1,217
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Cold plasma enhanced natural edible materials for future food packaging: structure and property of polysaccharides and proteins-based films

, ORCID Icon, &

References

  • Ahmadi, E., S. Sareminezhad, and M. H. Azizi. 2011. The effect of ultrasound treatment on some properties of methylcellulose films. Food Hydrocolloids. 25 (5):1399–401. doi: 10.1016/j.foodhyd.2010.08.015.
  • Almasi, H., B. Ghanbarzadeh, and A. A. Entezami. 2010. Physicochemical properties of starch-CMC-nanoclay biodegradable films. International Journal of Biological Macromolecules 46 (1):1–5.
  • Andrade, C. T., R. A. Simao, R. M. S. M. Thire, and C. A. Achete. 2005. Surface modification of maize starch films by low-pressure glow 1-butene plasma. Carbohydrate Polymers 61 (4):407–13. doi: 10.1016/j.carbpol.2005.05.001.
  • Ansorena, M. R., M. Pereda, and N. E. Marcovich. 2018. Edible Films. In T. J. Gutiérrez (Ed.), Polymers for Food Applications, 5–24. Cham: Springer International Publishing.
  • Arolkar, G. A., M. J. Salgo, V. Kelkar-Mane, and R. R. Deshmukh. 2015. The study of air-plasma treatment on corn starch/poly(ε-caprolactone) films. Polymer Degradation and Stability 120 (3):262–72. doi: 10.1016/j.polymdegradstab.2015.07.016.
  • Bagheri, F., M. Radi, and S. Amiri. 2019. Drying conditions highly influence the characteristics of glycerol-plasticized alginate films. Food Hydrocolloids. 90:162–71. doi: 10.1016/j.foodhyd.2018.12.001.
  • Beikzadeh, S., M. Ghorbani, N. Shahbazi, F. Izadi, Z. Pilevar, and A. M. Mortazavian. 2020. The effects of novel thermal and nonthermal technologies on the properties of edible food packaging. Food Engineering Reviews 12 (3):333–45. doi: 10.1007/s12393-020-09227-y.
  • Bogaerts, A., E. Neyts, R. Gijbels, and J. van der Mullen. 2002. Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy 57 (4):609–58. doi: 10.1016/S0584-8547(01)00406-2.
  • Cárdenas, G., J. Díaz, M. F. Meléndrez, and C. Cruzat. 2008. Physicochemical properties of edible films from chitosan composites obtained by microwave heating. Polymer Bulletin 61 (6):737–48. doi: 10.1007/s00289-008-0994-7.
  • Chaiwong, C.,. P. Rachtanapun, P. Wongchaiya, R. Auras, and D. Boonyawan. 2010. Effect of plasma treatment on hydrophobicity and barrier property of polylactic acid. Surface and Coatings Technology 204 (18/19):2933–9. doi: 10.1016/j.surfcoat.2010.02.048.
  • Chamchoi, N., K. Teanchai, S. Kongsriprapan, A. Choeysuppaket, and W. Siriprom. 2018. The surface modification by cold argon plasma jet on the biodegradable films from Perna Viridis shell. Materials Taday: Proceedings 5 (6):13904–8.
  • Chang, S. H., and C. H. Chian. 2013. Plasma surface modification effects on biodegradability and protein adsorption properties of chitosan films. Applied Surface Science 282:735–40. doi: 10.1016/j.apsusc.2013.06.044.
  • Chen, Y.-Q., J.-H. Cheng, and D.-W. Sun. 2019a. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition 60 (16):2676–90.
  • Chen, G. Y., S. Dong, S. Zhao, S. H. Li, and Y. Chen. 2019b. Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Industrial Crops and Products 129:318–26. doi: 10.1016/j.indcrop.2018.11.072.
  • Cheng, J.-H., X. Y. Lv, Y. Y. Pan, and D., -W. Sun. 2020. Foodborne bacterial stress responses to exogenous reactive oxygen species (ROS) induced by cold plasma treatments. Trends in Food Science & Technology 103:239–47. doi: 10.1016/j.tifs.2020.07.022.
  • Ciannamea, E. M., P. M. Stefani, and R. A. Ruseckaite. 2014. Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocolloids. 38:193–204. doi: 10.1016/j.foodhyd.2013.12.013.
  • Cui, N. Y., D. J. Upadhyay, C. A. Anderson, B. J. Meenan, and N. Brown. 2007. Surface oxidation of a Melinex 800 PET polymer material modifified by an atmospheric dielectric barrier discharge studied using X-ray photoelectron spectroscopy and contact angle measurement. Applied Surface Science 253 (8):3865–71. doi: 10.1016/j.apsusc.2006.08.008.
  • Cui, H. Y., X. J. Yang, M. Abdel-Samie, and L. Lin. 2020. Cold plasma treated phlorotannin/Momordica charantia polysaccharide nanofiber for active food packaging. Carbohydrate Polymers 239:116214.
  • de Albuquerque, M. D. F., D. C. Bastos, and R. A. Simao. 2014. Surface modification of starch films by plasma. Macromolecular Symposia 343 (1):96–101. doi: 10.1002/masy.201300199.
  • Dehghani, S., S. V. Hosseini, and J. M. Regenstein. 2018. Edible films and coatings in seafood preservation: A review. Food Chemistry 240:505–13.
  • Desmet, T., R. Morent, N. De Geyter, C. Leys, E. Schacht, and P. Dubruel. 2009. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules 10 (9):2351–78.
  • Dong, S., A. Gao, Y. Zhao, Y. T. Li, and Y. Chen. 2017. Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food & Bioproducts Processing. Transactions of the Institution of Chemical Engineers Part C 106:65–74.
  • Ekezie, F.-G C., J.-H. Cheng, and D.-W. Sun. 2017. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology 69 (Part A):46–58. doi: 10.1016/j.tifs.2017.08.007.
  • Erginkaya, Z., S. Kalkan, and E. Unal. 2014. Use of antimicrobial edible films and coatings as packaging materials for food safety. In: Malik, A., Erginkaya, Z., Ahmad, S., Erten, H. (Eds.). Food Processing: Strategies for Quality Assessment. New York: Food Engineering Series.
  • Fonseca-Garcia, A., E. J. Jimenez-Regalado, and R. Y. Aguirre-Loredo. 2021. Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers. Carbohydrate Polymers 251:117009.
  • Gómez-Estaca, J., R. Gavara, R. Catalá, and P. Hernández-Muñoz. 2016. The potential of proteins for producing food packaging materials: A review. Packaging Technology and Science 29 (4-5):203–24. doi: 10.1002/pts.2198.
  • Gouveia, T. I. A., K. Biernacki, M. C. R. Castro, M. P. Goncalves, and H. K. S. Souza. 2019. A new approach to develop biodegradable films based on thermoplastic pectin. Food Hydrocolloids. 97:105175. doi: 10.1016/j.foodhyd.2019.105175.
  • Guillard, V., M. Mauricio-Iglesias, and N. Gontard. 2010. Effect of novel food processing methods on packaging: Structure, composition, and migration properties. Critical Reviews in Food Science and Nutrition 50 (10):969–88. doi: 10.1080/10408390903001768.
  • Hammann, F., and M. Schmid. 2014. Determination and quantification of molecular interactions in protein films: A review. Materials (Basel, Switzerland) 7 (12):7975–96. doi: 10.3390/ma7127975.
  • Han, Y. X., J. H. Cheng, and D.-W. Sun. 2019. Activities and conformation changes of food enzymes induced by cold plasma: A review. Critical Reviews in Food Science and Nutrition 59 (5):794–811. doi: 10.1080/10408398.2018.1555131.
  • Hanani, Z. A. N., Y. H. Roos, and J. P. Kerry. 2014. Use and application of gelatin as potential biodegradable packaging materials for food products. International Journal of Biological Macromolecules 71 (Special SI):94–102.
  • Hira, F., M. Usman Ullah, S. Ahmad, M. Imran, S. Sajjad, S. Hussain, and A. Qayyum. 2021. Spectroscopic evaluation of vibrational temperature and electron density in reduced pressure radio frequency nitrogen plasma. SN Applied Sciences 3 (6):1–11.
  • Jakubowska, E., M. Gierszewska, J. Nowaczyk, and E. Olewnik-Kruszkowska. 2020. Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocolloids. 108:106007. doi: 10.1016/j.foodhyd.2020.106007.
  • Laovachirasuwan, P., J. Peerapattana, V. Srijesdaruk, P. Chitropas, and M. Otsuka. 2010. The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids and Surfaces. B, Biointerfaces 78 (1):30–5.
  • Lee, T., P. Puligundla, and C. Mok. 2015. Inactivation of foodborne pathogens on the surfaces of different packaging materials using low-pressure air plasma. Food Control. 51:149–55. doi: 10.1016/j.foodcont.2014.11.021.
  • Leroux, F., C. Campagne, A. Perwuelz, and L. Gengembre. 2008. Polypropylene film chemical and physical modififications by dielectric barrier discharge plasma treatment at atmospheric pressure. Journal of Colloid and Interface Science 328 (2):412–20.
  • Li, Y., C. H. Wu, Y. Bai, S. Y. Liu, C. H. Yuan, T. Ding, and Y. Q. Hu. 2019. Effect of glow discharge plasma on surface modification of chitosan film. . International Journal of Biological Macromolecules 138:340–8. doi: 10.1016/j.ijbiomac.2019.07.039.
  • Liu, J. R., H. L. Wang, P. F. Wang, M. Guo, S. W. Jiang, X. J. Li, and S. T. Jiang. 2018. Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids. 83:134–42. doi: 10.1016/j.foodhyd.2018.05.012.
  • Liu, P., L. Yu, H. Liu, L. Chen, and L. Li. 2009. Glass transition temperature of starch studied by a high-speed DSC. Carbohydrate Polymers 77 (2):250–3. doi: 10.1016/j.carbpol.2008.12.027.
  • Lu, P., P. J. Cullen, and K. Ostrikov. 2016. Atmospheric pressure nonthermal plasma sources. in: Misra, N. N., Schluter, Oliver k., Cullen, P. J. (Eds.), Cold plasma in food and agriculture, London: Elsevier inc., 85, 90–99, 106.
  • Mellinas, C., A. Valdés, M. Ramos, N. Burgos, M. C. Garrigós, and A. Jiménez. 2016. Active edible films: Current state and future trends. Journal of Applied Polymer Science 133 (2):n/a–/a. doi: 10.1002/app.42631.
  • Mohamed, S. A. A., Sakhawy, E. I. M. E. I.Sakhawy. and M. A. A. 2020. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers 238:116178.
  • Monireh, K., P. P. Molamma, and R. Seeram. 2020. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends in Food Science & Technology 103:248–63.
  • Moosavi, M. H., M. R. Khani, B. Shokri, S. M. Hosseini, S. Shojaee-Aliabadi, and L. Mirmoghtadaie. 2020. Modifications of protein-based films using cold plasma. International Journal of Biological Macromolecules 142:769–77.
  • Murrieta-Martnez, C. L., H. Soto-Valdez, R. Pacheco-Aguilar, W. Torres-Arreola, F. Rodrguez-Felix, and E. Mrquez Ros. 2018. Edible protein films: Sources and behavior. Packaging Technology and Science 31 (3):113–22.
  • Nogueira, G. F., F. M. Fakhouri, and R. A. de Oliveira. 2018. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydrate Polymers 186:64–72.
  • Oh, Y. A., S. H. Roh, and S. C. Min. 2016. Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids. 58:150–9. doi: 10.1016/j.foodhyd.2016.02.022.
  • Otoni, C. G., R. J. Avena-Bustillos, H. M. C. Azeredo, M. V. Lorevice, M. R. Moura, L. H. C. Mattoso, and T. H. McHugh. 2017. Recent advances on edible films based on fruits and vegetables-A review. Comprehensive Reviews in Food Science and Food Safety 16 (5):1151–69. doi: 10.1111/1541-4337.12281.
  • Pan, Y. Y., J.-H. Cheng, and D.-W. Sun. 2019. Cold plasma-mediated treatments for shelf life extension of fresh produce: A review of recent research developments. Comprehensive Reviews in Food Science and Food Safety 18 (5):1312–26.
  • Paneru, R., P. Lamichhane, B. Chandra Adhikari, S. H. Ki, J. Choi, J. S. Kwon, and E. H. Choi. 2019. Surface modification of PVA thin film by nonthermal atmospheric pressure plasma antifogging property. AIP Advances 9 (7):075008. doi: 10.1063/1.5100776.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, P. Bourke, and P. J. Cullen. 2014e. Zein Film: Effects of dielectric barrier discharge atmospheric cold plasma. Journal of Applied Polymer Science 131 (18):n/a–/a. doi: 10.1002/app.40803.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, V. Milosavljević, C. P. O’Donnell, P. Bourke, K. M. Keener, and P. J. Cullen. 2014d. Applications of cold plasma technology in food packaging. Trends in Food Science & Technology 35 (1):5–17. doi: 10.1016/j.tifs.2013.10.009.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, L. O’Neill, B. K. Tiwari, P. Bourke, and P. J. Cullen. 2015a. Characterization of dielectric barrier discharge atmospheric air cold plasma treated gelatin films. Food Packaging and Shelf Life 6 (1):61–7. doi: 10.1016/j.fpsl.2015.09.002.
  • Pankaj, S. K., K. Bueno-Ferrer, C. Misra, N. N. O’Neill, P. Bourke, and P. J. Cullen. 2017b. Effects of cold plasma on surface, thermal and antimicrobial release properties of chitosan film. Journal of Renewable Materials 5 (1):14–20. doi: 10.7569/JRM.2016.634105.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, L. O’Neill, A. Jiménez, P. Bourke, and P. J. Cullen. 2014a. Surface, thermal and antimicrobial release properties of plasma-treated zein films. Journal of Renewable Materials 2 (1):77–84. doi: 10.7569/JRM.2013.634129.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, L. O’Neill, A. Jiménez, P. Bourke, and P. J. Cullen. 2014c. Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innovative Food Science & Emerging Technologies 21:107–13. doi: 10.1016/j.ifset.2013.10.007.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, L. O’Neill, B. K. Tiwari, P. Bourke, and P. J. Cullen. 2015b. Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films. Lwt - Food Science and Technology 63 (2):1076–82. doi: 10.1016/j.lwt.2015.04.027.
  • Pankaj, S. K., C. Bueno-Ferrer, N. N. Misra, L. O’Neill, B. K. Tiwari, P. Bourke, and P. J. Cullen. 2014b. Physicochemical characterization of plasma-treated sodium caseinate film. Food Research International 66:438–44. doi: 10.1016/j.foodres.2014.10.016.
  • Pankaj, S. K., C. Bueno-Ferrer, L. O’Neill, B. K. Tiwari, P. Bourke, and P. J. Cullen. 2017c. Characterization of dielectric barrier discharge atmospheric air plasma treated chitosan films. Journal of Food Processing & Preservation 41 (1):12889.
  • Pankaj, S. K., Z. F. Wan, J. E. De Leon, C. Mosher, W. Colonna, and K. M. Keener. 2017a. High-voltage atmospheric cold plasma treatment of different types of starch films. Starch/Staerke 69:11–2.
  • Pan, Y. Y., D.-W. Sun, and Z. Han. 2017. Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends in Food Science & Technology 64:13–22. doi: 10.1016/j.tifs.2017.02.014.
  • Patel, A. R. 2020. Functional and engineered colloids from edible materials for emerding applications in designing the food of the future. Advanced Functional Materials 30 (18):1–34.
  • Regubalan, B., P. Pandit, S. Maiti, G. T. Nadathur, and A. Mallick. 2018. Potential bio-based edible films, foams, and hydrogels for food packaging. In: Bio-based Materials for Food Packaging, Springer Nature Singapore Pte Ltd., 105–23.
  • Rino, M., D. G. Nathalie, D. Tim, D. Peter, and L. Christophe. 2011. Plasma surface modification of biodegradable polymers: A review. Plasma Processes and Polymers 8 (3):171–90.
  • Romani, V. P., B. Olsen, M. P. Collares, J. R. M. Oliveira, C. Prentice-Hernández, and V. G. Martins. 2019a. Improvement of fish protein films properties for food packaging through glow discharge plasma application. Food Hydrocolloids. 87:970–6. doi: 10.1016/j.foodhyd.2018.09.022.
  • Romani, V. P., B. Olsen, M. P. Collares, J. R. M. Oliveira, C. Prentice, and V. G. Martins. 2020. Cold plasma and carnauba wax as strategies to produce improved bi-layer films for sustainable food packaging. Food Hydrocolloids. 108:106087. doi: 10.1016/j.foodhyd.2020.106087.
  • Romani, V. P., B. Olsen, M. P. Collares, J. R. M. Oliveira, C. Prentice, and V. G. Martins. 2019b. Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. Food Hydrocolloids. 94:210–6. doi: 10.1016/j.foodhyd.2019.03.021.
  • Roya, B., Z. Rezvan, H. Zahra, H. Sara, G. Farhad, R. Milad, M. J. Seid, and M. Reza. 2020. Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Critical Reviews in Food Science and Nutrition :1–15.
  • Saricaoglu, F. T., S. Tural, O. Gul, and S. Turhan. 2018. High pressure homogenization of mechanically deboned chicken meat protein suspensions to improve mechanical and barrier properties of edible films. Food Hydrocolloids. 84:135–45. doi: 10.1016/j.foodhyd.2018.05.058.
  • Scholtz, V., J. Pazlarova, H. Souskova, J. Khun, and J. Julak. 2015. Nonthermal plasma-A tool for decontamination and disinfection. Biotechnology Advances 33 (6 Pt 2):1108–19.
  • Shit, S. C., and P. M. Shah. 2014. Edible polymers: Challenges and opportunities. Journal of Polymers 2014:1–13. doi: 10.1155/2014/427259.
  • Sifuentes-Nieves, I., E. Hernandez-Hernandez, G. Neira-Velazquez, E. Morales-Sánchez, G. Mendez-Montealvo, and G. Velazquez. 2019b. Hexamethyldisiloxane cold plasma treatment and amylose content determine the structural, barrier and mechanical properties of starch-based films. International Journal of Biological Macromolecules 124:651–8. doi: 10.1016/j.ijbiomac.2018.11.211.
  • Sifuentes-Nieves, I., G. Neira-Velazquez, E. Hernandez-Hernandez, E. Barriga-Castro, C. Gallardo-Vega, G. Velazquez, and G. Mendez-Montealvo. 2019a. Influence of gelatinization process and HMDSO plasma treatment on the chemical changes and water vapor permeability of corn starch films. International Journal of Biological Macromolecules 135:196–202. doi: 10.1016/j.ijbiomac.2019.05.116.
  • Song, J., B. Jiang, Y. Wu, S. Chen, S. Li, H. Sun, and X. Li. 2019. Effects on surface and physicochemical properties of dielectric barrier discharge plasma-treated whey protein concentrate/wheat cross-linked starch composite film. Journal of Food Science 84 (2):268–75. doi: 10.1111/1750-3841.14387.
  • Sun, C., L. Dai, and Y. Gao. 2017. Interaction and formation mechanism of binary complex between zein and propylene glycol alginate. Carbohydrate Polymers 157:1638–49. doi: 10.1016/j.carbpol.2016.11.046.
  • Surowsky, B., O. Schlüter, and D. Knorr. 2015. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: A review. Food Engineering Reviews 7 (2):82–108. doi: 10.1007/s12393-014-9088-5.
  • Vieira, M. G. A., M. A. da Silva, L. O. dos Santos, and M. M. Beppu. 2011. Natural-based plasticizers and biopolymer films: A review. European Polymer Journal 47 (3):254–63. doi: 10.1016/j.eurpolymj.2010.12.011.
  • Wu, X. M., Q. Liu, Y. H. Luo, M. S. Murad, L. X. Zhu, and G. Q. Mu. 2020. Improved packing performance and structure-stability of casein edible films by dielectric barrier discharges (DBD) cold plasma. Food Packaging and Shelf Life 24:100471. doi: 10.1016/j.fpsl.2020.100471.
  • Wu, Y., Sun, Cheng, J.-H.Sun. and D.-W. 2021. Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology 109:647–61. doi: 10.1016/j.tifs.2021.01.053.
  • Yang, Z., H. M. Song, H. Y. Wang, S. G. Guo, M. Jia, and K. Wang. 2019. Aerodynamic actuation characteristics of radio-frequency discharge plasma and control of supersonic flow. Chinese Physics B 28 (2):024701. doi: 10.1088/1674-1056/28/2/024701.
  • Zhu, F. 2017. Plasma modification of starch. Food Chemistry 232:476–86. doi: 10.1016/j.foodchem.2017.04.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.