
  • Shriver, S. K. 2011. Effect of selected nonthermal processing methods on the allergen reactivity of Atlantic white shrimp (Litopenaeus setiferus). MS thesis., University of Florida, 119.
  • Sicherer, S. H., and H. A. Sampson. 2018. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. The Journal of Allergy and Clinical Immunology 141 (1):41–58. doi: 10.1016/j.jaci.2017.11.003.
  • Siciliano, I., D. Spadaro, A. Prelle, D. Vallauri, M. C. Cavallero, A. Garibaldi, and M. L. Gullino. 2016. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 8 (5):125. doi: 10.3390/toxins8050125.
  • Singh, R. K., L. Philip, and S. Ramanujam. 2016. Rapid removal of carbofuran from aqueous solution by pulsed corona discharge treatment: Kinetic study, oxidative, reductive degradation pathway, and toxicity assay. Industrial & Engineering Chemistry Research 55 (26):7201–9. doi: 10.1021/acs.iecr.6b01191.
  • Singh, R. K., L. Philip, and S. Ramanujam. 2017. Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay. Chemosphere 184:207–14. doi: 10.1016/j.chemosphere.2017.05.134.
  • Tammineedi, C. V. R. K., R. Choudhary, G. C. Perez-Alvarado, and D. G. Watson. 2013. Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. Lwt - Food Science and Technology 54 (1):35–41. doi: 10.1016/j.lwt.2013.05.020.
  • Ten Bosch, L., K. Pfohl, G. Avramidis, S. Wieneke, W. Viöl, and P. Karlovsky. 2017. Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins 9 (3):97. doi: 10.3390/toxins9030097.
  • Toyokawa, Y., Y. Yagyu, R. Yamashiro, K. Ninomiya, and A. Sakudo. 2018. Roller conveyer system for the reduction of pesticides using non-thermal gas plasma–A potential food safety control measure? Food Control 87:211–7. doi: 10.1016/j.foodcont.2017.12.030.
  • Venkataratnam, H., O. Cahill, C. Sarangapani, P. J. Cullen, and C. Barry-Ryan. 2020. Impact of cold plasma processing on major peanut allergens. Scientific Reports 10 (1):17038. doi: 10.1038/s41598-020-72636-w.
  • Venkataratnam, H., C. Sarangapani, O. Cahill, and C. Barry-Ryan. 2019. Effect of cold plasma treatment on the antigenicity of peanut allergen Ara h1. Innovative Food Science & Emerging Technologies 52:368–75. doi: 10.1016/j.ifset.2019.02.001.
  • Verhoeckx, K. C. M., Y. M. Vissers, J. L. Baumert, R. Faludi, M. Feys, S. Flanagan, C. Herouet-Guicheney, T. Holzhauser, R. Shimojo, N. van der Bolt, et al. 2015. Food processing and allergenicity. Food and Chemical Toxicology 80:223–40. doi: 10.1016/j.fct.2015.03.005.
  • Vojdani, A.. 2015. Lectins, agglutinins, and their roles in autoimmune reactivities. Alternative Therapies in Health and Medicine 21(Suppl 1):46–51.
  • Wang, X. Y., S. H. Wang, Y. Z. Yan, W. J. Wang, L. H. Zhang, and W. Zong. 2020. The degradation of Alternaria mycotoxins by dielectric barrier discharge cold plasma. Food Control 117:107333. doi: 10.1016/j.foodcont.2020.107333.
  • Wang, F., F. Xie, X. F. Xue, Z. D. Wang, B. Fan, and Y. M. Ha. 2011. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B1 in methanol-water solution. Journal of Hazardous Materials 192 (3):1192–202. doi: 10.1016/j.jhazmat.2011.06.027.
  • Wende, K., T. von Woedtke, K. D. Weltmann, and S. Bekeschus. 2018. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biological Chemistry 400 (1):19–38. doi: 10.1515/hsz-2018-0242.
  • WHO. 2020. Food safety. Accessed July 26, 2021. https://www.who.int/news-room/fact-sheets/detail/food-safety.
  • Wielogorska, E., Y. Ahmed, J. Meneely, W. G. Graham, C. T. Elliott, and B. F. Gilmore. 2019. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chemistry 301:125281. doi: 10.1016/j.foodchem.2019.125281.
  • Wu, Y., J. H. Cheng, and D. W. Sun. 2021. Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology 109:647–61. doi: 10.1016/j.tifs.2021.01.053.
  • Xiang, Q. S., L. M. Fan, Y. F. Li, S. S. Dong, K. Li, and Y. H. Bai. 2020. A review on recent advances in plasma-activated water for food safety: Current applications and future trends. Critical Reviews in Food Science and Nutrition. Advance online publication. doi: 10.1080/10408398.2020.1852173.
  • Xie, J. Z., H. X. Liu, X. X. Feng, and X. Ma. 2020. Degradation of chlorpyrifos on maie surface by argon plasma. Journal of Xi’an Jiaotong University 54 (3):113–8 + 178. doi: 10.7652/xjtuxb202003014.(In Chinese with English abstract)
  • Xue, M. M., T. C. Wang, Q. H. Sun, G. Z. Qu, H. Z. Jia, and L. Y. Zhu. 2021. Insights into the highly efficient detoxification of the biotoxin patulin in water by discharge plasma oxidation. Chemical Engineering Journal 411:128432. doi: 10.1016/j.cej.2021.128432.
  • Yousefi, M., M. A. Mohammadi, M. Z. Khajavi, A. Ehsani, and V. Scholtz. 2021. Application of novel non-thermal physical technologies to degrade mycotoxins. Journal of Fungi 7 (5):395. doi: 10.3390/jof7050395.
  • Zhang, Q. Z., Z. Z. Cheng, J. H. Zhang, M. M. Nasiru, Y. B. Wang, and L. L. Fu. 2021. Atmospheric cold plasma treatment of soybean protein isolate: Insights into the structural, physicochemical, and allergenic characteristics. Journal of Food Science 86 (1):68–77. doi: 10.1111/1750-3841.15556.
  • Zheng, Y. P., S. J. Wu, J. Dang, S. F. Wang, Z. X. Liu, J. Fang, P. Han, and J. Zhang. 2019. Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. Journal of Hazardous Materials 377:98–105. doi: 10.1016/j.jhazmat.2019.05.058.
  • Zhou, R. W., R. S. Zhou, F. Yu, D. K. Xi, P. Y. Wang, J. W. Li, X. Q. Wang, X. H. Zhang, K. Bazaka, and K. Ostrikov. 2018. Removal of organophosphorus pesticide residues from Lycium barbarum by gas phase surface discharge plasma. Chemical Engineering Journal 342:401–9. doi: 10.1016/j.cej.2018.02.107.
  • Zhou, R. W., R. S. Zhou, J. X. Zhuang, Z. C. Zong, X. H. Zhang, D. P. Liu, K. Bazaka, and K. Ostrikov. 2016. Interaction of atmospheric-pressure air microplasmas with amino acids as fundamental processes in aqueous solution. PLoS One 11 (5):e0155584. doi: 10.1371/journal.pone.0155584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.