4,187
Views
8
CrossRef citations to date
0
Altmetric
Reviews

A new trend among plant-based food ingredients in food processing technology: Aquafaba

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aguilera, Y., M. A. Martín-Cabrejas, V. Benítez, E. Mollá, F. J. López-Andréu, and R. M. Esteban. 2009a. Changes in carbohydrate fraction during dehydration process of common legumes. Journal of Food Composition and Analysis 22 (7–8):678–83. doi: 10.1016/j.jfca.2009.02.012.
  • Aguilera, Y. R. M., V. Esteban, E. Benítez, M. Mollá, and A. Martín-Cabrejas. 2009b. Starch, functional properties, and microstructural characteristics in chickpea and lentil as affected by thermal processing. Journal of Agricultural and Food Chemistry 57 (22):10682–8. doi: 10.1021/jf902042r.
  • Ahmed, S. A., I. A. M. Ahmed, M. Eltayeb, and S. O. Ahmed. 2012. Effect of sodium chloride concentration on the functional properties of selected legumes flour. African Journal of Food, Agriculture, Nutrition and Development 12 (6):6701–14.
  • Ahmed, J., M. Mulla, N. Al‐Ruwaih, and Y. A. Arfat. 2019. Effect of high pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Science 1 (1):e10. doi: 10.1002/leg3.10.
  • Alajaji, S. A., and T. A. El-Adawy. 2006. Nutritional composition of chickpea (Cicerarietinum L.) as affected by microwave cooking and other traditional cooking methods. Journal of Food Composition and Analysis 19 (8):806–12. doi: 10.1016/j.jfca.2006.03.015.
  • Alsalman, F. B., M. Tulbek, M. Nickerson, and H. S. Ramaswamy. 2020. Evaluation and optimization of functional and antinutritional properties of aquafaba. Legume Science 2 (2):1–15. doi: 10.1002/leg3.30.
  • Alsalman, F. B., and H. S. Ramaswamy. 2021. Changes in carbohydrate quality of high-pressure treated aqueous aquafaba. Food Hydrocolloids 113 (October):106417. doi: 10.1016/j.foodhyd.2020.106417.
  • Alshareef, M. A. 2018. Physicochemical properties of glycated chickpea (Cicerarietinum L.) protein. Journal of Pure & Applied Sciences 17 (1):248–249. doi: 10.51984/jopas.v17i1.97.
  • Arteaga, V. G., M. A. Guardia, I. Muranyi, P. Eisner, and U. Schweiggert-Weisz. 2020. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science & Emerging Technologies 65:102449. doi: 10.1016/j.ifset.2020.102449.
  • Aslan, M., and N. Ertaş. 2020. Possibility of using “chickpea aquafaba” as egg replacer in traditional cake formulation. Harran Tarım ve Gıda Bilimleri Dergisi 24 (1):1–8. doi: 10.29050/harranziraat.569397.
  • Baier, A. K., S. Bußler, and D. Knorr. 2015. Potential of high isostatic pressure and pulsed electric fields to improve mass transport in pea tissue. Food Research International 76:66–73. doi: 10.1016/j.cej.2015.05.007.
  • Bamdad, F., A. H. Goli, and M. Kadivar. 2006. Preparation and characterization of proteinous film from lentil (Lens Culinaris): Edible film from lentil (Lens Culinaris). Food Research International 39 (1):106–11. doi: 10.1016/j.foodres.2005.06.006.
  • Baojun, X., and S. K. C. Chang. 2009. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. Journal of Agricultural and Food Chemistry 57 (22):10718–31. doi: 10.1021/jf902594m.
  • Barakat, H., V. Reim, and S. Rohn. 2015. Stability of saponins from chickpea, soy and faba beans in vegetarian, broccoli-based bars subjected to different cooking techniques. Food Research International 76 (1):142–9. doi: 10.1016/j.foodres.2015.03.043.
  • Behera, M. R., S. R. Varade, P. Ghosh, P. Paul, and A. S. Negi. 2014. Foaming in micellar solutions: Effects of surfactant, salt, and oil concentrations. Industrial & Engineering Chemistry Research 53 (48):18497–507. doi: 10.1021/ie503591v.
  • Bencini, M. C. 1986. Functional properties of drum dried chickpea (Cicerarietinum L.) flours. Journal of Food Science 51 (6):1518–21. doi: 10.1111/j.1365-2621.1986.tb13849.x.
  • Bigdeloo, M., T. Teymourian, E. Kowsari, S. Ramakrishna, and A. Ehsani. 2021. Sustainability and circular economy of food wastes: Waste reduction strategies, higher recycling methods, and improved valorization. Materials Circular Economy 3 (1):4. doi: 10.1007/s42824-021-00017-3.
  • Bird, L. G., C. L. Pilkington, A. Saputra, and L. Serventi. 2017. Products of chickpea processing as texture improvers in gluten-free bread. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 23 (8):690–8. doi: 10.1177/1082013217717802.
  • Boye, J., F. Zare, and A. Pletch. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International 43 (2):414–31. doi: 10.1016/j.foodres.2009.09.003.
  • Buhl, T. F., C. H. Christensen, and M. Hammershøj. 2019. Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocolloids 96 (October 2018):354–64. doi: 10.1016/j.foodhyd.2019.05.041.
  • Byanju, B., M. M. Rahman, M. P. Hojilla-Evangelista, and B. P. Lamsal. 2020. Effect of high-power sonication pretreatment on extraction and some physicochemical properties of proteins from chickpea, kidney bean, and soybean. International Journal of Biological Macromolecules 145:712–21. doi: 10.1016/j.ijbiomac.2019.12.118.
  • Cai, R., B. Klamczynska, and B. K. Baik. 2001. Preparation of bean curds from protein fractions of six legumes. Journal of Agricultural and Food Chemistry 49 (6):3068–73. doi: 10.1021/jf0013398.
  • Campbell, L., S. R. Euston, and M. A. Ahmed. 2016. Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake. Food Chemistry 194:1230–7. doi: 10.1016/j.foodchem.2015.09.002.
  • Chao, D., S. Jung, and R. E. Aluko. 2018. Physicochemical and functional properties of high pressure-treated isolated pea protein. Innovative Food Science & Emerging Technologies 45:179–85. doi: 10.1016/j.ifset.2017.10.014.
  • Cornelia, M., T. Siratantri, and R. Prawita. 2015. The utilization of extract durian (Duriozibethinus L.) seed gum as an emulsifier in vegan mayonnaise. Procedia Food Science 3:1–18. doi: 10.1016/j.profoo.2015.01.001.
  • Damian, J. J., S. Huo, and L. Serventi. 2018. Phytochemical content and emulsifying ability of pulses cooking water. European Food Research and Technology 244 (9):1647–55. doi: 10.1007/s00217-018-3077-5.
  • De Almeida Costa, G. E., K. Da Silva Queiroz-Monici, S. M. Pissini Machado Reis, and A. C. De Oliveira. 2006. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chemistry 94 (3):327–30. doi: 10.1016/j.foodchem.2004.11.020.
  • De Kanterewicz, R. J., B. E. Elizalde, A. M. R. Pilosof, and G. B. Bartholomai. 1987. Water‐oil absorption index (WOAI): A simple method for predicting the emulsifying capacity of food proteins. Journal of Food Science 52 (5):1381–3. doi: 10.1111/j.1365-2621.1987.tb14087.x.
  • Devi, S., A. Varkey, H. Dharmar, R. R. Allen, R. R. Holt, L. H. Allen, M. S. Sheshshayee, T. Preston, C. L. Keen, and A. V. Kurpad. 2020. Amino acid digestibility of extruded chickpea and yellow pea protein is high and comparable in moderately stunted South Indian children with use of a dual stable isotope tracer method. The Journal of Nutrition 150 (5):1178–85. doi: 10.1093/jn/nxaa004.
  • Dranca, F., and M. Oroian. 2018. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Research International (Ottawa, ON) 113:327–50. doi: 10.1016/j.foodres.2018.06.065.
  • Du, S. K., H. Jiang, X. Yu, and J. Lin Jane. 2014. Physicochemical and functional properties of whole legume flour. LWT - Food Science and Technology 55 (1):308–13. doi: 10.1016/j.lwt.2013.06.001.
  • Eckert, E., J. Han, K. Swallow, Z. Tian, M. Jarpa Parra, and A. L. Chen. 2019. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry 96 (4):725–41. doi: 10.1002/cche.10169.
  • Egg Alternative Aquafaba - Love OGGS. n.d. Accessed May 29, 2021. https://www.loveoggs.com/product-oggs-aquafaba-egg-alternative/
  • El-Adawy, T. A. 2000. Functional properties and nutritional quality of acetylated and succinylatedmung bean protein isolate. Food Chemistry 70 (1):83–91. doi: 10.1016/S0308-8146(00)00079-0.
  • El-Hady, E. A. A., and R. A. Habiba. 2003. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT - Food Science and Technology 36 (3):285–93. doi: 10.1016/S0023-6438(02)00217-7.
  • FAOSTAT (Food and Agriculture Organization of the United Nations Statistics). 2019. World Food and Agriculture Statistical Pocketbook 2019. ISBN 978-92-5-131849-2. Rome. http://www.fao.org/3/ca6463en/ca6463en.pdf
  • Feng, C., H. Wei, D. Yang, B. Feng, Z. Ma, S. Han, Q. Zou, and H. Shi. 2021. ORS Pred: An optimized reduced scheme‐based identifier for antioxidant proteins. Proteomics 21 (15):2100017. doi: 10.1002/pmic.202100017.
  • Fernández-Quintela, A., M. T. Macarulla, A. S. Del Barrio, and J. A. Martínez. 1997. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 51 (4):331–41. doi: 10.1023/A:1007936930354.
  • Ghadge, N. P., S. V. Shewalkar, and D. B. Wankhede. 2008. Effect of processing methods on qualities of instant whole legume: Pigeon pea (Cajanuscajan L.). Agricultural Engineering International: CIGR Ejournal X:1–8.
  • Grizio, M., and L. Specht. 2018. Plant-based egg alternatives: Optimizing for functional properties and applications. The Good Food Institute. Accessed August 16, 2021. https://gfi.org/images/uploads/2018/06/Plantbasedeggalternatives.pdf.
  • Güçlü-Ustündağ, O., and G. Mazza. 2007. Saponins: Properties, applications and processing. Critical Reviews in Food Science and Nutrition 47 (3):231–58. doi: 10.1080/10408390600698197.
  • Gugger, E. T., P. Galuska, and A. Tremaine. 2016. Legume-based dairy substitute and consumable food products incorporating same. United States Patent Publication No. WO/2016/172570 AI, filed April 22, 2016, and issued October 27, 2016. https://patentimages.storage.googleapis.com/cb/e2/91/36648ec060f3e1/WO2016172570A1.pdf.
  • Guimarães Drummond E Silva, F., B. Miralles, B. Hernández-Ledesma, L. Amigo, A. H. Iglesias, F. G. Reyes Reyes, and F. M. Netto. 2017. Influence of protein-phenolic complex on the antioxidant capacity of flaxseed (Linum usitatissimum L.) products. Journal of Agricultural and Food Chemistry 65 (4):800–9. doi: 10.1021/acs.jafc.6b04639.
  • Han, I. H., and B. K. Baik. 2006. Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chemistry Journal 83 (4):428–33. doi: 10.1094/CC-83-0428.
  • Handa, A., and N. Kuroda. 1999. Functional improvements in dried egg white through the Maillard reaction. Journal of Agricultural and Food Chemistry 47 (5):1845–50. doi: 10.1021/jf9811018.
  • He, Y., V. Meda, M. J. T. Reaney, and R. Mustafa. 2021. Aquafaba, a new plant-based rheological additive for food applications. Trends in Food Science & Technology 111 (February):27–42. doi: 10.1016/j.tifs.2021.02.035.
  • He, Y., Y. Y. Shim, R. Mustafa, V. Meda, and M. J. T. Reaney. 2019. Chickpea cultivar selection to produce aquafaba with superior emulsion properties. Foods 8 (12):685. doi: 10.3390/foods8120685.
  • Hossain Brishti, F., S. Y. Chay, K. Muhammad, M. Rashedi Ismail-Fitry, M. Zarei, S. Karthikeyan, F. Caballero-Briones, and N. Saari. 2021. Structural and rheological changes of texturized mung bean protein induced by feed moisture during extrusion. Food Chemistry 344:128643. doi: 10.1016/j.foodchem.2020.128643.
  • Hu, H., J. Wu, E. C. Y. Li-Chan, L. Zhu, F. Zhang, X. Xu, G. Fan, L. Wang, X. Huang, and S. Pan. 2013. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids 30 (2):647–55. doi: 10.1016/j.foodhyd.2012.08.001.
  • Iqbal, A., I. A. Khalil, N. Ateeq, and M. Sayyar Khan. 2006. Nutritional quality of important food legumes. Food Chemistry 97 (2):331–5. doi: 10.1016/j.foodchem.2005.05.011.
  • Jiang, L., J. Wang, Y. Li, Z. Wang, J. Liang, R. Wang, Y. Chen, W. Ma, B. Qi, and M. Zhang. 2014. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International 62:595–601. doi: 10.1016/j.foodres.2014.04.022.
  • Kasera, R., A. B. Singh, S. Lavasa, K. N. Prasad, and N. Arora. 2015. Enzymatic hydrolysis: A method in alleviating legume allergenicity. Food and Chemical Toxicology 76:54–60. doi: 10.1016/j.fct.2014.11.023.
  • Khattab, R. Y., and S. D. Arntfield. 2009. Nutritional quality of legume seeds as affected by some physical treatments 2. antinutritional factors. LWT - Food Science and Technology 42 (6):1113–8. doi: 10.1016/j.lwt.2009.02.004.
  • Klupšaitė, D., and G. Juodeikienė. 2015. Legume: Composition, protein extraction and functional properties. A review. Chemical Technology 66 (1):5–12. doi: 10.5755/j01.ct.66.1.12355.
  • Kumar, N., K. K. Hazra, C. P. Nath, C. S. Praharaj, and U. Singh. 2018. Grain legumes for resource conservation and agricultural sustainability in South Asia. In Legumes for soil health and sustainable management, ed. R. S. Meena. Singapore: Springer. doi: 10.1007/978-981-13-0253-4_3
  • Kumitch, H. M., A. K. Stone, M. T. Nickerson, D. R. Korber, and T. Tanaka. 2020. Effect of fermentation time on the physicochemical and functional properties of pea protein‐enriched flour fermented by Aspergillusoryzae and Aspergillusniger. Cereal Chemistry 97 (2):416–28. doi: 10.1002/cche.10257.
  • Lafarga, T., C. Álvarez, S. Villaró, G. Bobo, and I. Aguiló-Aguayo. 2020. Potential of pulse-derived proteins for developing novel vegan edible foams and emulsions. International Journal of Food Science & Technology 55 (2):475–81. doi: 10.1111/ijfs.14286.
  • Lafarga, T., S. Villaró, G. Bobo, and I. Aguiló-Aguayo. 2019. Optimisation of the pH and boiling conditions needed to obtain improved foaming and emulsifying properties of chickpea aquafaba using a response surface methodology. International Journal of Gastronomy and Food Science 18:100177. doi: 10.1016/j.ijgfs.2019.100177.
  • Lee, H. C., A. K. Htoon, and J. L. Paterson. 2007. Alkaline extraction of starch from Australian lentil cultivars matilda and digger optimized for starch yield and starch and protein quality. Food Chemistry 102 (3):551–9. doi: 10.1016/j.foodchem.2006.03.042.
  • Li, T., L. Wang, X. Zhang, H. Geng, W. Xue, and Z. Chen. 2021. Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils. Food Hydrocolloids 111:106396. doi: 10.1016/j.foodhyd.2020.106396.
  • Liu, Y., D. Wang, J. Wang, Y. Yang, L. Zhang, J. Li, and S. Wang. 2020. Functional properties and structural characteristics of phosphorylated pea protein isolate. International Journal of Food Science & Technology 55 (5):2002–10. doi: 10.1111/ijfs.14391.
  • Luo, Z., B. S. Murray, A. Yuso, M. R. A. Morgan, M. J. W. Povey, and A. J. Day. 2011. Particle-stabilizing effects of flavonoids at the oil-water interface. Journal of Agricultural and Food Chemistry 59 (6):2636–45. doi: 10.1021/jf1041855.
  • Ma, Z., J. I. Boye, B. K. Simpson, S. O. Prasher, D. Monpetit, and L. Malcolmson. 2011. Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International 44 (8):2534–44. doi: 10.1016/j.foodres.2010.12.017.
  • Mahajan, T. S., and O. P. Pandey. 2014. Effect of electric field (at different temperatures) on germination of chickpea seed. African Journal of Biotechnology 13 (1):61–7. doi: 10.5897/AJB2013.13345.
  • Makri, E., E. Papalamprou, and G. Doxastakis. 2005. Study of functional properties of seed storage proteins from indigenous European legume crops (Lupin, Pea, Broad Bean) in admixture with polysaccharides. Food Hydrocolloids 19 (3):583–94. doi: 10.1016/j.foodhyd.2004.10.028.
  • Martin-Cabrejas, M. A., R. M. Esteban, K. W. Waldron, G. Maina, G. Grant, S. Bardocz, and A. Pusztai. 1995. Hard-to-cook phenomenon in beans: Changes in antinutrient factors and nitrogenous compounds during storage. Journal of the Science of Food and Agriculture 69 (4):429–35. doi: 10.1002/jsfa.2740690405.
  • Martínez-Velasco, A., C. Lobato-Calleros, B. E. Hernández-Rodríguez, A. Román-Guerrero, J. Alvarez-Ramirez, and E. J. Vernon-Carter. 2018. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics Sonochemistry 44:97–105. doi: 10.1016/j.ultsonch.2018.02.007.
  • Marquez, U. M. L., R. M. C. Barros, and F. M. Lajolo. 1996. Chemically determined total and available methionine in beans (Phaseolus vulgaris L.) and isolated protein fractions. Food Chemistry 55 (2):179–84. doi: 10.1016/0308-8146(95)00071-2.
  • Matemu, A. O., H. H. Kayahara, S. Murasawa, S. Katayama, and S. Nakamura. 2011. Improved emulsifying properties of soy proteins by acylation with saturated fatty acids. Food Chemistry 124 (2):596–602. doi: 10.1016/j.foodchem.2010.06.081.
  • Mazumdar, D. S., P. Durgalla, and P. M. Gaur. 2016. Utilization of pulses-value addition and product development. In Pulses for sustainable food and nutrition security in SAARC region, ed. R. Gurungand and S. M. Bokhtiar, 65–98. Dhaka: SAARC Agriculture Centre. ISBN 978-984-34-1521-9
  • McDermott, J., and A. J. Wyatt. 2017. The role of pulses in sustainable and healthy food systems. Annals of the New York Academy of Sciences 1392 (1):30–42. doi: 10.1111/nyas.13319.
  • Meena, S. R., and R. Lal. 2018. Legumes and sustainable use of soils. Legumes for Soil Health and Sustainable Management, ed. R. S. Meena. Singapore, Springer. doi: 10.1007/978-981-13-0253-4_1
  • Meinlschmidt, P., E. Ueberham, J. Lehmann, U. Schweiggert-Weisz, and P. Eisner. 2016. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chemistry 205:229–38. doi: 10.1016/j.foodchem.2016.03.016.
  • Meurer, M. C., D. de Souza, and L. D. Ferreira Marczak. 2020. Effects of ultrasound on technological properties of chickpea cooking water (aquafaba). Journal of Food Engineering 265:109688. doi: 10.1016/j.jfoodeng.2019.109688.
  • Munialo, C. D., A. H. Martin, E. Van Der Linden, and H. H. De Jongh. 2014. Fibril formation from pea protein and subsequent gel formation. Journal of Agricultural and Food Chemistry 62 (11):2418–27. doi: 10.1021/jf4055215.
  • Mustafa, R., Y. He, Y. Y. Shim, and M. J. T. Reaney. 2018. Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. International Journal of Food Science & Technology 53 (10):2247–55. doi: 10.1111/ijfs.13813.
  • Mustafa, R., and M. J. T. Reaney. 2020. Aquafaba, from food waste to a value-added product. In Food wastes and by products: nutraceutical and health potential, eds. R. Campos-Vega, B. D. Oomah, H. A. Vergara-Castañeda, 93–126. New York, NY, USA: Wiley Online Library. doi: 10.1002/9781119534167.ch4.
  • Naked Byron Foods Vegan Mayonnaise 435g (cold) – Vegan Grocery Store. n.d. Accessed May 29, 2021. https://www.crueltyfreeshop.com.au/products/nakedbyronfoodsveganmayonnaise435gcold
  • Ologhobo, A. D., D. F. Apata, A. Oyejide, and O. Akinpelu. 1993. Toxicity of raw limabeans (Phaseolus lunatus L.) and limabean fractions for growing chicks. British Poultry Science 34 (3):505–22. doi: 10.1080/00071669308417606.
  • Ozcicek Dolekoglu, C. 2017. Gıda kayıpları, israf ve toplumsal çabalar. Tarım Ekonomisi Dergisi 23 (2):179–86. doi: 10.24181/tarekoder.364946.
  • Papalamprou, E. M., G. I. G. I. Doxastakis, and V. Kiosseoglou. 2010. Chickpea protein isolates obtained by wet extraction as emulsifying agents. Journal of the Science of Food and Agriculture 90 (2):304–13. doi: 10.1002/jsfa.3816.
  • Paredes-Lopez, O., and C. Ordorica-Falomir. 1986. Production of safflower protein isolates: Composition, yield and protein quality. Journal of the Science of Food and Agriculture 37 (11):1097–103. doi: 10.1002/jsfa.2740371107.
  • Paredes-Lopez, O., C. Ordorica-Falomir, and A. Cbrabes-Trejo. 1988. Production of safflower protein isolates: Phvsicochemical characterization. Lebensm.Wiss.u.-Technol 21:328. doi: 10.1111/j.1365-2621.1991.tb05367.x.
  • Paredes-Lopez, O., C. Ordorica-Falomir, and M. R. Olivares-Vazquez. 1991. Chickpea protein isolates: Physicochemical, functional and nutritional characterization. Journal of Food Science 56 (3):726–9. doi: 10.1111/j.1365-2621.1991.tb05367.x.
  • Parmar, N., N. Singh, A. Kaur, A. S. Virdi, and S. Thakur. 2016. Effect of canning on color, protein and phenolic profile of grains from kidney bean, field pea and chickpea. Food Research International (Ottawa, ON) 89 (Pt 1):526–32. doi: 10.1016/j.foodres.2016.07.022.
  • Pedrosa, M. M., C. Cuadrado, C. Burbano, M. Muzquiz, B. Cabellos, B. Olmedilla-Alonso, and C. Asensio-Vegas. 2015. Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chemistry 166:68–75. doi: http://dx.doi.org/10.1016/j.foodchem.2014.05.158.
  • Pekşen, E., and C. Artık. 2005. Anti besinse lmaddeler ve yemeklik baklagillerin besleyici değerleri. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi 20 (2):110–20.
  • Peyrano, F., F. Speroni, and M. V. Avanza. 2016. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science & Emerging Technologies 33:38–46. doi: 10.1016/j.ifset.2015.10.014.
  • Pillai, P. K., B. E. L. Morales-Contreras, L. Wicker, and M. T. Nickerson. 2020. Effect of enzyme de-esterified pectin on the electrostatic complexation with pea protein isolate under different mixing conditions. Food Chemistry 305:125433. doi: 10.1016/j.foodchem.2019.125433.
  • Price, K. R., C. L. Curl, and G. R. Fenwick. 1986. The saponin content and sapogenol composition of the seed of 13 varieties of legume. Journal of the Science of Food and Agriculture 37 (12):1185–91. doi: 10.1002/jsfa.2740371206.
  • Prodanov, M., I. Sierra, and C. Vidal-Valverde. 2004. Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chemistry 84 (2):271–7. doi: 10.1016/S0308-8146(03)00211-5.
  • Raikos, V., L. Campbell, and S. R. Euston. 2007. Rheology and texture of hen’s egg protein heat-set gels as affected by pH and the addition of sugar and/or salt. Food Hydrocolloids 21 (2):237–44. doi: 10.1016/j.foodhyd.2006.03.015.
  • Raikos, V., H. Hayes, and H. Ni. 2020. Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: Recipe optimisation and storage stability. International Journal of Food Science & Technology 55 (5):1935–42. doi: 10.1111/ijfs.14427.
  • Rathod, R. P., and U. S. Annapure. 2016. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. Lwt - Food Science and Technology 66:114–23. doi: 10.1016/j.lwt.2015.10.028.
  • Rebello, C. J., F. L. Greenway, and J. W. Finley. 2014. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obesity Reviews 15 (5):392–407. doi: 10.1111/obr.12144.
  • Rehinan, Z., M. M. Rashid, and W. H. Shah. 2004. Insoluble dietary fibre components of food legumes as affected by soaking and cooking processes. Food Chemistry 85 (2):245–9. doi: 10.1016/j.foodchem.2003.07.005.
  • Rehman, Z. U., and W. H. Shah. 2005. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry 91 (2):327–31. doi: 10.1016/j.foodchem.2004.06.019.
  • Sajilata, M. G., R. S. Singhal, and P. R. Kulkarni. 2006. Resistant starch - A review. Comprehensive Reviews in Food Science and Food Safety 5 (1):1–17. doi: 10.1111/j.1541-4337.2006.tb00076.x.
  • Sánchez-Reséndiz, A., S. Rodríguez-Barrientos, J. Rodríguez-Rodríguez, B. Barba-Dávila, S. O. Serna-Saldívar, and C. Chuck-Hernández. 2018. Phosphoesterification of soybean and peanut proteins with sodium trimetaphosphate (STMP): Changes in structure to improve functionality for food applications. Food Chemistry 260:299–305. doi: 10.1016/j.foodchem.2018.04.009.
  • Sánchez-Vioque, R., A. Clemente, J. Vioque, J. Bautista, and F. Millán. 1999. Protein isolates from chickpea (Cicerarietinum L.): Chemical composition, functional properties and protein characterization. Food Chemistry 64 (2):237–43. doi: 10.1016/S0308-8146(98)00133-2.
  • Sarıoğlu, G., and Y. S. Velioğlu. 2018. Baklagillerin bileşimi. Akademik Gıda 16 (4):483–96. doi: 10.24323/akademik-gida.505547.
  • Seena, S., and K. R. Sridhar. 2005. Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Research International 38 (7):803–14. doi: 10.1016/j.foodres.2005.02.007.
  • Serventi, L. 2020. Upcycling legume water: From wastewater to food ingredients. Switzerland: Springer. doi: 10.1007/978-3-030-42468-8.
  • Serventi, L., S. Wang, J. Zhu, S. Liu, and F. Fei. 2018. Cooking water of yellow soybeans as emulsifier in gluten-free crackers. European Food Research and Technology 244 (12):2141–8. doi: 10.1007/s00217-018-3122-4.
  • Shao, Y. Y., K. H. Lin, and Y. J. Kao. 2016. Modification of foaming properties of commercial soy protein isolates and concentrates by heat treatments. Journal of Food Quality 39 (6):695–706. doi: 10.1111/jfq.12241.
  • Shim, Y. Y., R. J. Mustafa, K. Shen, M. J. T. Ratanapariyanuch, and M. J. T. Reaney. 2018. Composition and properties of aquafaba: Water recovered from commercially canned chickpeas. Journal of Visualized Experiments 2018 (132):14. doi: 10.3791/56305.
  • Sim, S. Y., M. V. Karwe, and C. I. Moraru. 2019. High pressure structuring of pea protein concentrates. Journal of Food Process Engineering 42 (7):e13261. doi: 10.1111/jfpe.13261.
  • Singh, G. D., A. A. Wani, D. Kaur, and D. S. Sogi. 2008. Characterisation and functional properties of proteins of some Indian chickpea (Cicerarietinum) cultivars. Journal of the Science of Food and Agriculture 1243 (September 2007):1237–43. doi: 10.1002/jsfa.
  • Stagnari, F., A. Maggio, A. Galieni, and M. Pisante. 2017. Multiple benefits of legumes for agriculture sustainability: An overview. Chemical and Biological Technologies in Agriculture 4 (2):4–7. doi: 10.1186/s40538-016-0085-1.
  • Stantiall, S. E., K. J. Dale, F. S. Calizo, and L. Serventi. 2018. Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. European Food Research and Technology 244 (1):97–104. doi: 10.1007/s00217-017-2943-x.
  • Subuola, F., Y. Widodo, and T. Kehinde. 2011. Processing and utilization of legumes in the tropics. In Trends in vital food and control engineering, ed. A. A. Eissa, 71–84. United Kingdom: IntechOpen Limited. https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics.
  • Słupski, J. 2011. Effect of freezing and canning on the content of vitamin C in immature seeds of five cultivars of common bean (Phaseolus vulgaris L.). Acta Scientarium Polonorum. Technologia Alimentaria 10 (2):199–208.
  • Tyler, R. T., C. G. Youngs, and F. W. Sosulski. 1981. Air classification of legumes. I. Seperation efficiency, yield, and composition of the starch and protein fractions. Cereal Chemistry 58 (2):144–8.
  • Urbano, G., M. P. López-Jurado, C. Aranda, E. Vidal-Valverde, E. Tenorio, and J. Porres. 2000. The role of phytic acid in legumes: Antinutrient or beneficial function? Journal of Physiology and Biochemistry 56 (3):283–94. doi: 10.1007/BF03179796.
  • Veggie-Naise, Vegan Béarnaise Sauce | needl. n.d. Accessed May 29, 2021. https://needl.co/app/p/veggiebel/54331/veggienaise_vegan_b_arnaise_sauce2
  • Vor Vegan Meringue Powder 6oz — Vör. n.d. Accessed May 29, 2021. https://www.vorfoods.com/aquafaba/vor-vegan-meringue-powder-6oz
  • Vose, J. R. 1980. Production and functionality of starches and protein isolates from legume seeds (field peans and horsebeans). Cereal Chemistry 57 (6):406–10.
  • Wang, S., J. G. Yang, D. Shao, H. Qu, L. Zhao, L. Yang, Y. Zhu, H. He, H. Liu, and D. Zhu. 2020. Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocolloids 101:105490. doi: 10.1016/j.foodhyd.2019.105490.
  • Xiao, Y., G. Xing, X. Rui, W. Li, X. Chen, M. Jiang, and M. Dong. 2015. Effect of solid-state fermentation with Cordycepsmilitaris SN-18 on physicochemical and functional properties of chickpea (Cicerarietinum L.) flour. Lwt - Food Science and Technology 63 (2):1317–24. doi: 10.1016/j.lwt.2015.04.046.
  • Xu, B., and S. K. Chang. 2008. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. Journal of Agricultural and Food Chemistry 56 (16):7165–75. doi: 10.1021/jf8012234.
  • Yildirim, A., M. D. Öner, and M. Bayram. 2013. Effect of soaking and ultrasound treatments on texture of chickpea. Journal of Food Science and Technology 50 (3):455–65. doi: 10.1007/s13197-011-0362-8.
  • Yin, S. W., C. H. Tang, Q. B. Wen, X. Q. Yang, and D. B. Yuan. 2010. The relationships between physicochemical properties and conformational features of succinylated and acetylated kidney bean (Phaseolus vulgaris L.) protein isolates. Food Research International 43 (3):730–8. doi: 10.1016/j.foodres.2009.11.007.
  • Zayas, J. F. 1997. Foaming properties of proteins. In Functionality of proteins in food, 260–309. Switzerland: Springer. doi: 10.1007/978-3-642-59116-7_6.
  • Zhang, M. W., B. J. Guo, R. F. Zhang, J. W. Chi, Z. C. Wei, Z. H. Xu, Y. Zhang, and X. J. Tang. 2006. Separation, purification and identification of antioxidant compositions in black rice. Agricultural Sciences in China 5 (6):431–40. doi: 10.1016/S1671-2927(06)60073-4.
  • Zhao, X., X. Zhang, H. Liu, G. Zhang, and Q. Ao. 2018. Functional, nutritional and flavor characteristic of soybean proteins obtained through reverse micelles. Food Hydrocolloids 74:358–66. doi: 10.1016/j.foodhyd.2017.08.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.