732
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Recent advancement in functional properties and toxicity assessment of plant-derived bioactive peptides using bioinformatic approaches

, &

References

  • Acquah, C., E. Di Stefano, and C. C. Udenigwe. 2018. Role of hydrophobicity in food peptide functionality and bioactivity. Journal of Food Bioactives 4:88–98.
  • Agyei, D., C. M. Ongkudon, C. Y. Wei, A. S. Chan, and M. K. Danquah. 2016. Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing 98:244–56. doi: 10.1016/j.fbp.2016.02.003.
  • Agyei, D., S. Pan, C. Acquah, A. E. D. A. Bekhit, and M. K. Danquah. 2019. Structure-informed detection and quantification of peptides in food and biological fluids. Journal of Food Biochemistry 43 (1):e12482. doi: 10.1111/jfbc.12482.
  • Agyei, D., A. Tsopmo, and C. C. Udenigwe. 2018. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry 410 (15):3463–72. doi: 10.1007/s00216-018-0974-1.
  • Alam, N., O. Goldstein, B. Xia, K. A. Porter, D. Kozakov, and O. Schueler-Furman. 2017. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLOS Computational Biology 13 (12):e1005905. doi: 10.1371/journal.pcbi.1005905.
  • Arai, S., and M. Fujimaki. 1991. Enzymatic modification of proteins with special reference to improving their functional properties. In Food enzymology, ed. P. F. Fox, vol. 2, 83–104. London; New York: Elsevier Applied Science.
  • Atanasov, A. G., S. B. Zotchev, V. M. Dirsch, I. E. Orhan, M. Banach, J. M. Rollinger, D. Barreca, W. Weckwerth, R. Bauer, E. A. Bayer, et al. 2021. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery 20 (3):200–16. doi: 10.1038/s41573-020-00114-z.
  • Balasubramaniam, V. M. B., S. I. Martínez-Monteagudo, and R. Gupta. 2015. Principles and application of high pressure-based technologies in the food industry. Annual Review of Food Science and Technology 6:435–62. doi: 10.1146/annurev-food-022814-015539.
  • Barba, F. J., Z. Zhu, M. Koubaa, A. S. Sant’Ana, and V. Orlien. 2016. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review. Trends in Food Science and Technology 49:96–109. doi: 10.1016/j.tifs.2016.01.006.
  • Borad, S. G., A. Kumar, and A. K. Singh. 2017. Effect of processing on nutritive values of milk protein. Critical Reviews in Food Science and Nutrition 57 (17):3690–702. doi: 10.1080/10408398.2016.1160361.
  • Cárcel, J. A., J. V. García-Pérez, J. Benedito, and A. Mulet. 2012. Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering 110 (2):200–7. doi: 10.1016/j.jfoodeng.2011.05.038.
  • Chandrapala, J., C. Oliver, S. Kentish, and M. Ashokkumar. 2012. Ultrasonics in food processing. Ultrasonics Sonochemistry 19 (5):975–83. doi: 10.1016/j.ultsonch.2012.01.010.
  • Cho, M. J., N. Unklesbay, F. H. Hsieh, and A. D. Clarke. 2004. Hydrophobicity of bitter peptides from soy protein hydrolysates. Journal of Agricultural and Food Chemistry 52 (19):5895–901. doi: 10.1021/jf0495035.
  • Ciemny, M., M. Kurcinski, K. Kamel, A. Kolinski, N. Alam, O. Schueler-Furman, and S. Kmiecik. 2018. Protein-peptide docking: Opportunities and challenges. Drug Discovery Today 23 (8):1530–7. doi: 10.1016/j.drudis.2018.05.006.
  • Dang, L., and E. J. M. V. Damme. 2015. Toxic proteins in plants. Phytochemistry 117:51–64. doi: 10.1016/j.phytochem.2015.05.020.
  • Daroit, D. J., and A. Brandelli. 2021. In vivo bioactivities of food protein-derived peptides—A current review. Current Opinion in Food Science 39:120–9. doi: 10.1016/j.cofs.2021.01.002.
  • Franceschi, N., K. Paraskevopoulos, E. Waigmann, and M. Ramon. 2017. Predictive protein toxicity and its use in risk assessment. Trends in Biotechnology 35 (6):483–6. doi: 10.1016/j.tibtech.2017.03.010.
  • Frank, R. 2002. The SPOT-synthesis technique: Synthetic peptide arrays on membrane supports-principles and applications. Journal of Immunological Methods 267 (1):13–26. doi: 10.1016/S0022-1759(02)00137-0.
  • Fu, Y., J. Liu, E. T. Hansen, W. L. P. Bredie, and R. Lametsch. 2018. Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chemistry 257:163–71. doi: 10.1016/j.foodchem.2018.02.159.
  • Fu, Y., W. Wu, M. Zhu, and Z. Xiao. 2016. In silico assessment of the potential of patatin as a precursor of bioactive peptides. Journal of Food Biochemistry 40 (3):366–70. doi: 10.1111/jfbc.12213.
  • Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook, ed. J. M. Walker, 571–607. Totowa, NJ: Humana Press.
  • Girgih, A. T., R. He, S. Malomo, M. Offengenden, J. Wu, and R. E. Aluko. 2014. Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. Journal of Functional Foods 6:384–94. doi: 10.1016/j.jff.2013.11.005.
  • Görgüç, A., E. Gençdağ, and F. M. Yılmaz. 2020. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments—A review. Food Research International (Ottawa, Ont.) 136:109504. doi: 10.1016/j.foodres.2020.109504.
  • Grisoni, F., C. S. Neuhaus, M. Hishinuma, G. Gabernet, J. A. Hiss, M. Kotera, and G. Schneider. 2019. De novo design of anticancer peptides by ensemble artificial neural networks. Journal of Molecular Modeling 25 (5):1–10. doi: 10.1007/s00894-019-4007-6.
  • Gupta, S., P. Kapoor, K. Chaudhary, A. Gautam, R. Kumar, and G. P. S. Raghava. 2013. In silico approach for predicting toxicity of peptides and proteins. PLoS One 8 (9):e73957. doi: 10.1371/journal.pone.0073957.
  • Hajfathalian, M., S. Ghelichi, P. J. García-Moreno, A. D. Moltke Sørensen, and C. Jacobsen. 2018. Peptides: Production, bioactivity, functionality, and applications. Critical Reviews in Food Science and Nutrition 58 (18):3097–129. doi: 10.1080/10408398.2017.1352564.
  • Han, C. H., Y. S. Lin, S. Y. Lin, and W. C. Hou. 2014. Antioxidant and antiglycation activities of the synthesised dipeptide, Asn-Trp, derived from computer-aided simulation of yam dioscorin hydrolysis and its analogue, Gln-Trp. Food Chemistry 147:195–202. doi: 10.1016/j.foodchem.2013.09.109.
  • Hartmann, R., J. M. Wal, H. Bernard, and A. K. Pentzien. 2007. Cytotoxic and allergenic potential of bioactive proteins and peptides. Current Pharmaceutical Design 13 (9):897–920. doi: 10.2174/138161207780414232.
  • Huang, R.-B., Q.-S. Du, Y.-T. Wei, Z.-W. Pang, H. Wei, and K.-C. Chou. 2009. Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design. Journal of Theoretical Biology 256 (3):428–35. doi: 10.1016/j.jtbi.2008.08.028.
  • Imai, K., D. Ji, I. D. Nwachukwu, D. Agyei, and C. C. Udenigwe. 2021. Bioinformatics and chemometrics for discovering biologically active peptides from food proteins. In Reference module in food sciences. New York, NY: Elsevier. doi: 10.1016/B978-0-08-100596-5.22878-3.
  • Iwaniak, A., P. Minkiewicz, and M. Darewicz. 2014. Food‐originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Comprehensive Reviews in Food Science and Food Safety 13 (2):114–34.
  • Iwaniak, A., P. Minkiewicz, M. Darewicz, M. Protasiewicz, and D. Mogut. 2015. Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. Journal of Functional Foods 16:334–51. doi: 10.1016/j.jff.2015.04.038.
  • Kęska, P., and J. Stadnik. 2020. Structure-activity relationships study on biological activity of peptides as dipeptidyl peptidase IV inhibitors by chemometric modeling. Chemical Biology & Drug Design 95 (2):291–301. doi: 10.1111/cbdd.13643.
  • Khan, F., K. Niaz, and M. Abdollahi. 2018. Toxicity of biologically active peptides and future safety aspects: An update. Current Drug Discovery Technologies 15 (3):236–42. doi: 10.2174/1570163815666180219112806.
  • Kim, H. O., and E. C. Y. Li-Chan. 2006. Quantitative structure-activity relationship study of bitter peptides. Journal of Agricultural and Food Chemistry 54 (26):10102–11. doi: 10.1021/jf062422j.
  • Kozakov, D.,D. R. Hall,B. Xia,K. A. Porter,D. Padhorny,C. Yueh,D. Beglov, andS. Vajda. 2017. The ClusPro web server for protein–protein docking. Nature Protocols 12 (2):255–78. doi:10.1038/nprot.2016.169.
  • Krishnan, H. B., and E. H. Coe. 2001. Seed storage proteins. In Encyclopedia of genetics, eds. S. Brenner and J. H. Miller, 1782–7. Cambridge, MA: Academic Press.
  • Kumar, A., D. K. Agarwal, S. P. J. Kumar, Y. M. Reddy, A. D. Chintagunta, K. V. Saritha, G. Pal, and S. P. J. Kumar. 2019. Nutraceuticals derived from seed storage proteins: Implications for health wellness. Biocatalysis and Agricultural Biotechnology 17:710–9. doi: 10.1016/j.bcab.2019.01.044.
  • Lee, H., L. Heo, M. S. Lee, and C. Seok. 2015. GalaxyPepDock: A protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Research 43 (W1):W431–W435. doi: 10.1093/nar/gkv495.
  • Lin, Q., W. Liao, J. Bai, W. Wu, and J. Wu. 2017. Soy protein-derived ACE-inhibitory peptide LSW (Leu-Ser-Trp) shows anti-inflammatory activity on vascular smooth muscle cells. Journal of Functional Foods 34:248–253.
  • Li, Y., and J. Yu. 2015. Research progress in structure-activity relationship of bioactive peptides. Journal of Medicinal Food 18 (2):147–56. doi: 10.1089/jmf.2014.0028.
  • Liu, L., S. Li, J. Zheng, T. Bu, G. He, and J. Wu. 2020. Safety considerations on food protein-derived bioactive peptides. Trends in Food Science & Technology 96:199–207. doi: 10.1016/j.tifs.2019.12.022.
  • Mandal, D., A. N. Shirazi, and K. Parang. 2014. Self-assembly of peptides to nanostructures. Organic & Biomolecular Chemistry 12 (22):3544–61. doi: 10.1039/c4ob00447g.
  • Minkiewicz, P., A. Iwaniak, and M. Darewicz. 2019. BIOPEP-UWM database of bioactive peptides: Current opportunities. International Journal of Molecular Sciences 20 (23):5978.
  • Mohamed, M., and A. Eissa. 2012. Pulsed electric fields for food processing technology. In Structure and function of food engineering, ed. A. A. Eissa, 275–306. London, UK: InTech Open.
  • Mooney, C., N. J. Haslam, G. Pollastri, and D. C. Shields. 2012. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS One 7 (10):e45012. doi: 10.1371/journal.pone.0045012.
  • Morais, H. A., M. P. C. Silvestre, L. L. Amorin, V. D. M. Silva, M. R. Silva, A. C. Simões e Silva, and J. N. Silveira. 2014. Use of different proteases to obtain whey protein concentrate hydrolysates with inhibitory activity toward angiotensin-converting enzyme. Journal of Food Biochemistry 38 (1):102–9. doi: 10.1111/jfbc.12032.
  • Naderi, N., J. D. House, Y. Pouliot, and A. Doyen. 2017. Effects of high hydrostatic pressure processing on hen egg compounds and egg products. Comprehensive Reviews in Food Science and Food Safety 16 (4):707–20. doi: 10.1111/1541-4337.12273.
  • Nakai, S., J. C. Chan, E. C. Li-Chan, J. Dou, and M. Ogawa. 2003. Homology similarity analysis of sequences of lactoferricin and its derivatives. Journal of Agricultural and Food Chemistry 51 (5):1215–23. doi: 10.1021/jf0206062.
  • Natesh, R., S. L. U. Schwager, E. D. Sturrock, and K. R. Acharya. 2003. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421 (6922):551–4. doi: 10.1038/nature01370.
  • Nehete, J., R. Bhambar, M. Narkhede, and S. Gawali. 2013. Natural proteins: Sources, isolation, characterization and applications. Pharmacognosy Reviews 7 (14):107–16. doi: 10.4103/0973-7847.120508.
  • Nongonierma, A. B., C. Mazzocchi, S. Paolella, and R. J. FitzGerald. 2017. Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from milk protein isolate (MPI) during enzymatic hydrolysis. Food Research International 94:79–89. doi: 10.1016/j.foodres.2017.02.004.
  • Onuh, J. O., and R. E. Aluko. 2019. Metabolomics as a tool to study the mechanism of action of bioactive protein hydrolysates and peptides: A review of current literature. Trends in Food Science & Technology 91:625–33. doi: 10.1016/j.tifs.2019.08.002.
  • Patil, S. P., A. Goswami, K. Kalia, and A. S. Kate. 2020. Plant-derived bioactive peptides: A treatment to cure diabetes. International Journal of Peptide Research and Therapeutics 26 (2):955–68. doi: 10.1007/s10989-019-09899-z.
  • Pei, Z., X. Li, T. W. von Geldern, K. Longenecker, D. Pireh, K. D. Stewart, B. J. Backes, C. Lai, T. H. Lubben, S. J. Ballaron, et al. 2007. Discovery and structure—Activity relationships of piperidinone- and piperidine-constrained phenethylamines as novel, potent, and selective dipeptidyl peptidase IV inhibitors. Journal of Medicinal Chemistry 50 (8):1983–7.
  • Plaza, M., and C. Turner. 2017. Pressurized hot water extraction of bioactives. Comprehensive Analytical Chemistry 76:53–82.
  • Pooja, K., S. Rani, and B. Prakash. 2017. In silico approaches towards the exploration of rice bran proteins-derived angiotensin-I-converting enzyme inhibitory peptides. International Journal of Food Properties 20:1–2191. doi: 10.1080/10942912.2017.1368552.
  • Porter, K. A., B. Xia, D. Beglov, T. Bohnuud, N. Alam, O. Schueler-Furman, and D. Kozakov. 2017. ClusPro PeptiDock: Efficient global docking of peptide recognition motifs using FFT. Bioinformatics (Oxford, England) 33 (20):3299–301. doi: 10.1093/bioinformatics/btx216.
  • Sánchez, A., and A. Vázquez. 2017. Bioactive peptides: A review. Food Quality and Safety 1 (1):29–46. doi: 10.1093/fqs/fyx006.
  • Stone, A. K., A. Karalash, R. T. Tyler, T. D. Warkentin, and M. T. Nickerson. 2015. Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International 76:31–8. doi: 10.1016/j.foodres.2014.11.017.
  • Szymczak, L. C., H. Y. Kuo, and M. Mrksich. 2018. Peptide arrays: Development and application. Analytical Chemistry 90 (1):266–82. doi: 10.1021/acs.analchem.7b04380.
  • Taniguchi, M., M. Kameda, T. Namae, A. Ochiai, E. Saitoh, and T. Tanaka. 2017. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. Journal of Functional Foods 34:287–296.
  • Tkaczewska, J. 2020. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings—A review. Trends in Food Science & Technology 106:298–311. doi: 10.1016/j.tifs.2020.10.022.
  • Tordesillas, L., M. C. Berin, and H. A. Sampson. 2017. Immunology of food allergy. Immunity 47 (1):32–50. doi: 10.1016/j.immuni.2017.07.004.
  • Tu, M., S. Cheng, W. Lu, and M. Du. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry 105:7–17. doi: 10.1016/j.trac.2018.04.005.
  • Tuck, C., E. Ly, A. Bogatyrev, I. Costetsou, P. Gibson, J. Barrett, and J. Muir. 2018. Fermentable short chain carbohydrate (FODMAP) content of common plant-based foods and processed foods suitable for vegetarian- and vegan-based eating patterns. Journal of Human Nutrition and Dietetics 31 (3):422–35. doi: 10.1111/jhn.12546.
  • Udenigwe, C. C., and R. E. Aluko. 2012a. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science 77 (1):R11–24. doi: 10.1111/j.1750-3841.2011.02455.x.
  • Udenigwe, C. C., and R. E. Aluko. 2012b. Multifunctional cationic peptide fractions from flaxseed protein hydrolysates. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 67 (1):1–9. doi: 10.1007/s11130-012-0275-3.
  • Udenigwe, C. C., and A. Howard. 2013. Meat proteome as source of functional biopeptides. Food Research International 54 (1):1021–32. doi: 10.1016/j.foodres.2012.10.002.
  • Udenigwe, C. C., M. Gong, and S. Wu. 2013. In silico analysis of the large and small subunits of cereal RuBisCO as precursors of cryptic bioactive peptides. Process Biochemistry 48 (11):1794–9. doi: 10.1016/j.procbio.2013.08.013.
  • Ulug, S. K., F. Jahandideh, and J. Wu. 2021. Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology 108:27–39. doi: 10.1016/j.tifs.2020.12.002.
  • Venkatarajan, M., and W. Braun. 2001. New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical-chemical properties. Journal of Molecular Modeling 7 (12):445–53. doi: 10.1007/s00894-001-0058-5.
  • Wang, B., N. Xie, and B. Li. 2019. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. Journal of Food Biochemistry 43 (1):e12571. doi: 10.1111/jfbc.12571.
  • Wenschuh, H., R. Volkmer‐Engert, M. Schmidt, M. Schulz, J. Schneider‐Mergener, and U. Reineke. 2000. Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55 (3):188–206. doi: 10.1002/1097-0282(2000)55:3<188::AID-BIP20>3.0.CO;2-T.
  • Wu, J., R. E. Aluko, and S. Nakai. 2006. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure-activity relationship study of di- and tripeptides. Journal of Agricultural and Food Chemistry 54 (3):732–8. doi: 10.1021/jf051263l.
  • Xu, Q., H. Hong, J. Wu, and X. Yan. 2019. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends in Food Science & Technology 86:399–411. doi: 10.1016/j.tifs.2019.02.050.
  • Xu, S. W., Y. T. Shen, G. J. Chen, S. Bean, and Y. H. Li. 2019. Antioxidant characteristics and identification of peptides from sorghum kafirin hydrolysates. Journal of Food Science 84 (8):2065–76. doi: 10.1111/1750-3841.14704.
  • Yang, Y. J., H. Y. He, F. Z. Wang, X. R. Ju, J. Yuan, L. F. Wang, R. Aluko, and R. He. 2017. Transport of angiotensin converting enzyme and renin dual inhibitory peptides LY, RALP and TF across Caco-2 cell monolayers. Journal of Functional Foods 35:303–14. doi: 10.1016/j.jff.2017.05.053.
  • Yimit, D., P. Hoxur, N. Amat, K. Uchikawa, and N. Yamaguchi. 2012. Effects of soybean peptide on immune function, brain function, and neurochemistry in healthy volunteers. Nutrition (Burbank, Los Angeles County, Calif.) 28 (2):154–9.
  • Zhang, J., Z. He, Q. Wang, B. Barz, I. Kosztin, Y. Shang, and D. Xu. 2012. Prediction of protein tertiary structures using MUFOLD. Methods in Molecular Biology (Clifton, N.J.) 815:3–13.
  • Zhang, Y., H. Lu, Y. Lin, and J. Cheng. 2011. Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 44 (17):6641–4. doi: 10.1021/ma201678r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.